
CS354: Machine
Organization and

Programming
Lecture 30Wednesday the November 11th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. How was Midterm2? Easy, Hard?
2. Grades for Programming Assignment 3 are

now available in your handing directory for P3
as a html file. (See Piazza post for more details)

Lecture Overview
1. Physical and Virtual Addressing
2. Address spaces
3. As a tool for caching
4. As a tool for memory management
5. As a tool for protection
6. Address Translation

Virtual Memory Intro
Virtual Memory provides three important
capabilities(all with a one clean mechanism):

A. Uses Main Memory efficiently as a cache
B. Simplifies memory management
C. Protects address space of each process

Virtual Memory Intro
1. Virtual memory pervades all levels of

computer systems: exceptions, assemblers,
linkers, loaders, files, processes.

2. Virtual memory is powerful: sharing,
protection, allocation etc. is easy

3. Virtual memory is dangerous: improper use
can lead to hard to find bugs

Virtual Memory Intro
An example Physical Addressing Machine.

0:1:

M -1:

Main memory
Physical
address
(PA)CPU 2:3:4:5:6:7:

4

Data word

8: ...

Virtual Addressing
1. Virtual Address Space: (0 to N-1) Bytes and is addressed with log2(N) bits. E.g. 32 bit address space for x86 , 64 bits for x86_64

2. Physical Address Space: (0 to M-1) Bytes and is addressed with log2(M) bits. Defined by Hardware. Often 40-48 bits in real architectures. Physical address space can be smaller than virtual address space.

Virtual Memory Intro
System with virtual addressing:

MMU
Physical
address
(PA)

...

0:1:

M-1:

Main memory
Virtual
address
(VA)CPU

2:3:4:5:6:7:
4100

Data word

4

CPU chip
Address
translation

As a tool for caching
Each virtual page is P = 2p Bytes in size
Each physical page is also P Bytes in size

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0VP 1

VP 2n-p-1

Virtual memory
Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0PP 1
Empty

Cached

0

N-1
M-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

As a tool for caching
1. Unallocated Pages: Not yet created by the VM

system.(No data in memory or disk)
2. Cached Pages: Allocated and are currently in

Memory.
3. Uncached Pages: Allocated but are in disk and

not cached in Memory.

Similarity with CPU Caching
1. DRAM is a fully set associative cache. Any virtual page can be placed into any physical page in memory. Cannot afford conflict miss penalties.
2. DRAM is approx. 10 times slower than SRAM
3. Disk is approx. 100000 times slower than DRAM
4. So, caching with Virtual Memory is very effective in hiding latencies.

Simple Page table (Real ones later)

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1
0
1
0
1
0

1

Physical page
number or
disk addressPTE 0

PTE 7

PP 0VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Page Hits and Faults
1. Page Hits: Address being referenced in already

in the main memory. E.g. VP2 results in a page
hit.

2. Page Faults: a DRAM cache miss is known as
a page fault. E.g. VP3 causes a page fault.

Page Faults
Invokes the page fault exception handler in OS
1. A victim page in main memory is selected and if the victim is dirty then it is written to disk.
2. Page table entry for victim page is modified to reflect that it is no longer in memory.
3. The page faulted page is brought to memory and its Page table entry is updated to reflect this.

After Handling Page Fault to VP3
Victim chosen is VP4

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1
1
0
0
1
0

1

Physical page
number or
disk addressPTE 0

PTE 7

PP 0VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

Virtual address

VP 3

A new page of virtual memory can be allocated
using malloc() or other techniques.
Consider VP5 is being allocated

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1
1
0
0
1
0

1

Physical page
number or
disk addressPTE 0

PTE 7

PP 0VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

Why Is this not slow?
Spatial Locality again:
Though the total number of pages that are
accessed in the entire run of a program might
exceed the total size of physical memory, at any
point in time, only a smaller set of active pages
called the resident set or working set is accessed.

As a tool for Memory Management
1. Simplifies Linking: E.g. because code, data, stack, heap etc. always starts at same virtual address.
2. Simplifies Loading: On demand loading of necessary memory pages, when needed. Initially marked as “uncached” and maps to the executable file.
3. Simplifies Sharing: E.g. Kernel code and C Library routines can be shared across all processes instead of each with its own copy.
4. Simplifies Memory Allocation: Can be placed in arbitrary physical pages, but will look contiguous in virtual address space.

As a tool for Memory Management
Example of Sharing of Memory between two
processes.

Process i:

Virtual address spaces Physical memory

VP 1
VP 2

Process j:

Address translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

Shared page

As a tool for Memory Protection
Enforced by the Hardware. On a violation, the CPU triggers a general protection fault (often reported as segmentation fault in Unix).
- Read and Write Protection: Can a page be read from or written to?
- Execute Protection: Can a page be executed from?
- Privileged Access Protection: Can a page be accessed from normal user mode or does it need supervisor privileges?

As a tool for Memory Protection
Page level memory protection

Page tables with permission bits

Process i:
AddressREAD WRITE

PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

PP 0
Physical memory

Yes

•••

PP 4
PP 6

PP 9

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes
PP 11Yes

•••
Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

PP 2

PP 11

