Class Announcements

1. Grades for Programming Assignment 0 have been released in learn@UW.
2. If you have questions about your grading please contact Lokesh or Urmish.

Lecture Overview

- How to write in x86 assembly:
- do while loops, while loops, for loops, switch statements
- Some more examples like factorial, string length, finding max in an integer array etc

"while" example	
$\begin{aligned} & \text { result }=1 ; \\ & \text { while }(\mathrm{n}>1)\{ \\ & \text { result*}=\mathrm{n} ; \\ & \mathrm{n}=\mathrm{n}-1 ; \\ & \} ; \end{aligned}$	

About Switch Statement and Jump Tables

1. Switch statements offer multi-way branching capability and are implemented using Jump tables which are supported by GCC as an extension to C .
2. Jump table is an array where the $\mathrm{i}^{\text {th }}$ entry is the address of the code segment that should execute when the switch index equals i
3. Advantage of Jump tables when compared to long sequence of compares and jumps : Time taken to perform the switch is independent of the number of cases and the sparsity of the case values.
4. Jump tables used only when there are a number of cases (4 or more) and they span a small range of values

Conditional Move Instructions

Instruction		Synonym cmovz	Move condition	$\begin{aligned} & \text { Description } \\ & \hline \text { Equal / zero } \end{aligned}$
cmove	S,R			
cmovne	S,R	cmovnz	-ZF	Not equal / not zero
cmovs	S,R		SF	Negative
cmovns	S,R		-SF	Nonnegative
cmovg	S,R	cmovnle	$\sim\left(S F^{\wedge} \mathrm{OF}\right) \& \sim \mathrm{ZF}$	Greater (signed >)
cmovge	S,R	cmovnl	-(SF^ OF)	Greater or equal (signed >-)
cmov1	S,R	cmovnge	SF ${ }^{\text {- }} \mathrm{F}$	Less (signed <)
cmovle	S,R	cmovng	(SF^ OF) \| ZF	Less or equal (signed <-)
cmova	S, R	cmovnbe	\sim CF ${ }^{\text {b }} \sim 2 \mathrm{ZF}$	Above (unsigned >)
cmovae	S, R	cmovnb	-CF	Above or equal (Unsigned >-)
cmovb	S,R	cmovnae	CF	Below (unsigned <)
cmovbe	S, R	cmovna	CFI ZF	below or equal (unsigned <-)
Figure 3.17 The conditional move Instructions. These instructions copy the source value S to its destination R when the move condition holds. Some instructions have "synonyms," alternate names for the same machine instruction.				

Pipelining and Conditional Move (Refer 3.6.6 in CSAPP textbook)

Example x86 programs

- Factorial
- Find max in integer array
- String length
- Count the bits set in an integer popcount

