
CS354: Machine 
Organization and 

Programming
Lecture 32Monday the November 16th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron



Class Announcements
1. Midterm 2 grades have been posted in 

learn@uw. Collect your graded exams from me 
this week during class or during office hours 
after that.

2. Please come and see me during office hours for 
any questions regarding grading or totaling 
errors for Midterm 2.







Lecture Overview
1. Multi level page tables
2. Example 



Idea: Software Managed TLB
H/W has to know so much about the Page table structure. (Software managed TLB)
Upon a TLB miss, 
• H/W raises the TLB miss exception
• Run TLB miss exception handler that updates the TLB using a special instruction
• Return from the exception to retry the instruction
Why bother?: It is advantageous to keep the H/W Simple and let the S/W have more flexibility.



Virtual Memory: Paging
Problem #2’s Solution

Page tables are too big in size.
Solutions:
1) Multi-level page tables (our focus)
2) Segmented Page tables (base+bounds earlier)
3) Inverted page tables
4) Swap page tables to disk (+break recursion)



Two-level page table:
Motivation

1. Consider 32bit virtual address and 4KB pages.
2. Needs 4MB for a flat page table per process.
3. Assume a process with memory layout as:

a. First 2K pages : code and data
b. Next 6K+1023 pages: unallocated
c. Next page: stack

Then the two level page table for this process will look like as shown in next slide.



Two level Page table
Level 1

page table

...

Level 2
page tables

VP 0
...

VP 1023
VP 1024

...
VP 2047

Gap

0

PTE 0
...

PTE 1023

PTE 0
...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages
1 allocated VM page
for the stack



Two level Page table
Reduces memory requirements in two ways:
1. If  a PTE in level 1 is null, then corresponding level 2 page table does not even have to exist.Most programs have lots of  unallocated virtual address space regions.
2. Only the level 1 page tables needs to be in memory at all times. Level 2 page tables can be paged in and out by the Virtual Memory system.



CS354: Machine 
Organization and 

Programming
Lecture 33Wednesday the November 18th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron



Lecture Overview
1. Continue with another example of  end to end 

address translation
2. Intel core i7 case study
3. Linux specific virtual memory related details

(Not important from Final exam perspective)



End-to-end Address Translation
Example for CSAPP Textbook

1. Memory is byte-addressable
2. Memory accesses are to 1-byte words (not 4-byte 

words)
3. Virtual Addresses are 14 bits wide (n=14)
4. Physical Addresses are 12 bits wide (m=12)
5. Page size is 64 bytes (P=64)
6. TLB is 4-way set associative with 16 total entries
7. L1 d-cache is physically addressed and direct 

mapped with a 4-byte line size and 16 total sets.



End-to-end Address Translation
Format of  virtual & physical addresses

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN
(Virtual page number) (Virtual page offset)

(Physical page number) (Physical page offset)

Virtual
address

Physical
address



TLB: Four sets, 16 entries, 4 way set 
associative

1. 2 low order bits of  VPN used as set index.
2. 6 high order bits serve as the tag.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073
0–030–060–080–022
0–0A0–040–0212D031
102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Virtual
address



Page table
Only the first 16 PTEs are shown

VPN

10D0F0–07
1110E0–06
12D0D11605
01A0C0–04
0–0B10203
1090A13302
117090–01
1130812800

ValidPPNVPNValidPPN



11 10 9 8 7 6 5 4 3 2 1 0

––––014F
D31B7783113E
15349604116D
––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
03DFC2111167
––––0316

1DF0723612D5
098F6D431324
––––0363

0804020011B2
––––0151
112311991190

Blk 3Blk 2Blk 1Blk 0ValidTagIdx

Physical
address

Cache: 16 sets, 4-byte blocks, direct mapped



Problems: Analyzing memory 
references

In Class:
0x0354
0x0314
Try yourself  (solved in text book):
1. 0x03d4?
2. 0x03d7?



Case study: Intel core i7



Intel core i7: Address Translation



Intel core i7: Level 1,2,3 PTE Format

Some bits are: (more in Textbook)
U/S – user or supervisor mode access
R/W – read only or read write access
XD – Disable or enable execute bit
CD – cache disabled or enabled



Intel core i7: Level 4 PTE Format

Some bits are: (more in Textbook)
A – reference bit (set by MMU)
D – Dirty bit
WT – Write through or write back cache policy
G – Global page (don’t evict on task switch)



Intel core i7: Page Table Translation



Kernel code and data

Memory mapped region 
for shared libraries

Runtime heap (via malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%esp

Process
virtual
memorybrk

Physical memoryIdentical  for each process

Process-specific data
structures 

(e.g., page tables,
task and mm structs, kernel

stack) Kernel
virtual 
memory

0x08048000 (32)
0x00400000 (64)

Different for each process

Virtual Memory
Of a Linux Process



Linux Virtual Memory
Areas



vm_area_struct
vm_end
r/o

vm_next

vm_start

vm_end
r/w

vm_next

vm_start

vm_end
r/o

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

Normal page fault

Segmentation fault:
accessing a non-existing page1

2

3

Protection exception:
e.g., violating permissions by
writing to a read-only page

Linux Page Fault
Exception Handler



Memory Mapping
Contents of  Virtual Memory initialized by memory mapping in Linux:
1. Regular file in the unix system
2. Anonymous file : demand zero pages
In both cases, initialized pages can be swapped in and out to on disk location called “swap space”.
Total virtual memory that can be allocated by the currently running process is bound by the amount of  swap space.



Shared Objects
Shared objects: Before sharing



Shared Objects – After Sharing



Private Copy on Write Objects
Before Writing to Copy on write object



Private Copy on Write Objects
(After writing)



Memory mapping by loader for the user address space 



mmap arguments interpretation
void *mmap(void* start, size_t length, int prot, int flags, int fd, 
off_t offset);
Returns: pointer to mapped area if  OK


