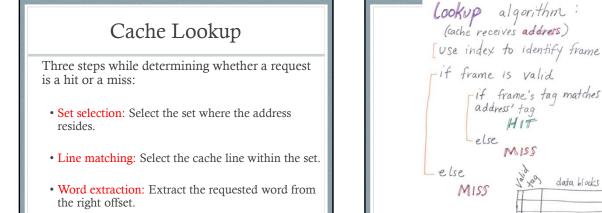
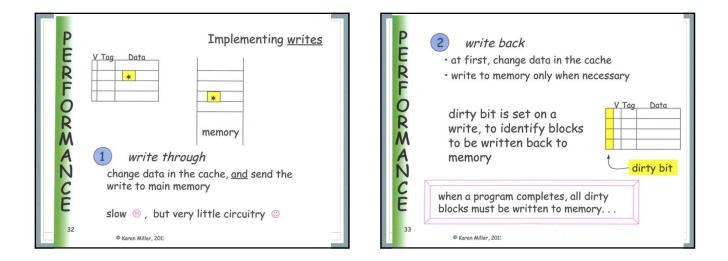

CS354: Machine Organization and Programming

Lecture 23 Monday the October 26th 2015


Section 2 Instructor: Leo Arulraj © 2015 Karen Smoler Miller © Some examples, diagrams from the CSAPP text by Bryant and O'Hallaron

Lecture Overview

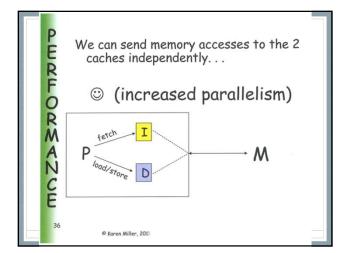
- 1. Review of Caches
- 2. Example Problems

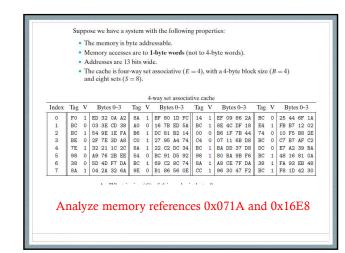



Types of Misses

- **Compulsory or cold misses:** Cache is empty to start with and will miss.
- **Conflict misses:** Cache has space but because objects map to the same cache block they keep missing.
- **Capacity misses:** Cache does not have space because size of the working set exceeds the size of the cache.

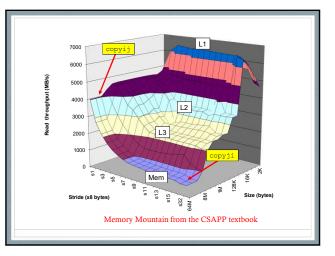
Cache Replacement Policies


- Which block to replace or evict to make space for new blocks?
- Random Replacement Policy: chooses a random victim block.
- Least Recently Used (LRU) Policy: chooses the block that was last accessed furthest in the past.
- Least Frequently Used (LFU) Policy: chooses the block that was least frequently accessed in the past.


Writing during cache miss: (Two approaches)

- Write Alloc: Load block in cache and update word (often used along with Write back)
- Write No-Alloc (a.k.a. Write around): Just update memory (often used along with Write through)

 The men 	ory is b	vte addre	essable.			
 Memory 	-	5 C C C C C C C C C C C C C C C C C C C		Is (not to 4	-byte wor	(st
 Addresse 				a (not to a	ofte non	
				(F	11 AV	
			issociative	$(E=2), \mathbf{v}$	vith a 4-byl	te block size (I
and four	sets (3 :	= 4).				
he contents	of the c	ache are	as follows,	with all ac	idresses, ta	igs, and values
1 hexadecim			arean 2000-2000 000			-
Set index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	00	1	40	41	42	43
0	00	1	-+U		42	4.5
0	83	1	FE	97	42 CC	45 D0
		1	FE	97	CC	D0
1	83					
	83 00	1 1 0	FE 44	97 45	CC 46	D0
1	83 00 83	1	FE 44 —	97 45 —	CC 46 —	D0 47 —
1	83 00 83 00	1 1 0 1	FE 44 —	97 45 —	CC 46 —	D0 47 —



int i, j, sum =0; for(i=0;i<16;i++) for(j=0;j<16;j++) sum += a[i][j]

What if: sum += a[j][i]?

