
10/25/2015

1

CS354: Machine
Organization and

Programming
Lecture 22Friday the October 23rd 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. Programming Assignment 3 released.

Due by Nov 4th before 9 AM. Start early!
Theme: Measurements and analysis of caches

Lecture Overview
1. Fully Associative caches
2. Write Policies
3. I-cache , D-cache , unified caches
4. Intel core i7 cache hierarchy
5. Writing Cache Friendly Code

Valid
Valid

Tag
TagSet 0: E = C/B lines in

the one and only set
Valid Tag

•••

Cache block
Cache block

Cache block

Fully Associative Cache Organization

More circuitry and hence more expensive than
Direct mapped and Set Associative Caches

10/25/2015

2

Valid
Valid

Tag
Tag

Valid Tag

•••t bits
0m-1

b bits
Tag Block offset

Set 0:The entire cache is one set, so
by default set 0 is always selected

Cache block
Cache block

Cache block

Looking up a memory address
in Fully Associative Cache

t bits 1000110
0m-1

b bits
Tag Block offset

Entire cache

=1 ?

= ? (3) If (1) and (2), then
cache hit, and block

offset selects
starting byte

(2) The tag bits in one of the
cache lines must match the tag

bits in the address

1
0

1001

(1) The valid bit must be set

0110
1
0

0110
1110

w3w0 w1 w2

30 1 2 74 5 6

Looking up a memory address
in Fully Associative Cache

10/25/2015

3

• Write Alloc: Load block in cache and
update word (often used along with Write
back)

• Write No-Alloc (a.k.a.Write around): Just
update memory (often used along with
Write through)

Writing during cache miss:
(Two approaches)

10/25/2015

4

Intel Nehalem Die Shot (Core i7 and later)

Matrix Multiply
Performs matrix multiplication using different loop combinations
For 1000 x 1000 double data type matrix multiplication on CSL machines
• Time taken for mmijk is : 6163814132 cycles or 1.71 seconds
• Time taken for mmjik is : 3349923284 cycles or 0.93 seconds
• Time taken for mmjki is : 9853809636 cycles or 2.74 seconds
• Time taken for mmkji is : 12881107088 cycles or 3.58 seconds
• Time taken for mmkij is : 2893624056 cycles or 0.80 seconds
• Time taken for mmikj is : 1721619796 cycles or 0.48 seconds

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Cy
cle

s p
er

inn
er

loo
p it

era
tio

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

10/25/2015

5

Writing Cache Friendly Code
1. Focus on the inner loops where bulk of computation

and memory accesses occur

2. Maximize spatial locality by reading data objects
sequentially with stride 1

3. Maximize temporal locality by reading a data object
as often as possible once it has been read from
memory.

