
CS354: Machine
Organization and

Programming
Lecture 10Friday the September 26th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some diagrams and text in this lecture from CSAPP lectures by Bryant & O’Hallaron

Class Announcements
1. Sample Ques and Midterm location posted in
Exams link from Course website.

Oct 6th Tues 5:30 PM to 7:00 PM at
Van Vleck Room B130(Section 2)

2. Anyone looking for a partner for P1 and
beyond please come leave your name, email
with me after class. I have a couple of students
who are also looking for partners.

Lecture Overview
• Logical and shift instructions
• Condition codes
• Set instructions
• Jump instructions
• Conditional move instructions
• How to write in x86 assembly: do while loops, while loops, for loops, switch statements

Examples
Assume x at %ebp+8, y at %ebp+12, z at %ebp+16
1 movl 12(%ebp), %eax y
2 xorl 8(%ebp), %eax t1 = x ^ y
3 sarl $3, %eax t2 = t1 >> 3
4 notl %eax t3 = ~t2
5 subl 16(%ebp), %eax t4 = t3-z

setl and flags for 2’s complement
(Refer 3.6.2 in CSAPP Textbook)

1. When no overflow occurs: OF is 0
a < b if a-b <0 indicated by SF = 1
a >=b if a-b >=0 indicated by SF =0

2. When overflow occurs: OF is 1
a <b if a-b >0 (positive overflow) [SF = 0]
a >b if a-b <0 (negative overflow) [SF = 1]
(no overflow when a is equal to b)

3. So, to test for a < b, we use SF ^ OF
4. Other signed comparison tests are based on other

combinations of SF ^ OF and ZF

Jump: Relative vs Absolute
(Relevant for Linking which we will cover in later lecture)
• Assembly Jump statements use labels but assembler and later

linker translate these labels to actual instruction addresses.
• PC Relative: difference between address of target instruction

and address right after the jump instruction. (offsets use 1, 2
or 4 bytes)

• Absolute: use 4 bytes to directly specify target instruction
• Advantages of PC Relative:

1. Instruction can be compactly encoded
2. Object code can be shifted to different positions in

memory without alteration

“if ” and “if else” Stmts in
Assembly

Overview of “if ” and “if else” statement:

General Approach:
1. Use compare instructions to set the condition codes
2. Then use the jump instructions to execute the right set

of instructions

if(condition){
statements;

}
if(condition){

statements1;
}else{

statements2;
}

“if else” example
if(x<y){

return y-x;
}else{

return x-y;
}

x at %ebp+8, y at %ebp+12
1 movl 8(%ebp), %edx Get x
2 movl 12(%ebp), %eax Get y
3 cmpl %eax, %edx Compare x:y
4 jge .L2 if >= go to L2
5 subl %edx, %eax result = y-x
6 jmp .L3 Goto done
7 .L2:
8 subl %eax, %edx result = x-y
9 movl %edx, %eax %eax = result
10 .L3: done: Begin completion code

