CS354: Machine
Organization and

Programming
Lecture 32

Monday the November 16 2015

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

1

Number of submitted grades: 119/ 119
Minimun: [2%
Maxima: [05 %
Average: ezs8%
Mode: 102 %
Median: 84 %
Standard Deviation: 15.65 % €
Midterm 1
Grade Distribution
100%
Number
of
Users 50%
(%)
0%
% 25% 50% 75% 100%

11/18/2015

Class Announcements

1. Midterm 2 grades have been posted in
learn@uw. Collect your graded exams from me
this week during class or during office hours
after that.

. Please come and see me during office hours for
any questions regarding grading or totaling
errors for Midterm 2.

Midterm 2 Class Statistics

Number of submitted grades: 119/ 119

Minimum: 0%
Maximum: | 105 %
Averago: | 8549%
Mode: 97 %, 85 %, 93 %
Median: 87 %

Standard Deviation: 13.16 % &

Grade Distribution

100%

Number

of

Users 50%
(%)

o 25% 50% 75% 100%
Grade Received (%)

M

Lecture Overview

Multi level page tables

Example

Virtual Memory: Paging
Problem #2’s Solution

Page tables are too big in size.

Solutions:
Multi-level page tables (our focus)
Segmented Page tables (base+bounds earlier)
Inverted page tables
Swap page tables to disk (+break recursion)

11/18/2015

Idea: Software Managed TLB

H/W has to know so much about the Page table
structure. (Software managed TLB)

Upon a TLB miss,
H/W raises the TLB miss exception

Run TLB miss exception handler that updates the
TLB using a special instruction

Return from the exception to retry the instruction

‘Why bother?: It is advantageous to keep the H/W
Simple and let the S/W have more flexibility.

Two-level page table:
Motivation

Consider 32bit virtual address and 4KB pages.
Needs 4MB for a flat page table per process.

Assume a process with memory layout as:
a. First 2K pages : code and data
b. Next 6K+1023 pages: unallocated
c. Next page: stack

Then the two level page table for this process will look
like as shown in next slide.

Two level Page table

Level 1 Level 2 Virtual
page table page tables memory

VP 0

PTE 0 PTE O

VP 1023 2K allocated VM pages

PTE 1

VP 1024 for code and data

PTE 2 (null) PTE 1023

PTE 3 (null)

VP 2047

PTE 4 (null) FTE 0

PTE 5 (null)

PTE 6 (null PTE 1023

PTE 7 (null) 6K unallocated VM pages

PTE 8

1023 null
(1K-9) PTES
UlllES PTE 1023

1023 pages

} 1 allocated VM page
for the stack

CS354: Machine
Organization and

Programming

Lecture 33
Wednesday the November 18% 2015

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

11/18/2015

Two level Page table

Reduces memory requirements in two ways:

If a PTE in level 1 is null, then corresponding
level 2 page table does not even have to exist.
Most programs have lots of unallocated virtual
address space regions.

Only the level 1 page tables needs to be in
memory at all times. Level 2 page tables can be
paged in and out by the Virtual Memory
system.

Lecture Overview

Continue with another example of end to end
address translation

Intel core 17 case study

Linux specific virtual memory related details
(Not important from Final exam perspective)

11/18/2015

End-to-end Address Translation End-to-end Address Translation
Example for CSAPP Textbook Format of virtual & physical addresses

Memory is byte-addressable

Memory accesses are to 1-byte words (not 4-byte
WOI‘dS) Virtual

Virtual Addresses are 14 bits wide (n=14) e
Physical Addresses are 12 bits wide (m=12)

Page size is 64 bytes (P=64) Physicel
TLB is 4-way set associative with 16 total entries oress PPN

L1 d-cache is physically addressed and direct (Physical page number) (Physical page offset)
mapped with a 4-byte line size and 16 total sets.

TLB: Four sets, 16 entries, 4 way set
associative

Page table

2 low order bits of VPN used as set index. Only the first 16 PTEs are shown
6 high order bits serve as the tag.

PPN Valid PPN Valid
Virtual 28 1 13 1
address - 0 17 1
VPO 33 09 1

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid - 0
03 - 0 09 oD 1 00 0 07 1 1A 0
1

1

1

03 1 02 - 0 04 0 0A 0 2D
02 0 08 - 0 06 0 03 0 "
o7 0 03 [op 1 0A 1 02 0 oo

11/18/2015

Problems: Analyzing memory
references

Physical
address

Tag Valid BIkO Blk1 Blk2
w1 Tow [7= In Class:
15 - - -

1B 00 | 02 | o4
36 - - -

32 43 | 6D | 8F 0x0354
- S e 0x0314

16 " c2 DF
24 3A 51
2D - -

@ oA Try yourself (solved in text book):
. . 0x03d4?

5 ® 0x03d7?

