
11/20/2015

1

CS354: Machine
Organization and

Programming
Lecture 34Friday the November 20th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
Programming Assignment 4 is due on coming
Wednesday 11/25 . If you have not yet started on
it, get started and put in more effort.
Please use piazza or come see us during office
hours, if you need help.

Lecture Overview
1. malloc and free functions
2. Why Dynamic Memory Allocation?
3. Allocator requirements and goals
4. Fragmentation
5. Implementation issues

Dynamic Memory Allocation

Heap space as
part of memory
layout along with
Kernel’s “brk”
pointer.

Memory mapped region
for shared libraries

heap

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of the heap (brk ptr)
heap grows

upward

11/20/2015

2

Dynamic Memory Allocation
Allocators maintain the heap as a collection of various-sized blocks.
Each block is a contiguous chunk of virtual memory that is either allocated or free.
Each free block is available for allocation.
Each allocated block needs to be freed before it can be reallocated.

Dynamic Memory Allocation
Explicit allocators: requires application to explicitly free any allocated blocks. E.g. C, C++

Implicit allocators: allocator detects when an allocated block is no longer being used by the application and then frees it during “garbage collection” process. E.g. Java (high level language)
We will be focusing on explicit allocators.

malloc() , free() and sbrk()
void *malloc(size_t size) : returns pointer to allocated memory on success. calloc , realloc variants.

void free(void *ptr) : frees memory previously allocated using malloc()

void *sbrk(intptr_t incr) : grows or shrinks the heap by adding incr to kernel’s brk pointer.

Allocating and freeing blocks
After p1 = malloc(4*sizeof(int))

After p2 = malloc(5*sizeof(int))

Six blocks allocated for 8-byte alignment

p1

p1 p2

11/20/2015

3

Allocating and freeing blocks
After p3 = malloc(6*sizeof(int))

After free(p2)

Allocating and freeing blocks
After p4 = malloc(2*sizeof(int))

p1 p2 p3p4

Why Dynamic Mem. Allocation?
Consider an example of allocating an array?
int array[MAXN];
Resizing is hard.
Instead, programmer can use malloc() and free()

Allocator constraints
1. Handling arbitrary request sequences
2. Making immediate responses to requests
3. Using only the heap
4. Aligning blocks (alignment requirement)
5. Not modifying allocated blocks

11/20/2015

4

Allocator requirements and goals
1. Goal 1: Maximizing throughput which is

defined as the total number of requests that the
allocator completes per unit of time.

2. Goal 2: Maximizing memory utilization which
is defined after a certain number of alloc & free
requests as total memory requested by the
alloc() requests that are not yet freed divided by
the total heap space used right now.

Internal Fragmentation
Occurs when an allocated block is larger than the
payload.
Can happen due to alignment restrictions or due
to a minimum allocation unit enforced by the
allocator.
Easy to quantify: sum of the differences between
sizes of the allocated blocks and their payloads.

External Fragmentation
Occurs when there is enough aggregate free
memory to satisfy an allocate request but no single
free block is large enough to handle the request.
Occurs due to repeated alloc() and free() that lead
to small free spaces.
Difficult to quantify and impossible to predict. Its
effect depends on future request sizes too!

Implementation Issues
1. Free block organization: How do we keep track of free blocks?
2. Placement: How do we choose an appropriate free block in which to place a newly allocated block?
3. Splitting: After we place a newly allocated block in some free block, what do we do with the remainder of the free block?
4. Coalescing: What do we do with a block that has just been freed?

11/20/2015

5

Free list
All free blocks are kept organized as part of a
“free list” by the allocator.
Upon a new alloc() request, a free block that can
hold the requested memory size is chosen and
used.
Where to store the free list itself ?

