
CS354: Machine
Organization and

Programming
Lecture 16Friday the October 09th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller

Class Announcements
1. Midterm 1 grades should be available by

Monday next week.
2. Programming Assignment 1 will also be likely

graded before early next week.

Lecture Overview
1. Demo of function calls using gdb along with

slides that show how the stack changes during
a simple function call.

2. Calling Conventions
3. Overview of Function calls

Demo
1. The following slides step through the assembly instructions for the program simplefunctions1.c from Lecture 16 and show how the stack changes.
2. Keep the files simplefunctions1.c and simplefunctions1.objdump open while going over the following slides that show the stack layout.

%esp %ebp of main’s caller
Prologue: After executing Instruction : 0x80483be: push %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x80483bf: mov %esp,%ebp
%esp %ebp main’s caller  %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x80483c1: sub $0x18,%esp
Allocating Space for local variables : a, b, c and parameters to func1
(gcc allocates in multiples of 16 bytes)

%ebp main’s caller  %ebp
int c
int b
int a

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483c4: movl $0xc,-0xc(%ebp)
Initializing local variable a;

%ebp main’s caller  %ebp
int c
int b

int a : 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483cb: movl $0x18,-0x8(%ebp)
Initializing local variable b;

%ebp main’s caller  %ebp
int c

int b : 0x18 == 24
int a : 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d2: mov -0x8(%ebp),%eax
Fetch b in %eax;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a: 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d5: mov %eax,0x4(%esp)
Set up parameter b;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d9: mov -0xc(%ebp),%eax
Fetch a into %eax;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483dc: mov %eax,(%esp)
Set up parameter a;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483df: call 8048394 <func1>
Call function func1: which pushes return address on stack and jumps to func1;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

%esp Return address: 0x80483e4

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048394: push %ebp
Push %ebp of main into stack

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048395: mov %esp,%ebp
Setup frame for func1

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main  %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048397: sub $0x10,%esp
Allocate space for local variables: diff, sum (gcc allocates in multiples of 16 bytes)

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Caller’s Frame
main() is the caller

Callee’sFrame
func1() is the callee

After executing Instruction : 0x804839a: mov 0xc(%ebp),%eax
Fetch second parameter into %eax
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x804839d: mov 0x8(%ebp),%edx
Fetch first parameter into %edx
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483a0: mov %edx,%ecx
0x80483a0: mov %edx,%ecx
0x80483a2: sub %eax,%ecx
0x80483a4: mov %ecx,%eax

These instruction calculate x-y and store
it in %eax

After executing Instruction : 0x80483a6: mov %eax,-0x8(%ebp)
Store result in diff

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff = x-y

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483a9: mov 0xc(%ebp),%eax
0x80483ac: mov 0x8(%ebp),%edx
0x80483af: lea (%edx,%eax,1),%eax

These instruction fetch parameters x, y
into temporary registers, calculate x+y
into register %eax

After executing Instruction : 0x80483b2: mov %eax,-0x4(%ebp)
Store result in sum

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp
int sum = x+y
int diff = x-y

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483b5: mov -0x4(%ebp),%eax
0x80483b8: imul -0x8(%ebp),%eax

These instructions fetch sum into %eax, and
then calculate product of sum and diff into
register %eax
Since by x86 conventions, the result of a
function is left in %eax, we do not need to
anything further.

After executing First part of Instruction : 0x80483bc: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main  %ebp

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Second part of Instruction : 0x80483bc: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

%esp Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483bd: ret
Return to main by poping into %eip

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483e4: mov %eax,-0x4(%ebp)
Store result into local variable c

%ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483e7: mov $0x0,%eax
Store result of main (value 0) into %eax by x86 convention

%ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Part 1 of Instruction : 0x80483ec: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%esp %ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Part 2 of Instruction : 0x80483ec: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

Register Saving x86 conventions

Example Program on
Register Calling

Conventions