Cache:
16 sets,
4-byte
blocks,
direct
mapped

MTMOO®>» ©® N O & wN =0

Case study: Intel core 17 Intel core i7: Address Translation

—
Processor package CPU e L2, L3, and

Result
N
Core x4 Virtual address (VA) main memory
»® 12

Instruction MMU
fetch (addr translation) VPN L1
hit

[Registers ‘

32 a

L14-TLB L1-TLB TLBT| LB
32 KB, 8-way ‘ 64 entries, 4-way | | 128 entries, 4-way| [reet] L1 d-cache

I I (64 sets, 8 lines/set)

L2 unified cache L2 unified TLB
256 KB, 8-way 512 entries, 4-way

L1 d-cache L1 i-cache
32 KB, 8-way

To other

QuickPath interconnect
cores

4links @ 25.6 GBIs
102.4 GBs total To o
bridge

s s s o © 1
. [ven1]veNz]vena[vend]] [FPS] —>

L3 unified cache DDR3 Memory controller |
8 MB, 16-way 3x 64 bit @ 10.66 GBIs Physical
(shared by all cores) 32 GBs total (shared by all cores) address

¥

+ *F (PA)
.
Page tables

b []
L1 TLB (16 sets, 4 entries/set)

11/18/2015

Intel core 17: Level 1,2,3 PTE Format Intel core 17: Level 4 PTE Format

o3 62 63 62 52 51

52 5 v o & 7 6 s a4 5 2 1 o - s s 1 s s s s 2 4o
[xo] unusea | Page table physical base adar | unused [& [Ps[| A [co[wrusRme=1] X0 Unused Page physical base address | Unused | G [0 [0 [A [co|wr]usfrm{p=1]

| Available for OS (page table location on disk) [p=o| | ‘Avallable for OS (pags location on disk) =)

Some bits are: (more in Textbook) Some bits are: (more in Textbook)

U/S — user or supervisor mode access A —reference bit (set by MMU)

R/W —read only or read write access D — Dirty bit

XD - Disable or enable execute bit ‘WT — Write through or write back cache policy
CD - cache disabled or enabled G — Global page (don’t evict on task switch)

1 . . 1 . Process-specific data
Intel core 17: Page Table Translation
ferent for (e.g., page tables,
each process ask and mm structs, kernel|
- - - - - stack) Kgrnel
irtual virtual
VN1 [VN2 | VPN3 [VPN4] Physical memory memory

addre: Identical for
each process

Kernel code and data

L1PT L2PT L3PT
Page giobal Page upper | Page middie sesp
cRs 40 directory |ao directory |40 directory

Physical . Virtual Memory
address Ofisot info . Memory mapped region
orL1PT Lo 0 12 physical and Of a Linux Process for shared libraries
virtual page Process
Physical f virtual

address brk memory
Runtime heap (via malloc)

User stack

512 GB 1GB 2MB 4KB of page
region region region region o
per entry per entry per entry per entry LIJmtn I‘Il'ai:je: ‘:a‘T ‘d bss))
nitialized data (.data
40 0x08048000 (32) Program text (. text)
0x00400000 (64)

Physical
address

11/18/2015

Process virtual memory Linux Pa.ge Fault

Process virtual memory .
task_struct Exception Handler
’—* vm_end vm_area_struct
T vm_start

vm_end
T e vm_start
vm flags —

vm_area_struct

/o
Shared libraries Shared libraries
r vm_next

m_next

Segmentation fault:
accessing a non-existing page

vm_end
vm_start vm_start
vm_prot /w

\ @ Normal page fault
Linux Virtual Memory === I
ArCaS ’/ vm_next

vm_end

vm_next

Protection exception:
vm_end @ e.g., violating Pdefmllssmns by
el vm_start writing to a read-only page
vm_start /o
vm_prot
“m_flags Vm_next
vm_next

Memory Mapping Shared Objects

Contents of Virtual Memory initialized by memory Shared objects: Before sharing
mapping i Linux: Process 1 Physical Process 2
virtual memory memory virtual memory

Regular file in the unix system
Anonymous file : demand zero pages

[

In both cases, initialized pages can be swapped in and out
to on disk location called “swap space”.

Total virtual memory that can be allocated by the

currently running process is bound by the amount of swap
space.

11/18/2015

Shared Objects — After Sharing Private Copy on Write Objects

Process 1 Physical Process 2 Before Writing to Copy on write object

Process 1 Physical Process 2
virtual memory memory virtual memory

B S

virtual memory memory virtual memory

Private
copy-on-write object

Private Copy on Write ObjCCtS Memory mapping by loader for the user address space

(After Writin g) Usei stack } Private, demand-zero

Process 1 Physical Process 2 t
virtual memory memory virtual memory

Memory mapped region

for shared libraries Shared, file-backed

D_—“‘/— i)}hqp—wri(e -
A Write to private

}*— copy-on-write Runtime heap (via malloc)| ¢ Private, demand-zero
page

Uninitialized data (.bss) } Private, demand-zero

Initialized data (.data)

Private, file-backed
Program text (.text)

Private
copy-on-write object

mmap arguments interpretation

void *mmap(void* start, size_t length, int prot, int flags, int fd,

off_t offset);
Returns: pointer to mapped area if OK___

J length (bytes)

length(bytes){
offset

(bytes)

) ol |

start
(or address

chosen by the

kernel)

Disk file specified by Process
file descriptor fd virtual memory

11/18/2015

