
CS354: Machine
Organization and

Programming
Lecture 3

Wednesday the September 9th 2015

Section 2
Instructor: Leo Arulraj

© 2015 Karen Smoler Miller

Class Announcements

1.  If you have an exam conflict or other reason why you
want to be part of the smaller makeup exam, please email
me your details : Name, CS Login, Which exam, Why?

2.  Class slides and code put up at Handouts page linked from
course website

3.  Lecture feedback: Fast ? Hard to follow ?.

4.  Section 2 still has room for a few more students and has
no waitlist!

5.  Don’t cheat in Assignments. Sophisticated software that
finds out similarity even if you change variable names,
add comments etc.

Class Announcements

The identical sessions will be on (bring laptops if you can):
Monday, September 14, 5:30-6:30pm, in CS 1240. and
Tuesday, September 15, 5:30-6:30pm, in CS 1221.

* Command line basics: ls, cd, mv, cp, rm, tab completion, etc…
* Man pages
* CSL-specific features:
* Backups (and recovering lost files)
* Printing
* Directory structure and quotas
* Your personal web page
* Profile (setting environmental variables)
* Text editors: vi and emacs
* Compilation: javac, gcc, g++
* ssh (or: how to work from home)

Undefined Behavior

The C FAQ defines “undefined behavior” like
this:

Anything at all can happen; the Standard imposes no
requirements. The program may fail to compile, or it
may execute incorrectly (either crashing or silently
generating incorrect results), or it may fortuitously do
exactly what the programmer intended.

Undefined Behavior Example

As a quick example let’s take this program:

#include <limits.h>
#include <stdio.h>

int main (void)
{
 printf ("%d\n", (2147483647+1) < 0);
 return 0;
}

Undefined Behavior
Allowed Results

$./test
1

$./test
0

$./test
42
And this:

$./test
Formatting root partition, chomp chomp

Arrays in C

•  C Array is a contiguous collection of variables
belonging to the same data type.

•  Array might be of any of the data types.

•  Array size must be a constant value.

•  Always, contiguous (adjacent) memory locations
are used to store array elements in memory.

•  It is a best practice to initialize an array to zero or
null while declaring, if we don’t assign any values
to array.

Lecture overview

1. Arrays

2. Pointers

3. Structure & Union

Arrays

Declarations: /* an array of 100 integers */

int ar[100];

Arrays are always allocated consecutively in
memory.

Access:

ar[4] = 10; // 5th element set to value 10

Arrays

•  One dimensional arrays:
Syntax: data-type arr_name[array_size];
Examples: long myarr[10];

 int age[5]={0, 1, 2, 3, 4};

•  Two dimensional arrays:
Syntax: data_type arr_name [num_rows][num_cols];
Examples: int arr[2][2];
 int arr[2][2] = {1,2, 3, 4};

•  Multi dimensional arrays are also allowed.

Arrays

Example C Program on Arrays

Java Reference Recap

public class Line {
 private int a, b, c;
 /* line is ax + by = c */
 public void setA(int aValue) {
 a = aValue;
 }
 public void setB(int bValue) {
 b = bValue;
 }
 public void setC(int cValue) {
 c = cValue;
 }
}

public class PlayWithLines {
 public static void main(String
args[]) {
 Line diagonal = new Line();
 diagonal.setA(1);
 diagonal.setB(1);
 diagonal.setC(0);
 }
}

Java Reference Recap

Pointers

A pointer is a memory address.

Simple example:

int a,b;

int*a_ptr = &a;

a

a_ptr
0x12345

0x23456

Pointers

A pointer is a memory address.

Simple example:

*a_ptr = 10;

“*” operator is called

“Indirection Operator”

a=10

a_ptr

Pointers

A pointer is a memory address.

Simple example:

a_ptr = &b;

“&” operator is called

“Address of ” operator b

a_ptr
0x12345

0x23456

0x34567

a

Pointers

A pointer is a memory address.

Simple example:

*a_ptr =20;

b=20

a_ptr
0x12345

0x23456

0x34567

a

Pointers

Simple example:

int *b_ptr ;

b_ptr = a_ptr;

b=20

a_ptr
0x12345

0x23456

0x34567

a

b_ptr
0x01234

Pointers: Some Allowed Operations

1. Assignment to other pointers of the
same type

2. Addition and subtraction of a
pointer to an integer

3. Assignment of the value 0

4. Comparison to the value 0

Pointers: Some Allowed Operations

 int a = 3; int b = 8; int c = 0; /*declaration and
initialization */
 int *ap; int *bp; int *cp; /*declaration of pointers to
integers */
 ap = &a; bp = &b; cp = &c;

 c = *ap + *bp;
 a = b + *cp;
 (*bp)++;
 cp++;

Pointers: Some Unwise Operations

1.  Multiplication or division on a pointer

2.  Addition or subtraction of two pointer values

3.  Assignment of a value (a literal) other than 0
to a pointer

Pointers: Some Unwise Operations

int a = 3; int b = 8; int c = 0;
int *ap;
int *app;
int *bp;
int *cp;
ap = 34; /* Unwise */
app = ≈ /* Unwise */

