CS354: Machine
Organization and

Programming
Lecture 26

Monday the November 0274 2015

Section 2

Instructor: Leo Arulraj

© 2015 Karen Smoler Miller
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements

|. Programming Assignment 3 is due by 9 AM
day after tomorrow (11/04 — Wednesday). As
usual, you can submit it upto 48 hours after the
deadline with penalties.

Lecture Overview

. Interrupts and Exception
2. Intro to Processes

To control access fo
individval devias, we place code
Hat communicateS with the devias

into the OS. (s portion of
the 0S. is also called he /{ml)
and. in Special rovtines called

J evicR anvers .

x8G

et 40 chegrt); el gethor

— int jd:char()z .: it
oy £~ < el
| 3 & fﬂt

Keyboard_Data

1. user types 'X'

1. 'Q' appears in memory

Display_Data

-

2. character appears
on display

The kdk/baarcf driver code.

movl Kezlbwd Data, Z€ax

(n T Fhs 15
rettran sysead] assume ThC, "

the
o 1 i
be affer ofes.

77'& o[JS/o/ay O{V:'VEI’ (ode_ - comﬂ
movl 7 eax, Display - Date-

/re'tﬁ'om%ﬁ!‘f Vy/
(/\,—\/h t happens if oser has, 5
1ot %;ﬁd fpzzar on ‘the ktyéo""/

We want blocking int

{no mfﬁm(y“aﬂ Un'ff/l— '/¢|cr'<.
I5 @ char)

We need a stafus bt

[/ rea
0 et m# (bay)

Place Hus bit info ifs oW
memovy map, A word. ¥
make i+ the mSb, 5
code can test for =0
or <0.

Keyloard - Datt
Keshoard-StadvS

Displasy - Daia
Dr':;l:;- Statvs

Keyboard_Data

Keyboard_Status

2a. 'X'into Keyboard_Data

2b. 1 into Keyboard_Status
msb

1. user types ‘X'

Now, driver code vseS a
Spin wart Joop
(—fo :'mp/emehf b/ockmj J/a)

Kb_spin ZM(Kesbrd St oo
)z Kb-spin

movl K bmral-atﬂf-,%‘“)(
retﬁm&gﬁ(

disp-spi sk Dilayy Sietos, Dty 1
)z disp-spirv
movl. “ea, Display-Data

ret -ﬁ'om%@i

controller

: |

mouse keyboard printer monitor

~N 1/]

disk graphics
CPU controller USB controller adapter

memory

—

4
AA

Data
Status

addresses OxffffoOO8
OXTTTffeeec

f?j\ Data

} Keyboard

} Display

Status

addresses Oxffffoo10
OxFfffoel4

memory mapped

Byte transfers are OK,

But, what about faster devices that like to
transfer more than a byte ?

the solution: DMA

Direct Memory Access

controller

Issue for spin wait loop
implementations:

One byte only in Data has the potential
for an incorrect result.
For example, if the user types 2
characters on the keyboard before
getchar () is called.
The needed fix introduces a kernel-
maintained queue for each device.
Then, the kernel polls to check status bits
and handle any ready devices.

here is an analogy. . .

Teacher <« | » 0S

each student « | » |/O device

Consider the inefficiency of OS polling.

©These slides may be freely used, distributed, and incorporated into other works.

Because polling is so inefficient,

instead of

//OS\

device 1| |device 2 device n
ready? ready? © " " ready?

©These slides may be freely used, distributed, and incorporated into other works.

Turn the situation upside down

device 1| |device 2 device n

©These slides may be freely used, distributed, and incorporated into other works.

\
r
=
R
R
J
D
L
>

©These slides may be freely used, distributed, and incorporated into other works.

Anatomy of an exception

An exceptions 1s an abrupt change in control flow.

Examples: div by 0, arithmetic overflow, page fault, I/0
request completes, Ctrl-C

Application Exception
program handler

Event .
0CCUrS | Exception

here / " Exception
\ processing
Exception

return
(optional)

Classes of Exceptions

. Interrupts (Asynchronous): Always return to
next instruction.

. Traps & System Calls (Synchronous): Always
return to next mstruction.

. Faults (Synchronous): Might return to next
instruction.

