CS354: Machine Organization and Programming

Lecture 20 Monday the October 19th 2015

> Section 2 Instructor: Leo Arulraj

> > © 2015 Karen Smoler Miller

© Some examples, diagrams from the CSAPP text by Bryant and O'Hallaron

Class Announcements

1. Programing Assignment 2 Due on Wednesday October 21st before 9AM

2. Collect your Midterm1 exams and Programming Assignment 1 feedback from me if you have not done so already.

Lecture Overview

1. Memory Hierarchy motivating example

2. Cache Organization

3. Direct Mapped Cache

Array copy

Changing the loop order while copying a 2 dimensional array alters the time taken by a factor of 37 on a CSL instructional machine

Memory Mountain

1. Read throughput decreases as the stride increases

2. Read throughput decreases as more data is copied.

Design the cache such that it can quickly do a lookup: given the address, decide if that location is in the cache (hot) or not (miss).

Divide all of memory into fixed size blocks. Transfer a block on a miss. Keep the block in the cache until something else knocks it out.

Let's play with an unrealistically small cache example. It will hold only 4 blocks.

A block lands in a block frame (textbook)

Frame#

2 bits of address are used to determine the frame #.
LSBs identify byte/word within the block.

| lindex byte within block

Each main memory block maps to a specific block frame.

main memory

cache

2 bits of the address define this mapping

(Many main memory blocks map to the same block frame. Only I can be in the block (We have to quickly decide it (the right one is in the frame. The only thing we have to use is the address.

So... store the remainder of the address of a block with the block.

Called a tag.

Address as used by the cache for a lookup.

tag index# byte w/ black

Bits of SRAM cannot identify whether a block from memory has or has not been placed in a block frame.

So, keep 1 bit per frame to identify if data is valid or not.

Generic Cache Organization

Completed diagram of the cache:

tag index # byte w/i block

tags data blocks

00
01
10
11

Looking up a memory address in Direct Mapped Cache

This cache is called

direct mapped

or

1-way set associative

or

set associative, with a set size of 1

Each index # maps to exactly 1 block frame

Cache Lookup

Three steps while determining whether a request is a hit or a miss:

- Set selection: Select the set where the address resides.
- Line matching: Select the cache line within the set.
- Word extraction: Extract the requested word from the right offset.

Cookup algorithm: (cache receives address) [Use index to identify frame rif frame is valid - if frame's tag matches address' tag else - else data blocks MISS

Looking up a memory address in Direct Mapped Cache

