
CS354: Machine
Organization and

Programming
Lecture 2

Friday the September 4th 2015

Section 2
Instructor: Leo Arulraj

Class Announcements

1.  Are your mailing lists working ? Did you receive
the Welcome email yesterday evening ?

2.  Question about Midterm 1 conflict: How many
are taking ECE 353?

3.  Code, slides, etc. will be shared with you but it
won’t be timely. So, take notes in class!

4.  Good job in Piazza (Anon. posts are okay!)

5.   Project 0 is due Sep 14th before 9 AM. Partner
details for projects.

Five Realities you must embrace

1.  Ints are not Ints and Floats are not reals.

2. You have to know assembly.

3. Memory hierarchy matters

4.  Performance is not just algorithmic
complexity

5. Computer do more than just load-store-
execute! They do I/O, networking with other
computers etc. for example.

Reality 3

Memory Hierarchy Memory Mountain

Introduction to C Programming

•  Operators

•  Types and Declarations

•  Statements

•  Functions

•  C-Preprocessor Directives

•  Simple I/O

Operators

•  Arithmetic Operators

•  Relational Operators

•  Logical Operators

•  Bitwise Operators

•  Assignment Operators

•  Miscellaneous Operators

Arithmetic Operators

Op. Description
Example

A=10,B=20
+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B / A will give 2

%
Modulus Operator and remainder of after

an integer division B % A will give 0

++
Increments operator increases integer

value by one A++ will give 11

--
Decrements operator decreases integer

value by one A-- will give 9

Relational Operators

Op. Description
Example

A=10, B=20

==
Checks if the values of two operands are equal or not, if yes then

condition becomes true.
(A == B) is
not true.

!=
Checks if the values of two operands are equal or not, if values

are not equal then condition becomes true.
(A != B) is

true.

>
Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.
(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.
(A < B) is

true.

>=
Checks if the value of left operand is greater than or equal to the

value of right operand, if yes then condition becomes true.
(A >= B) is
not true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.
(A <= B) is

true.

Logical Operators

Op. Description

Example
A=true,
B=false

&&

Called Logical AND operator. If both the
operands are non-zero, then condition

becomes true.
(A && B) is

false.

||

Called Logical OR Operator. If any of the two
operands is non-zero, then condition

becomes true
(A || B) is

true.

!

Called Logical NOT Operator. Use to
reverses the logical state of its operand. If a
condition is true then Logical NOT operator

will make false.
!(A && B) is

true.

Bitwise Operators

Op. Description

Example
A(60) = 0011 1100
B(13) = 0000 1101

&
Binary AND Operator copies a bit to the result if

it exists in both operands.
(A & B) will give 12, which is

0000 1100

|
Binary OR Operator copies a bit if it exists in

either operand.
(A | B) will give 61, which is

0011 1101

^
Binary XOR Operator copies the bit if it is set in

one operand but not both.
(A ^ B) will give 49, which is

0011 0001

~
Binary Ones Complement Operator is unary and

has the effect of 'flipping' bits.

(~A) will give -61, which is
1100 0011 in 2's

complement form.

<<

Binary Left Shift Operator. The left operands
value is moved left by the number of bits

specified by the right operand.
A << 2 will give 240 which is

1111 0000

>>

Binary Right Shift Operator. The left operands
value is moved right by the number of bits

specified by the right operand.
A >> 2 will give 15 which is

0000 1111

Assignment Operators 1
Op. Description Example

=
Simple assignment operator, Assigns values
from right side operands to left side operand

C = A + B will assign
value of A + B into C

+=

Add AND assignment operator, It adds right
operand to the left operand and assign the result

to left operand
C += A is equivalent

to C = C + A

-=

Subtract AND assignment operator, It subtracts
right operand from the left operand and assign

the result to left operand
C -= A is equivalent

to C = C - A

*=

Multiply AND assignment operator, It multiplies
right operand with the left operand and assign

the result to left operand
C *= A is equivalent

to C = C * A

/=

Divide AND assignment operator, It divides left
operand with the right operand and assign the

result to left operand
C /= A is equivalent

to C = C / A

Assignment Operators 2

Op. Description Example

%=

Modulus AND assignment operator, It takes
modulus using two operands and assign the result

to left operand
C %= A is equivalent

to C = C % A

<<= Left shift AND assignment operator
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator
C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator
C &= 2 is same as C

= C & 2

^= bitwise exclusive OR and assignment operator
C ^= 2 is same as C

= C ^ 2

|= bitwise inclusive OR and assignment operator
C |= 2 is same as C

= C | 2

Miscellaneous Operators

Op. Description Example

sizeof()

Returns the
size of an
variable.

sizeof(a), where a is integer, will
return 4.

Unary &

Returns the
address of
an variable.

&a; will give actual address of the
variable.

Unary *
Value of a

pointer *a; will value stored in the address a.