. Aborts (Synchronous): Never returns

Interrupts

Examples of Interrupts:

Timer interrupt

Arrival of a packet from a network
When a key is pressed on the keyboard
When the mouse is moved

(2) Control passes
(1) Interrupt pin to handler after current
goes high during Iy | instruction finishes
execution of loxt 1 (3) Interrupt
current instruction \ handler runs
(4) Handler

returns to
next instruction

Traps

Traps are intentionally 1ssued by executing an
instruction.

Example: System calls

(2) Control passes

1) Application
()mglfes i syscall . to handler
/

system call next

(3) Trap
handler runs
(4) Handler returns
to instruction
following the syscall

Faults

Faults result from error conditions that might be
correctable.

Examples: Page fault, Divide error

(1) Current (2) Control passes

; . | to handler
instruction curr ¥,

causes a fault (3) Fault
handler runs
+ abort

(4) Handler either reexecutes
current instruction or aborts.

y

Aborts

Aborts result from unrecoverable fatal errors.

Example: parity errors due to DRAM bit corruption

(2) Control passes

(1) Fatal hardware |_ l to handler
error occurs " (3) Abort

handler runs

[

(4) Handler returns
to abort routine

Exception Table

Exception table

Code for
exception handler O

Exception

exception handler 1
e P
o

./

Code for
exception handler 2

-

Code for
exception handler n-1

Exception Table lookup

Exception 1s similar to procedure calls except for some
important differences:

- Return address 1s not the next instruction always
- Push EFLAGS register also onto kernel stack

- Run exception handler in kernel mode

EXCGP’UO(;‘()”Umber Exception table

0
1

Address of entry 2
Exception table X, for exception # k
base register o\

n-1

[A32 Exception Table

From CSAPP text

hoOK:

Exception Number

Description

Exception Class

0

Divide error

Fault

13

General protection fault

Fault

14

Page fault

Fault

18

Machine check

Abort

32-127

OS-defined

Interrupt or trap

128 (0x80)

System call

Trap

129-255

OS-defined

Interrupt or trap

?a%vr {mpor%a/vq“, but not
covmzol in -t eX‘Hooo[C:

Tf Yunning a hand ler, and a
new (nterrupt request arrives,
what should L]O.PPCH?

b (Continve on, Cam,o/efc Adndﬁhj

of current Interrgpt , then, when
done , deal with new reguasf'?

(probubly) non reentran 7

K Tferrvpt +he handling o7
this /hfe/r)z/of_?e B

reentfrant

E vmj architettyre, Aas a, confrol
it which identifies whether e
FvE cyc/o IS Ptty/'nj affentron 7o

/RQS- Cai(fa(fﬂ?‘fn"u/ofenaé/g_

onxﬁ(p-' qQz 1l o
EFLAGS

e

IF
enabled

pbgoste o Linkied

f JF= intervvpt
O iyl il
@® fetch instr

@ ?cC U,Oc:/a:f'c.
(2 decocle

Consider the x86 instruction:
cli clear IF

What happens if an application includes this
cli instruction?

Irrelevant (to this discussion) x86 instruction:
sti set IF

OS relies on

clock interrupts
to allocate processing time. . .

—p

time

P1 %PZ

P1 f P3 hl %P3

clock interrupts

As the clock interrupts, the kernel runs,
and it decides which program runs next.

Clarified instruction:

cli clear |F if CPL is high enough,
otherwise trap

Does sti also need to be a privileged
instruction?

—

Keep [F=1 while CPL=00.

So, applicahons [b
(omfe':ﬁupfd “n always o<

H\A/ must disable rm‘erru/off whi'le.
saving sfate v at /least vntrl
frst inSfrvedion withing handler 1S
Fetehed.
“Betfer Detrnihrons -

nonreentrant JF=0 e
entire fime. a handler rons

reentrant 1aterrvprts may be.
veenabled while handler vvnsS

(usuaﬁ onl. for /ugﬁer prrort
nguayﬁry) ’9

Non veentrant fimeline

\L ”:Q ,Lﬂa

o
l‘ ﬁ‘,
" 1
4 &
'l

Reentrant
+img
Une

AR

_—

dev
2
?:_?;{:%\Jﬁ
are
L\' 5
.

