9/28/2015

CS354: Machine Class Announcements

Organlz ation and 1. Grades for Programming Assignment 0 have

Pro gramming been released in learn@UW.
Lecture 11 2. If you have questions about your grading
Monday the September 28™ 2015 please contact Lokesh or Urmish.

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller

© Some diagrams and text in this lecture from CSAPP lectures by Bryant &
O’Hallaron

“do while” example
Argument: n at %ebp+8 and result in %eax

Lecture Overview -
do{

;es:ug*; ™11 movl 8(%ebp), %edx getn
ywhil e(n>’ 1): 2 movl $1, %eax result = 1
"3 .L2: loop:

i 0 0 *—
* How to write in x86 assembly: ‘51 ;T;lg 1/0 e";(l):d ;"eax ;isé;i; o tnn

do while loops, while loops, for loops, switch 6 cmpl $1, %edx compare n:1
statements 7ig L2 If >,goto
Some more examples like factorial, string loop

length, finding max in an integer array etc return result

9/28/2015

“while” example

result = 1; Argument: n at %ebp+8

while(n>1){ | Registers: n in %edx, result in Y%eax
result*=n;
n=n-1; 1 movl 8(%ebp), Y%edx getn

IN 2 movl $1, %eax result = 1

3 cmpl $1, %edx compare n:1

4jle .L7 If <=, goto done

5.L10: loop:

6 imull %edx, %eax result *=n

7 subl $1, %edx decrement n

8 cmpl $1, Y%edx compare n:1

9ig.L10 If >, gotoloop

10 .L7: done:

Return result

FORLOOP exAmPLE

Karen’s implementation: gec's implementation (mostly):
movl N, %$ecx movl N, %$ecx

movl $0, %eax sum in eax movl $0, %eax sum in eax

movl $1, %edx i in edx movl $1, %edx i in edx
cmpl %edx, %ecx Jmp L2

31 . L6 jump when N-1 is negative " ¢ addl %edx, %eax sum = sum + i
addl %edx, %eax incl $%edx

incl %edx i L2: cmpl %ecx, %edx

Jmp .L5 jle w Lo jump when i-N is less than

or equal to 0

9/28/2015

About Switch Statement and Jump
Tables _ __ -

_Sw1tch statements offer multi-way hranchlng capability and are e, S G = il xero
implemented using Jump tables which are supported by GCC as cmovna SR cmovnz -zF Nol equal { not zero
an extension to C. s (R o= Negative

Conditional Move Instructions

. . . cmovns S5, R -3F Nonnegative
Jump table is an array where the i entry is the address of the

. . . SR 1 ~(SF~ OF) & ~ZF Great i d >
code segment that should execute when the switch index equals i. TR, cmovnle) reater (signed >)

cmovge S.R cmovnl -{SF * OF) Greater or equal (signed >-)
cmovl SR cmovngs SF"OF Less (signed <)
Advantage of Jump tables when compared to long sequence of e — (SF~OF) | ZF Lesor gl igned <)
compares and jumps : Time taken to perform the §w1tch is N T ra—— b G
independent of the number of cases and the sparsity of the case e AR mvah -cF Above ar-equal (Unsigied 5=
values. cmovb §.R cmovmae CF Below (unsigned <}

cmovbe S.R cmovna CF | ZF below or equal (unsigned <=}

Jump tables used Only when there are a number of cases (4or Figure 3.17 The conditional move Instructions. These instructions copy the source

more) and they span a small range of values value § to its destination R when the maove condition holds. Some instructions have
“synonyms,” alternate names for the same machine instruction,

Pipelining and Conditional Move
(Refer 3.6.6 in CSAPP textbook)

Clock Cycle

e Factorial

Example x86 programs

Waiting

instructions Find max in integer array

String length

PIPELINE

Count the bits set in an integer -
Completed popcount

Instructions

