CS354: Machine

Organization and

Programming
Lecture 15

Wednesday the October 07% 2015

Section 2

Instructor: Leo Arulra;
© 2015 Karen Smoler Miller

Class Announcements

|. How was Midterm1? Easy, Hard?

2. Any suggestions for Midterm?2?

Lecture Overview

1. Intro to Functions and Stacks

7. Instructions used for Function Calls

What we need to know how to do. . .
(what the compiler must be able to implement)

call

return

AR and local variables
return value
parameters

Sl

Important Note: In the following slides for

this lecture the stack is represented as
Function Implementation growing upwards with lower addresses at
(x86-specific) the top and higher addresses at the bottom.

This is the opposite of what we have seen

and will see in this course.
double words are pushed

and popped

addr O

dedicated register %esp
contains address of item currently
at top of stack (TOS)

-« Jo€Sp

THE STACK

pushl

does %esp <- %esp - 4
movl *, (%esp)
popl *
does movl (%esp) ’ *

sesp <- %esp + 4

THE STACK

1. call

e remember the return address

e gotofcn

this is such a common operation that the
x86 architecture supports it with a single

iInstruction

call fcn
does the equivalent of

push %eip <:

Jmp fcn

PC

addr 0

-« Jo€Sp

2. return

use the return address pushed onto the stack

ret
does the equivalent of

o)

popl %elp

ra

addr 0

- Yoesp

3. incorporate AR

For example, assume we need AR space for 3 ints.
gcc on x86 allocates AR space in multiples of 16 bytes.

Before fcn
starts, but
after the

instruction

%esp —>

%esp —

prev %ebp

ra

addr O

<«— %ebp

After fcn
prologue

prologue code
pushl %ebp

movl sesp, %sebp
subl $16, %esp

%esp —>
Before fcn
starts, but
after the
&all
instruction
%esp —

prev %ebp

ra

addr 0

<«— %ebp

‘/

. %ebp

After fcn
prologue

epilogue code

leave does movl %ebp, %esp
popl %ebp

ret does popl %eip
addr 0
0 e
o After
epilogue
Before
epilogue prev %ebp |«— %ebp
| ra
%esp —
<— %ebp

Put local variables into AR:

void b () b: pushl %ebp prologue
Rt Ry Y 22 movl %esp, %ebp
X = 1; subl $16, %esp
y = 2; movl $1, -12(%ebp)
z = 3; movl $2, -8 (%ebp)
S movl $3, -4 (%ebp)
} " call c
y leave epilogue
before :
epilogue ret
prev %ebp|<«— %ebp
ra

4. return value

On x86, return value goes in $eax (by convention)

int b() {

c() ;

return 4;

call
movl $4,
leave

ret

seax

5. parameters

No room in registers on the x86, so parameters go onto
the stack.

Caller allocates space and places copies (for call by
value). Child retrieves and uses copies.

main () { main: pushl

A view of the stack

taken from the
CSAPP textbook

Increasing
address

+4+4n

Argument 7

+8

Argument 1

.+
Frame pointer 4

Return address

Sebp E—

Saved $ebp

4

Saved registers,
local variables,
and
temporaries

Stack pointer

sesp E—

Argument
build area

> Earlier frames

> Caller’s frame

> Current frame

