
CS354: Machine
Organization and

Programming
Lecture 35Monday the November 23rd 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. Programming Assignment 4 is due day after

tomorrow – Wednesday (11/25) by 9 AM.

Lecture Overview
1. Implicit free lists
2. Placing allocated blocks
3. Splitting free blocks
4. Getting additional heap memory
5. Coalescing

Implicit free list node structure
Make the free list node embedded into the free
space it is used to manage. Called an implicit free
list. Format of a free heap block is as below:

Implicit free list node structure
Header: block size and allocated/free bit
E.g. Header for a block of size 24 (0x18) which is allocated will be 0x19
Payload: this is space where application can store its own data.
Padding (optional): could be for alignment or due to an allocator strategy to avoid external fragmentation.

Implicit free list example
Shaded blocks are allocated ones and unshaded ones are free ones.

A special end node with size zero and its allocated bit set is used to denote the end of the free list.
Advantage of implicit free list is their simplicity.
Disadvantage is the cost of traversing the entire listduring allocation.

8/0 16/1 16/132/0
Start

of
heap

Unused
0/1

Double-
Word (8 bytes)

aligned

Implicit free list
System’s alignment requirement and allocator’s
choice of block format impose a minimum block
size on the allocator.
So, even if application requested just one byte of
memory, allocator would have to create a two
word block.

Placing Allocated Blocks
Manner in which the free list is searched for a free
block during an allocation request is determined
by the placement policy.
First Fit
Next Fit
Best Fit

First Fit
Search the free list from the beginning and choose
the first free block that fits.
Advantage: Retains large free blocks at the end of
the free list.
Disadvantage: Leaves “splinters” of small free
blocks toward the beginning of the free list
increasing the search time for larger blocks.

Next Fit
Similar to First Fit but instead start the search at
the place where the previous search left off.
Advantage: runs significantly faster than first fit
especially when the front of the free list becomes
littered with small splinters.
Disadvantage: Some studies suggest it might have
worse memory utilization compared to first fit.

Best Fit
Examines every free block and chooses the free
block with the smallest size that fits.
Advantage: Has the best memory utilization
Disadvantage: Requires exhaustive search of the
heap

Splitting a free block
After locating a free block that fits the requested
memory, how much of the free block to allocate?
Options:
1) Use the entire free block: Simple and fast but

leads to internal fragmentation.
2) Split the free block into two parts: First part is

the allocated part and the second part will be a
new free block.

Implicit free list before and after
splitting

Application calls: int *q = alloc(3*sizeof(int))
Before splitting:

After splitting:
8/0 16/1 16/0 16/116/1

Start
of

heap

Unused
0/1

Double
Word

(8 bytes)
aligned

8/0 16/1 16/132/0
Start

of
heap

Unused
0/1

Double-
Word

(8 bytes)
aligned

Coalescing Adjacent Free Blocks
Suppose application now calls: free(q)

What if application calls:
int *r = malloc(4*sizeof(int)) ?
Fails because there is no single free block that can hold more than 3 integers.

8/0 16/1 16/0 16/116/0
Start

of
heap

Unused
0/1

Double
Word

(8 byte)
aligned

Coalescing Adjacent Free Blocks
False fragmentation: Lot of free space is available but is chopped up into small, unusable free blocks.
Solution: coalesce or merge adjacent free blocks.
Immediate Coalescing: Merge any adjacent free blocks each time a block is freed. Fast but can lead to a form of thrashing where a block is repeatedly split and then coalesced.
Deferred Coalescing: Waiting to coalesce free blocks at some later time.

Getting additional Heap Memory
What if there is no more free space in any free
block?
Allocator calls sbrk() system call to allocate more
heap space and then it adds a new free node
encompassing this newly allocated heap space into
the free list.

How to Coalesce with Previous
Block?

1. Coalescing with the next free block is
straightforward because of header of current
block points to the header of the next block.

2. With current format of implicit free list,
coalescing with a previous free block can only
be done by a full free list scan until we reach
the free block before the block just being freed.

A modified implicit free list
Adding Boundary tags to help coalesce with
previous free block in constant time.

Idea is: Add a footer
(aka boundary tag)
which is a replica of the
header.

A modified implicit free list
With boundary tags, allocator just needs to check
the footer of the previous block to find its size and
allocation status.
Disadvantage: Requiring each block to contain
both a header and a footer can be a memory
overhead if application deals with small memory
allocations.

A modified implicit free list
A Solution to the space issue of boundary tags:
Size info store in the footer is looked up only for
free blocks.
If alloc/free status in the previous block’s footer is
instead stored in the excess bits of the current
block’s header, then allocated blocks would not
need any footer at all.

