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CS354: Machine 
Organization and 

Programming
Lecture 22Friday the October 23rd 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. Programming Assignment 3 released.

Due by Nov 4th before 9 AM. Start early!
Theme: Measurements and analysis of  caches 

Lecture Overview
1. Fully Associative caches
2. Write Policies
3. I-cache , D-cache , unified caches
4. Intel core i7 cache hierarchy
5. Writing Cache Friendly Code
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Fully Associative Cache Organization

More circuitry and hence more expensive than 
Direct mapped and Set Associative Caches
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Set 0:The entire cache is one set, so
by default set 0 is always selected
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Looking up a memory address 
in Fully Associative Cache
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Looking up a memory address 
in Fully Associative Cache
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• Write Alloc: Load block in cache and 
update word (often used along with Write 
back)

• Write No-Alloc (a.k.a.Write around): Just 
update memory (often used along with 
Write through)

Writing during cache miss: 
(Two approaches)
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Intel Nehalem Die Shot ( Core i7 and later)

Matrix Multiply
Performs matrix multiplication using different loop combinations
For 1000 x 1000 double data type matrix multiplication on CSL machines
• Time taken for mmijk is : 6163814132 cycles or  1.71 seconds
• Time taken for mmjik is : 3349923284 cycles or  0.93 seconds
• Time taken for mmjki is : 9853809636 cycles or  2.74 seconds
• Time taken for mmkji is : 12881107088 cycles or  3.58 seconds
• Time taken for mmkij is : 2893624056 cycles or  0.80 seconds
• Time taken for mmikj is : 1721619796 cycles or  0.48 seconds
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Writing Cache Friendly Code
1. Focus on the inner loops where bulk of  computation 

and memory accesses occur

2. Maximize spatial locality by reading data objects 
sequentially with stride 1

3. Maximize temporal locality by reading a data object 
as often as possible once it has been read from 
memory.


