
CS354: Machine
Organization and

Programming
Lecture 31Friday the November 13th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Lecture Overview
1. Address Translation for Flat Page Tables
2. Paging vs Older Techniques
3. Paging: More details and problems.
4. How to make VM fast – TLB
5. Structure of Page Tables

Address Translation
Virtual page number (VPN) Virtual page offset (VPO)

VIRTUAL ADDRESS

Physical page number (PPN)
PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
base register

(PTBR)

If valid=0
then page
not in memory
(page fault)

Valid Physical page number (PPN)
The VPN acts
as index into
the page table

Page
table

Physical page offset (PPO)

Virtual Memory Hit
Page Hit Handling:

VA
1Processor MMU Cache/

memory

PTEA
PTE

PA

Data

2

3

4

5

CPU chip

Virtual Memory Miss
Page Fault Handling:

Page fault exception handlerException

VA
1Processor MMU Cache/

memory

4

5

CPU chip

Disk
Victim page

New page
6

7

PTEA
PTE

2

3

Which Addressing is used for L1
Cache?

CPU Caches can be addressed using either virtual
memory address or physical address.
Most systems use physical addressing. Some
advantages of this are:
1) Shared pages have just one copy in CPU cache
2) Protection issues are handled by the MMU

during address translation before CPU cache
lookup.

Using Physical Addresses for CPU
Cache Lookup

VAProcessor MMU
PTEA

PTE

PA

Data

CPU chip

MemoryPAPA
miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

Alternative of Paging:
Segmentation

1. Physical Memory broken into fixed equal size segments/partitions.
2. Hardware Support: A Base register
3. Physical address = virtual address + base register
4. Leads to Internal Fragmentation because all segments have same size.

Alternative of Paging:
Base and Bounds

Add a additional bounds/limit register to allow
variable sized partitions.
Avoids internal fragmentation.
Leads to External Fragmentation: Just loading
and unloading processes produces variable sized
empty physical memory regions in DRAM.

Virtual Memory: Paging
Recap

1. Each Process has an isolated virtual address space.
2. Virtual Memory implementation via Paging.
3. Each Process has its own page table.
4. Helps with caching disk contents in DRAM.
5. Helps with Memory sharing.
6. Helps with Memory protection using addition protection bits in the PTE.

Virtual Memory: Paging
Recap

Address of the Page Table of the currently
executing process in a special CPU register
(PTBR).
When the operating system reschedules another
process, then it updates the PTBR register with the
base address of the newly scheduled process.

Virtual Memory: Paging
Recap

Advantages of Paging:
- Paging supports flexible address spaces and

does not waste physical memory with unused
address space. (valid bit)

- Easy to manage the free physical memory
space by maintaining a list of free physical frames.

(fixed size pages is helpful here)

Virtual Memory: Paging
Problem #1

Page tables are too slow.
Each memory reference needs another memory
reference to the PTE.
With non-flat page tables, more than one memory
references might be needed for looking up the
PTE.

Virtual Memory: Paging
Problem #2

Page tables are too big.
E.g. with 1KB pages and 4GB virtual address space, each process needs a flat page table of 4 million PTEs.
Assuming each PTE is 32 bits in size, each page table needs 16MB space.
What about pages of size 4KB?
Why not just use much larger pages?

How to make virtual memory fast?
(Performance Overheads during Address Translation)
Worst case overhead: Involves an additional fetch
the PTE from memory at a cost of tens to
hundreds of cycles. (for flat page tables)
If the PTE is cached in L1 Cache, then the penalty
is lesser.
How to avoid this overhead? Caching to the rescue
again!

How to make virtual memory fast?
We want to avoid the expensive additional
references to memory for fetching PTE in steps
2,3.

VA
1Processor MMU Cache/

memory

PTEA
PTE

PA

Data

2

3

4

5

CPU chip

TLB – Translation Lookaside
Buffer

TLB is a small, virtually addressed cache.
Each line holds a single PTE.
TLB similar in organization to L1 but has a high
set associativity.

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO
VPN

p+t-1p+t

TLB Hit

VAProcessor Trans-
lation Cache/

memoryPA

Data

CPU chip
TLB

VPN PTE

1

2 3

4

5

TLB Miss

VAProcessor Trans-
lation

Cache/
memory

PTEA

Data

CPU chip
TLB

VPN PTE

PA
1

2

3

4

5

6

TLB and context switches
What should happen to the TLB contexts when
the OS schedules a new process?
Two solutions:
1) Flush: Clear the TLB cache entirely
2) ASID: Address Space Identifier with each PTE
in order to isolate between address spaces of
multiple processes.

