10/21/2015

CS354: Machine Class Announcements

Organization and
0 . Programming Assignment 2 was due by 9 AM
Programmlﬂg today. You can submit it upto 48 hours after the
Lecture 21 deadline with penalties.
Wednesday the October 21t 2015

. Email me if you will have conflicts with the
Section 2 CS354 Midterm Exam 2:

~ ©2015 Karen Smoler Miller Van Vleck Room B130(Section 2)
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron . . .
(Come to the Location about 15 mins earlier)

On a miss
Lecture OVCI’VICW sSend the memory reﬁm’f’ o ma'n
’hemory.
*Memory returns +he entrve block
. Types of Cache misses cont mng the needed byfefaord .
‘?{QCC ‘,%(é/’OCé nte 'fée 'f/f;dﬂ?E.
. Looking up the cache contents in Set ~Set the 4aq bifs
Associative Caches ~Mark the frame valid.
. Tracing through an example Set Associative And, while dong s, extract
Cache The byfc/ward ¥ retorn it fo

fhe processor, completrng fhe

memory access .

High-order Middle-order
4-set cache bit indexin, bit indexin,

o
o

/i
Y [
A SS,
Pl

o
o

A
1

=3
o

o
o

o
it

‘Why middle

order bits

are used as

Set Index?

Higher order bits
lead to consecutive
addresses mapping
to same set.

oo o
o lr |k =

-
o

[
o

[
o

-
-

-

AN
TN
NN
NN
/

Set index bits’

=]
chlglslriziglglizlglsielzigls

HORPROROROROROLPROR O

1
1

-

Types of Misses

* Compulsory or cold misses: Cache is empty
to start with and will miss.

» Conflict misses: Cache has space but because
objects map to the same cache block they keep
missing.

» Capacity misses: Cache does not have space
because size of the working set exceeds the
size of the cache.

10/21/2015

4 .
/l/\:'QCS O’;‘F mi SS€S
[

) compy a’mr;/

2) conflict

) capa Cf"%-)/

Conflict misses are common

* Consider:

float dotprod(float x[8], float y[8])
{

float sum = 0.0; register int i;
for(i=0;i<8;i++)

sum += x[i] * y[il;
return sum;

}
Analyze for (S,E,B,m) = (2,1,16,6)

10/21/2015

lo redvee :on{/rg{ misses

Conflict misses are common increase. sef assocratrorty
* It causes thrashing: repeatedly loading and 3'_W£ﬁ6f assocrative.
evicting same cache blocks ol blocks
ke

7Pu" set (line)

Py ey dede

* Thrashing is easy to avoid once you know it
is going on: Use padded arrays so that the o
accessed elements are mapped to different - way sef assoc ative_

cache sets 0 a0 e /i_m, Mo ¥ g

|-

Set Associative Cache Organization [Ar ﬁ er- S c‘}L 8 /IZ@

Cache block }E:zlmesperSet 9 7"6}’1[{5 %0 /ead 7£D }719/18/"

Cache block

Cache block L”.‘]L l/afhlo /C[U& '/D 7[€W€i‘ COI’)-[][d

Cache block mi ys‘g f)

AAEE
ol e afla

£
a

Cache block
Cache block

£
a

amont of cfrcw%‘fy goes ¢p,
. . ’l
‘/eaa'imja 1o Increast [n 72

10/21/2015

Looking up a memory address Looking up a memory address
in Set Associative Cache in Set Associative Cache

Cache block =1? (1) The valid bit must be set
Cache block

set 0:

Selected set set 1: i Cache block Selected set (i)
i Cache block

IW |W1|W2|W1|

(2) The tag bits in one [©)Rt] (1? and (2), then
Cache block of the cache lines must cache hit, and

i - block offset selects
. > . -1 tch the tag bit: N
£ bits s bits bbits _ SetS-1: i Cache block $: ;ddreessag e tarting byte
00001 ¢ bits s bits b bits
i 100

ml

Tag Set index Block offsetn

"~ Tag Set index Block offsef’

Set Associative Cache Practice
Proble 6.13-6.16
Consider a cache with: (S,E,B,m) = (8,2,4,13)

Tracing through a sample
Set Associative Cache

Analyze memory references to :

from CSAPP textbook 0x0E34

practice problem 6.13 0x0DD5
0x1FE4
The memory layout is shown in in next slide.

10/21/2015

2-way set associative cache . .
Line 0 Line 1

Setindex Tag Valid ByteO Bytel Byte2 Byte3 Tag Valid ByteO Bylel Byte2 Byte3 CaChe Replacement POIlCIeS

0 1 86 30 3F 0 = = —
1 60 4F E0 23 1 00 BC 0B 3 . .
0| = R - - = * Which block to replace or evict to make space
(- T 2 0 7B

06] 07 s 3 40 67 2 3 for new blocks?

0B 18 4B = — —s =3 .
A0 % = e Random Replacement Policy: chooses a random

— — — 12 o 88 . .
victim block.
The following figure shows the format of an address (one bit per box). Indicate . .
(by labeling the diagram) the fields that would be used to determine the following: LeaSt Recel'ltly Used— (LRU) POIICY. Chooses the
€O The cache block offset block that was last accessed furthest in the past.

(67} The cache set index

CT Theecachetag Least Frequently Used (LFU) Policy: chooses
the block that was least frequently accessed in
the past.

© CSAPP textbook by Bryant and O’Hallaron