? :
Conditional
Expression

If Condition is true ? Then value X :
Otherwise value Y

Example C program on
Operators

Operator Precedence

a>b+c&&d

This expression is equivalent to:

((a>(b+c))&&d)

Why not this?: ((a>b)+(c&&d))

Operator Precedence 1

Operator(Name((Associa/vity((Operators(
Primary'scope'
resolu/on' le1'to'right' ::'

Primary' 'le1'to'right' '()''[']''.'';>'dynamic_cast'typeid'

Unary' 'right'to'le1'
'++'';;''+'';''!''~''&''*''(type_name)''
sizeof'new'delete'

C++'Pointer'to'
Member' le1'to'right' .*;>*'
Mul/plica/ve' 'le1'to'right' '*''/''%'
Addi/ve' 'le1'to'right' '+'';'
Bitwise'Shi1' 'le1'to'right' '<<''>>'
Rela/onal' 'le1'to'right' '<''>''<=''>='

Operator Precedence 2

Operator(Name((Associa/vity((Operators(
Equality' 'le1'to'right' '==''!='
Bitwise'AND' 'le1'to'right' '&'
Bitwise'Exclusive'OR' 'le1'to'right' '^'
Bitwise'Inclusive'OR' 'le1'to'right' '|'
Logical'AND' 'le1'to'right' '&&'
Logical'OR' 'le1'to'right' '||'
Condi/onal' 'right'to'le1' '?':'

Assignment' 'right'to'le1'
'=''+='';=''*='''/=''<<=''>>=''
%='''&=''^=''|='

Comma' 'le1'to'right' ','

Example C program on
Operator precedence

Types

• Integer types

• Floating point types

• The void type

• Type Qualifiers

• Strings in C

Integer Types
The actual size of integer types varies by implementation. Standard only

requires size relations between the data types and minimum sizes for each.

Type Storage size Value range
char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255
signed char 1 byte -128 to 127

int 2 or 4 bytes
-32,768 to 32,767 or

-2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295
short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

Floating Point Types
The value representation of floating-point types is implementation-defined

Type
Storage

size Value range Precision

float 4 byte
1.2E-38 to 3.4E

+38
6 decimal

places

double 8 byte
2.3E-308 to 1.7E

+308
15 decimal

places

long double 10 byte
3.4E-4932 to 1.1E

+4932
19 decimal

places

Void type

1

Function returns as void
There are various functions in C which do not return value or you can

say they return void. A function with no return value has the return type
as void.

For example, void exit (int status);

2

Function arguments as void

There are various functions in C which do not accept any parameter. A
function with no parameter can accept as a void.

For example, int rand(void);

3

Pointers to void

A pointer of type void * represents the address of an object, but not its
type.

For example a memory allocation function void *malloc(size_t size);
 returns a pointer to void which can be casted to any data type.

Strings in C

•  Strings in C are one dimensional arrays of characters
terminated with a null character.

 Examples: char greeting[6] = {'H', 'e', 'l',
'l', 'o', '\0'};

char greeting[6] = “Hello”;

char* greeting = “Hello”;

Index 0 1 2 3 4 5

Content H e l l o \0

Memory
Address.

0x88321 0x88322 0x88323 0x88324 0x88325 0x88326

Type Qualifiers

•  const: means that something is not modifiable, so
a data object that is declared with const as a part
of its type specification must not be assigned to in
any way during the run of a program.

•  volatile: tells the compiler that the object is subject to
sudden change for reasons which cannot be predicted
from a study of the program itself, and forces every
reference to such an object to be a genuine reference.

•  restrict: Has to do with pointers. Later !

Storage Classes

Storage
Specifier

Storage
place

Initial /
default
value Scope Life

1 auto memory
Garbage

value local Within the function only.

2 extern memory Zero Global

Till the end of the main
program.

Variable definition might be
anywhere in the C program

3 static memory Zero local

Retains the value of the
variable

between different function
calls.

4 register
Register
memory

Garbage
value local Within the function

Declarations

Global Variable: A global variable is a variable that is
declared outside all functions.

Local Variable: A local variable is a variable that is declared
inside a function.

Examples:

const int foo = 10;
// foo is const integer with value 10

char foo;
// foo is a char

double foo();
// foo is a function returning a double

Explicit Type Conversions

double da = 3.3;

double db = 3.3;

double dc = 3.4;

int r1 = (int)da + (int)db + (int)dc; //r1 == 9

int r2 = (da + db + dc); // r2 == 10

Example C program on
Types, sizes

If Statement

if(boolean_expression){
 /* statement(s) will execute if the
 boolean expression is true */

}

If-else Statement

if(boolean_expression){
 /* statement(s) will execute if the boolean
 expression is true */

}else{
 /* statement(s) will execute if the boolean
 expression is false */

}

Else-if Statement

if(expression){
 /*Block of statements;*/

}else if(expression){
 /*Block of statements;*/

}else{
 /*Block of statements;*/

}

Example C program on if, if
else, else if statements

Switch

switch(expression){
 case constant-expression1:

statements1; [case constant-
expression2: statements2;] [case
constant-expression3: statements3;]

 [default: statements4;]
}

While loop

while (expression) {
 Single statement or
 Block of statements;
}

For loop

for(expression1;expression2;expression3){
 Single statement or
 Block of statements;
}

You can also skip expression1, expression2,
expression3.

