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Class Announcements

|. Programming Assignment 3 is due by 9 AM
day after tomorrow (11/04 — Wednesday). As
usual, you can submit it upto 48 hours after the
deadline with penalties.




Lecture Overview

. Interrupts and Exception
2. Intro to Processes
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Keyboard_Data

1. user types 'X'
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The kdk/baarcf driver code.
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Keyboard_Data

Keyboard_Status

2a. 'X'into Keyboard_Data

2b. 1 into Keyboard_Status
msb

1. user types ‘X'
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Byte transfers are OK,

But, what about faster devices that like to
transfer more than a byte ?

the solution: DMA

Direct Memory Access

controller




Issue for spin wait loop
implementations:

One byte only in Data has the potential
for an incorrect result.
For example, if the user types 2
characters on the keyboard before
getchar () is called.
The needed fix introduces a kernel-
maintained queue for each device.
Then, the kernel polls to check status bits
and handle any ready devices.




here is an analogy. . .

Teacher <« | »  0S

each student « | » |/O device

Consider the inefficiency of OS polling.

©These slides may be freely used, distributed, and incorporated into other works.




Because polling is so inefficient,

instead of

//OS\

device 1| |device 2 device n
ready? ready? © " " ready?

©These slides may be freely used, distributed, and incorporated into other works.




Turn the situation upside down

device 1| |device 2 device n

©These slides may be freely used, distributed, and incorporated into other works.
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©These slides may be freely used, distributed, and incorporated into other works.




Anatomy of an exception

An exceptions 1s an abrupt change in control flow.

Examples: div by 0, arithmetic overflow, page fault, I/0
request completes, Ctrl-C

Application Exception
program handler

Event .
0CCUrS | Exception

here / " Exception
\ processing
Exception

return
(optional)




Classes of Exceptions

. Interrupts (Asynchronous): Always return to
next instruction.

. Traps & System Calls (Synchronous): Always
return to next mstruction.

. Faults (Synchronous): Might return to next
instruction.

. Aborts (Synchronous): Never returns




Interrupts

Examples of Interrupts:

Timer interrupt

Arrival of a packet from a network
When a key is pressed on the keyboard
When the mouse is moved

(2) Control passes
(1) Interrupt pin to handler after current
goes high during Iy | instruction finishes
execution of loxt 1 (3) Interrupt
current instruction \ handler runs
(4) Handler

returns to
next instruction




Traps

Traps are intentionally 1ssued by executing an
instruction.

Example: System calls

(2) Control passes

1) Application
( )mglfes i syscall . to handler
/

system call next

(3) Trap
handler runs
(4) Handler returns
to instruction
following the syscall




Faults

Faults result from error conditions that might be
correctable.

Examples: Page fault, Divide error

(1) Current (2) Control passes

; . | to handler
instruction curr ¥,

causes a fault (3) Fault
handler runs
+ abort

(4) Handler either reexecutes
current instruction or aborts.

y




Aborts

Aborts result from unrecoverable fatal errors.

Example: parity errors due to DRAM bit corruption

(2) Control passes

(1) Fatal hardware |_ l to handler
error occurs " (3) Abort

handler runs

[

(4) Handler returns
to abort routine




Exception Table

Exception table

Code for
exception handler O

Exception

exception handler 1
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Code for
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Exception Table lookup

Exception 1s similar to procedure calls except for some
important differences:

- Return address 1s not the next instruction always
- Push EFLAGS register also onto kernel stack

- Run exception handler in kernel mode

EXCGP’UO(;‘()”Umber Exception table

0
1

Address of entry 2
Exception table X, for exception # k
base register o\

n-1




[A32 Exception Table

From CSAPP text

hoOK:

Exception Number

Description

Exception Class

0

Divide error

Fault

13

General protection fault

Fault

14

Page fault

Fault

18

Machine check

Abort

32-127

OS-defined

Interrupt or trap

128 (0x80)

System call

Trap

129-255

OS-defined

Interrupt or trap
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Consider the x86 instruction:
cli clear IF

What happens if an application includes this
cli instruction?

Irrelevant (to this discussion) x86 instruction:
sti set IF




OS relies on

clock interrupts
to allocate processing time. . .

—p

time

P1 %PZ

P1 f P3 hl %P3

clock interrupts

As the clock interrupts, the kernel runs,
and it decides which program runs next.




Clarified instruction:

cli clear |F if CPL is high enough,
otherwise trap

Does sti also need to be a privileged
instruction?

—
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