9/25/2015

CS354: Machine Class Announcements

Organlz ation and 1. Sample Ques and Midterm location posted in

PI'O gramming Exams link from Course website.
Lecture 10 Oct 6th Tues 5:30 PM to 7:00 PM at
Friday the September 26" 2015 Van Vleck Room B130(Section 2)

2. Anyone looking for a partner for P1 and
. beyond please come leave your name, email
Instructor: Leo Arulraj _yh P 1 h Y le of
© 2015 Karen Smoler Miller with me after class. I have a couple of students

© Some diagrams and text in this lecture from CSAPP lectures by Bryant & who are also looking for partners
O’Hallaron :

Section 2

Lecture Overview Logical and Shift Instructions

Logical and shift instructions D D gets ~D (complement)
.. 8.0 D gets D & S (bitwise logical AND)
Condltlon COdes r 8D D gets D | S (bitwise logical OR)

Set instructions S,D D gets D » S (bitwise logical XOR)

k D D gets D logically left shifted by k bits

Jump instructions
k, D D gets D arithmetically right shifted by k bits

Conditional move instructions . kD |D gets Dlogically right shifted by k bits

How to write in x86 assembly: do while loops,
while loops, for loops, switch statements

9/25/2015

Examples

Condition Codes

Assume x at %ebp+38, y at %ebp+12, z at %ebp+16 a register known as EFLAGS on x86

1 movl 12(%ebp), %eax y CF: carry flag. Set if the most recent operation
caused a carry out of the msb. Overflow for

2 xorl 8(%ebp), %eax tl=x"y unsigned addition.

3 sarl $3, %eax ©2=t] >>3 ZF: zero flag. Set if the most recent operation
generated a result of the value 0.

4 notl %eax t3=~t2 SF: sign flag. Set if the most recent operation

5 subl 16(%ebp), Y%eax t4 =13z generated a result that is negative.

’ OF: overflow flag. Set if the most recent

operation caused 2’s complement overflow.

Instructions related to EFLAGS T T E—— Fe———

sete D setz D« 2ZF Equal / zero

set D to 0x01 if ZF is set, 0x00 if not set (place setna D sotnz D« =7F Not equal / not zero

zero extended ZF into D)

set D to 0x01 if SF s set, 0x00 if not set (place BELE, DressE Negative

zero extended SF into D) setns D D - -8F Nonnegative

. many more set instructions . . . sstg D setnle D+ -(SF~ OF) & ~ZF Greater (signed »)

setge D setnl D« ~(SF~ OF} Greater or equal (signed >=)

do S1 - S2 to set EFLAGS setl D setnge D« SF-0OF Less (signed <)
setle D setng D« (8F~ OF) | ZF Less or equal (signed <-)
seta D setnbe D« -CF&~ZF Above (unsigned >)

do 5185210 set EFLAGS setae [setnb D« -cF Above or equal (unsigned >=)
seth D setnas D+CF Below (unsigned <)
setbe D setna D«CF|ZF Below or equal (unsigned <=)

9/25/2015

setl and flags for 2’s complement
(Refer 3.6.2 in CSAPP Textbook) Control Instructions

‘When no overflow occurs: OF is 0 - golo Lavel; %sip gets Label
a <bif a-b <0 indicated by SF = 1] indirect jump; goto address given by D

a >=b if a-b >=0 indicated by SF =0 j goto Label if ZF flag is set; jump taken when
j previous result was 0

When overflow OC(?L.II'S: OF is 1 goto label if ZF flag is not set; jump taken

a <bif a-b >0 (pOSlthG overﬂow) [SF = 0] when previous result was not 0

a >b if a-b <0 (negative overflow) [SF = 1] . goto labe 1 if SF flag is set; jump taken when
. previous result was negative

(no overflow when a is equal to b)

goto Label if SF flag is not set; jump taken
when previous result was not negative

So, to test for a < b, we use SF * OF

Other signed comparison tests are based on other
combinations of SF ~ OF and ZF

Jump: Relative vs Absolute
More Control Instructions (Relevant for Linking which we will cover in later lecture)

goloLane1 i EFLAGS setisuchihat previous . Assembly Jump statements use 1abel§ but ass.embler and later
result was greater than 0 linker translate these labels to actual instruction addresses.

goto label if EFLAGS set such that previous
result was greater than or equal to 0 PC Relative: difference between address of target instruction

goto Label if EFLAGS set such that previous and address right after the jump instruction. (offsets use 1, 2
result was less than 0 ord bytes)

goto Label if EFLAGS set such that previous
result was less than or equal to 0 Absolute: use 4 bytes to directly specify target instruction

Advantages of PC Relative:
I Instruction can be compactly encoded

2. Object code can be shifted to different positions in
memory without alteration

9/25/2015

“if” and “if else” Stmts in
Assembly

Overview of “if” and “if else” statement:

IF STATEMEeNnT eXAmpLe

if(condition){
statements;

}

if(condition){
statements];
telse{

statements2; Assumptions:
} > x and y are both integers
> xisalready in %ecx
> vy isalready in $edx

General Approach:
1. Use compare instructions to set the condition codes

2. Then use the jump instructions to execute the right set
of instructions

“1f else” example

if(x<y){ x at %ebp+8, y at %ebp+12
cmpl %ecx, %edx return y-X;
felsel 11 movl 8(%ebp), %edx Gerx
U XY; | 5 movl 12(%ebp), %eax Gety

jne skip 1NnCr uzr set if they were equal

incl %ecx s+ }
3 cmpl %eax, Y%edx Compare x:y

4ijge L2 if >=goto L2

5 subl %edx, %eax result = y-x

6 jmp .L3 Goto done

7 .L2:

8 subl %eax, %edx result = x-y

9 movl %edx, %eax Y%eax = result

10 .L3: done: Begin completion code

skip incr:

