
CS354: Machine
Organization and

Programming
Lecture 27Wednesday the November 04th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
Programming Assignment 3 was due by 9 AM
today. You can submit it upto 48 hours after the
deadline with penalties.
Programming Assignment 4 has been released and
it is due by 11/25 (Wednesday). This assignment
involves coding and the theme is signal handlers.
Start early! (but after the midterm)

Lecture Overview
1. Intro to Processes
2. Signal Handlers

Processes
1. Process: an instance of a program in execution
2. Give the illusion that our program is the only

one currently running in the system
3. Process Context consists of state including:

Virtual Memory Layout, CPU registers, file
descriptors, environment variables etc.

4. Key abstraction provided by a process:
a. Independent logical control flow
b. Private address space

Logical Control Flow
The single physical control flow of CPU is partitioned
into logical control flows of several processes.

Time

Process A Process B Process C

Concurrent and Parallel Flows
1. A logical flow whose execution overlaps in

time with another flow is called a concurrent
flow.

2. E.g. A & B are concurrent in previous slide, A
& C are also concurrent while B & C are not
concurrent.

3. Parallel flows: A subset of concurrent flows
where the individual flows run on multiple
cores or machines in parallel.

Private Address Space
1. A process provides each program the illusion

that it has exclusive use of the system’s address
space through virtual memory.

2. This concept of private address space per
process makes writing programs much easier
rather than dealing with physical memory
addresses. (e.g. frees the programmer from
managing the physical memory resources)

Privileged Mode
1. User Mode: Cannot execute privileged instructions like one that halts the CPU. Also cannot access kernel area of address space.
2. Kernel Mode (Privileged/Supervisor Mode):Can execute any instruction and access any memory location.
Process runs application code in user mode and switches to kernel mode only via an exception like interrupt, system call etc.

Process Context Switch
Operating System pre-empts the process currently
executing on the CPU and schedules another
process through context switch.
Context switch involves:
1) Saving the context of the current process.
2) Restoring the saved context of some previously

pre-empted process
3) Passing control to this newly restored process.

Process Context Switch
Process A Process B

User code
Kernel code
User code
Kernel code
User code

Time
Context
switch

Context
switch

read

Disk interrupt
Return from read

Process States
Processes move through different states during
their life cycle.

Process Control
Obtaining Process IDs
pid_t getpid(void);
pid_t getppid(void);
Terminating a Process:
void exit(int status);

Process Control
Creating a new process:
pid_t fork(void);
- Call once, return twice
- Concurrent execution
- Duplicate but separate address spaces
- Shared files

Process Control
Reaping Child Processes:
OS defers removing a terminated process until its parent process reaps it.
A terminated process that has not yet been reaped is called a zombie.
The init process with pid 1 that is created during system initialization reaps any unreaped child processes if its parent process dies without reaping the children.

Process Control
Though zombie processes are not running they consume memory resources and it is good practice to reap the child processes.
Parent can wait for child to terminate by:
pid_t waitpid(pid_t pid, int *status, int options);
If pid > 0, wait for specific child process
If pid = -1, then wait for all child prcesses
If a child process has already terminated then waitpid returns immediately.
man waitpid

Process Control
Process can sleep for a period of time using:
unsigned int sleep(unsigned int secs);
Process can pause until a signal is received using:
int pause(void);

Process Control
Loading and Running Programs
int execve(const char* filename, const char
*argv[], const char *envp[]);
Writing a simple shell program using fork() and
execve().