What does this do ? for(;;){printf("a\n");}

Do while loop

do{
 Single statement or
 Block of statements;

}while(expression);

Break; Continue; Statements

C provides two commands to
control how we loop:

• break -- exit form loop or switch.

• continue -- skip 1 iteration of
loop.

Goto and Labels

goto label;
.............
.............
.............
label: statement;

You can have better label names
(e.g. mycalc, complexcalc etc.)

Example C program on
 for, while loops, switch

statements

Functions 1

Function Prototype (Declaration):
return_type function_name(

 type(1) argument(1),....,type(n) argument(n));

Function Definition:
return_type function_name(
type(1) argument(1),..,type(n) argument(n))
{
//body of function
}

Functions 2

Function Call:
function_name(argument(1),....argument(n));

Return Statement:
return (expression);

C always passes arguments `by value': a copy of the
value of each argument is passed to the function; the
function cannot modify the actual argument passed to
it.

Functions
C always passes arguments `by value': a copy of the value of each argument
is passed to the function; the function cannot modify the actual argument
passed to it.

Working of Functions C Preprocessor

File Inclusion

#include <file> - used for system header files.
File is looked for in standard list of system
directories

#include “file” - used for local header files in
program.

C Preprocessor

Macro substitution

#define [identifier name] [value]

 Eg. #define PI_PLUS_ONE (3.14 + 1)

#define MACRO_NAME(arg1, arg2, ...) [code to
expand to]

 Eg. #define MULT(x, y) x * y

C Preprocessor

Conditional Inclusion:

Simple example is:

#ifdef MACRO
 controlled text

#endif /* MACRO */

More versions with else, ifndef etc. allowed.

Example C program illustrating
C Preprocessor

Simple I/O

int printf(const char *format, ...) function
writes output to the standard output stream
stdout and produces output according to a
format provided.

int scanf(const char *format, ...) function reads
input from the standard input stream stdin and
scans that input according to format provided.

Simple I/O Example

int b, a; long int b; char s[10], float d;

printf("%d\n",b);

scanf("%d", &a);

printf("%3d\n",b);

printf("%3.2f\n",d);

printf(”%ld\n",b);

I/O Redirection and Pipes

I/O Redirection:

prog <infile >outfile
infile will be stdin and outfile will be stdout

Pipes: |

With pipes, the standard output of one command
is fed into the standard input of another.

Format String 1

Specifier Description Example
%i or %d int 12345

%c char y
%s string “sdfa”

%f
Display the floating point number using

decimal representation 3.1415

%e
Display the floating point number using

scientific notation with e 1.86e6

%E Like e, but with a capital E in the output 1.86E+06

%g Use shorter of the 2 representations: f or e
3.1 or
1.86e6

%G Like g, except uses the shorter of f or E
3.1 or
1.86E6

Format String 2

Variable type
Length

Modifier Example
short int,

unsigned short
int h

short int i = 3;
printf("%hd", i);

long int or
unsigned long

int l
long int i = 3;

printf("%ld", i);
wide

characters or
strings l

wchar_t* wide_str =
L"Wide String";

printf("%ls", wide_str);

long double L

long double d =
3.1415926535;

printf("%Lg", d);

Example C program with
simple I/O

Format Specifiers have a ton more details

Eg. http://en.cppreference.com/w/cpp/io/c/fprintf

Comments in C

•  Single Line Comments:

// this is a single line comment

•  Multi Line Comments:

/* this is a multi
 line
 comment */

Undefined Behavior

The C FAQ defines “undefined behavior” like
this:

Anything at all can happen; the Standard imposes no
requirements. The program may fail to compile, or it
may execute incorrectly (either crashing or silently
generating incorrect results), or it may fortuitously do
exactly what the programmer intended.

Undefined Behavior Example

As a quick example let’s take this program:

#include <limits.h>
#include <stdio.h>

int main (void)
{
 printf ("%d\n", (2147483647+1) < 0);
 return 0;
}

Undefined Behavior
Allowed Results

$./test
1

$./test
0

$./test
42
And this:

$./test
Formatting root partition, chomp chomp

See you in Next Lecture

•  Read Chapter 1 in K&R (C
Programming Language Book)

•  Read more of K&R (Ch 2-7)

•  Try out some examples on your own,
understand what they do line by line

•  Start early on Assignment 0!

