
10/21/2015

1

CS354: Machine
Organization and

Programming
Lecture 21Wednesday the October 21th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. Programming Assignment 2 was due by 9 AM today. You can submit it upto 48 hours after the deadline with penalties.
2. Email me if you will have conflicts with the CS354 Midterm Exam 2:

Nov 10th Tues 5:30 PM to 7:00 PM at
Van Vleck Room B130(Section 2)

(Come to the Location about 15 mins earlier)

Lecture Overview
1. Types of Cache misses
2. Looking up the cache contents in Set

Associative Caches
3. Tracing through an example Set Associative

Cache

10/21/2015

2

4-set cache
00
01
10
11

High-order
bit indexing0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Middle-order
bit indexing

Set index bits

Why middle
order bits
are used as
Set Index?
Higher order bits
lead to consecutive
addresses mapping
to same set.

Types of Misses
• Compulsory or cold misses: Cache is empty

to start with and will miss.
• Conflict misses: Cache has space but because

objects map to the same cache block they keep
missing.

• Capacity misses: Cache does not have space
because size of the working set exceeds the
size of the cache.

Conflict misses are common
• Consider:
float dotprod(float x[8], float y[8])
{

float sum = 0.0; register int i;
for(i=0;i<8;i++)

sum += x[i] * y[i];
return sum;

}
Analyze for (S,E,B,m) = (2,1,16,6)

10/21/2015

3

Conflict misses are common
• It causes thrashing: repeatedly loading and

evicting same cache blocks

• Thrashing is easy to avoid once you know it
is going on: Use padded arrays so that the
accessed elements are mapped to different
cache sets

Valid TagSet 0: E=2 lines per set

Set 1:

Set S - 1:

•••

Cache block
Valid Tag Cache block

Valid Tag Cache block
Valid Tag Cache block

Valid Tag Cache block
Valid Tag Cache block

Set Associative Cache Organization

10/21/2015

4

Valid
Valid

Tag
Tagset 0:

Valid
Valid

Tag
Tagset 1:

Valid
Valid

Tag
Tagset S -1:

•••

t bits s bits0 0 0 0 1
0m-1

b bits
Tag Set index Block offset

Selected set

Cache block
Cache block

Cache block
Cache block

Cache block
Cache block

Looking up a memory address
in Set Associative Cache

1 0110 w3w0 w1 w2
1 1001

t bits s bits 100i0110
0m-1

b bits
Tag Set index Block offset

Selected set (i):

=1?

= ?
(3) If (1) and (2), then
cache hit, and
block offset selects

starting byte

(2) The tag bits in one
of the cache lines must
match the tag bits in
the address

(1) The valid bit must be set
30 1 2 74 5 6

Looking up a memory address
in Set Associative Cache

Tracing through a sample
Set Associative Cache
from CSAPP textbook
practice problem 6.13

Set Associative Cache Practice
Proble 6.13-6.16

• Consider a cache with: (S,E,B,m) = (8,2,4,13)
• Analyze memory references to :
• 0x0E34
• 0x0DD5
• 0x1FE4
The memory layout is shown in in next slide.

10/21/2015

5

© CSAPP textbook by Bryant and O’Hallaron

Cache Replacement Policies
• Which block to replace or evict to make space

for new blocks?
• Random Replacement Policy: chooses a random

victim block.
• Least Recently Used (LRU) Policy: chooses the

block that was last accessed furthest in the past.
• Least Frequently Used (LFU) Policy: chooses

the block that was least frequently accessed in
the past.

