CS354: Machine
Organization and

Programming

Lecture 22
Friday the October 23 2015

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Lecture Overview

. Fully Associative caches

. Write Policies

. I-cache , D-cache , unified caches
4. Intel core 17 cache hierarchy

. Writing Cache Friendly Code

10/25/2015

Class Announcements

. Programming Assignment 3 released.
Due by Nov 4% before 9 AM. Start early!

Theme: Measurements and analysis of caches

Fully Associative Cache Organization

[Tag][Cacheblock |
. | Tag || Cache block |

[Tag || Cache block |

E =C/B lines in
the one and only set

More circuitry and hence more expensive than
Direct mapped and Set Associative Caches

10/25/2015

Looking up a memory address
in Fully Associative Cache

Looking up a memory address
in Fully Associative Cache

=17 (1) The valid bit must be set

Cache block
Cache block

The entire cache is one set, so
by default set 0 is always selected ~ Set 0:

Entire cache

£ bits [b bitS_| Cache block L L[]

Tag Block offsetn

(2) The tag bits in one of the _ (3) If (1) and (2), then

cache lines must match the tag : cache hit, and block
bits in the address offset selects
b bits starting byte
100

Tag Block offseto

Implementing writes @ write back
VTag_ Data « at first, change data in the cache
[*]) * write to memory only when necessary
V Tag_ Data

dirty bit is set on a
write, to identify blocks
to be written back to
write through memory {__ o
change data in the cache, and send the d.|r'1'y bit
write to main memory

memory

when a program completes, all dirty

slow @, but very little circuitry © blocks must be written to memory. . .

© Koren Miller, 2011 © Karen Miller, 2011

O write back (continued)

> faster ©
multiple stores to the same location result
in only 1 main memory access
> more circuitry ©
> must maintain the dirty bit
> dirty miss: amiss caused by a read or write to
a block not in the cache, but the required block
frame has its dirty bit set. So, there is a write
of the dirty block, followed by a read of the
requested block.

© Karen Miller, 2011

V Tag Data

How about
2 separate caches ?

= for instructions only
= can be rather small,
and still have excellent performance.

VTag Data V Tag _ Data
|
1 N —

»fordataonly I [T]
= needs to be fairly large

© Koren Miller, 2011

10/25/2015

Writing during cache miss:
(Two approaches)
e Write Alloc: Load block in cache and

update word (often used along with Write
back)

* Write No-Alloc (a.k.a.Write around): Just
update memory (often used along with
Write through)

We can send memory accesses to the 2
caches independently. . .

© (increased parallelism)

P e M
f% |§|

© Karen Miller, 2011

10/25/2015

Intel Core i7 Chip

Intel Nehalem Die Shot (Core 17 and later)

Memory Controller

cache cache
Level 2 Level 2
Unified cache Unified cache 8-way
11 cycles

8MB
16-way
35 cycles,

Unified cache

|
[

Shared L3 Cache -

MAIN MEMORY
(DRAM)

Matrix Multiply

Performs matrix multiplication using different loop combinations /

o
=]

N
o

For 1000 x 1000 double data type matrix multiplication on CSL
machines

w
S

Time taken for mmijk is : 6163814132 cycles or 1.71 seconds

IN)
=]

Time taken for mmyjik is : 3349923284 cycles or 0.93 seconds / &
Time taken for mmjki is : 9853809636 cycles or 2.74 seconds /
Time taken for mmbkji is : 12881107088 cycles or 3.58 seconds X

0

Time taken for mmkij is : 2893624056 cycles or 0.80 seconds
Time taken for mmikj is : 1721619796 cycles or 0.48 seconds

=)

Cycles per inner loop iteration

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n)

10/25/2015

Writing Cache Friendly Code

1. Focus on the inner loops where bulk of computation
and memory accesses occur

2. Maximize spatial locality by reading data objects
sequentially with stride 1

3. Maximize temporal locality by reading a data object
as often as possible once it has been read from
memory.

