
12/4/2015

1

CS354: Machine
Organization and

Programming
Lecture 37Monday the November 30th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Class Announcements
1. Final exam will be for 1.5 hours total duration.
2. Date: 12/18 Time: From 10:05 to 12:05 at ENGR Hall Room Number 1800 (for Section 2)
3. Final exam is not cumulative.
4. To give you a general Idea about the overall letter grade assignment: (might change)

• A/AB 90+
• B/BC 80+
• C 70+
• D/F <60

Lecture Overview
1. Recap of Compilation Process
2. Types of object files
3. Relocatable object files
4. Symbols and Symbol tables
5. Static Linking: Symbol resolution

Why learn about Linkers?
Will help you:
1. Build large programs
2. Avoid dangerous programming bugs
3. Understand how language scoping rules are

implemented
4. Understand other important systems concepts
5. Exploit shared libraries

12/4/2015

2

Compilation Process
1. C Preprocessor (cpp) translates main.c into

main.i intermediate file
2. C Compiler (cc1) translates main.i to main.s

assembly file
3. Assembler (as) translates main.s into main.o

relocatable object file
4. Finally, Linker (ld) creates the executable

object file.

Static Linking

Static Linkers generate a fully linked executable
object file from a collection of relocatable object files.

Static Linking
Two main tasks involved in static linking:
Symbol resolution: Associate every symbol reference in object files with exactly one symbol definition.
Relocation: Relocate the code and data sections of different object files that all start at address 0 and also make sure all symbol references are to their relocated address.

Object Files
Three types of object files:
1. Relocatable object file: Contains binary code and data in a form that can be combined with other relocatable object file.
2. Executable object file: Contains binary code and data that can be copied directly into memory and executed.
3. Shared object file: A type of relocatable object file that can be loaded into memory and linked dynamically at either load time or run time.

12/4/2015

3

An ELF Relocatable Object File ELF Relocatable Object File
.symtab: functions and global variables defined and referenced in the program.
.rel.text: A list of locations in the .text section that will need to be modified when the linker combines this object file with others.
.rel.data: Relocation information for any global variables that are referenced or defined by the module.
.debug: A debugging symbol table with entries for local variables, typedefs, global variables and the original C source file. Requires –g option.
.line: A mapping between line numbers in the original C source program and machine code instructions in the .text section. Requires –g option.
.strtab: A string table for the symbol tables in the .symtab and .debug sections and for the section names in the section headers.

Symbols
Three types of Symbols (from the linker’s perspective):
Global symbols that are defined by module m and that can be referenced by other modules.
Global symbols that are referenced by module m but defined by some other module.
Local symbols that are defined and referenced exclusively by the module m. E.g. defined with “static” attribute. Important: Local linker symbols are not the same as local program variables.

Local Symbols defined with “static”
int f(){

static int x=0;
return x;

}
int g(){

static int x=1;
return x;

}

Local Variables named “x” are not
managed on the stack.
Compiler allocates space in .data
or .bss for each definition and
creates a local linker symbol in the
symbol table with unique name.
Eg. x.1 for definition in function f
and x.2 for definition in function
g.

12/4/2015

4

Local Symbol Table Entry
typedef struct {
int name; /*String table offset*/
int value; /*Section offset or VM address*/
int size; /*Object size in bytes*/
char type:4, /*Data, func, sec or src file name*/

binding:4; /*Local or global*/
char reserved; /*Unused*/
char section; /*Pseudo section header index (ABS, UNDEF or COMMON)*/
}Elf_Symbol;

Symbol Resolution
Local Symbol Resolution: is straightforward because compiler makes sure there is only one definition of each local symbol per module.
Global Symbol Resolution: Trickier!
At compile time, compiler exports each global symbol as either strong or weak.
Strong: Functions and Initialized Global Variables get strong symbols.Weak: Uninitialized global variables get weak symbols.

Global Symbol Resolution
Rules for dealing with multiply defined global
symbols:
1. Multiple strong symbols are not allowed.
2. Given a strong symbol and multiple weak

symbols, choose the strong symbol.
3. Given multiple weak symbols, choose any of

the weak symbols.

CS354: Machine
Organization and

Programming
Lecture 38Wednesday the December 2nd 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

12/4/2015

5

Lecture Overview
1. Static Linking: Relocation
2. Executable object files
3. Dynamic Linking: Shared Libraries
4. Dynamic Linking from application: Example

Code
5. Position Independent Code
6. Tools for Manipulating Object files

Linking with Static Libraries
Related library functions can be compiled into
separate object modules and then packaged in a
single static library file.
unix> gcc main.c /usr/lib/libm.a /usr/lib/libc.a
Contrast this approach with a separate library file
for each library function or a single library file for
all library functions.

Example: Static Library Resolving references using Static
Libraries

Linker scans relocatable object files and archives left to right as specified in the command line.
Linker maintains:
Set E: relocatable object files
Set U: unresolved symbols
Set D: defined symbols so far
Initially sets E, U , D are empty.

12/4/2015

6

Resolving references using Static
Libraries

> gcc main.c f1 f2 f3 …
- Each input object file f is added to E and the sets

U, D are updated to reflect the symbol definitions
and references in f.

- Each input archive file’s member m is added to E if
it resolves a reference in U. Sets U, D are updated
to reflect symbol definitions and references in m.

- If U is non-empty when linker finishes, it prints an
error. Otherwise, it merges and relocates object
files in E to build output executable file.

Relocation
Relocating sections and symbol definitions: Linker
merges all sections of the same type into a new
aggregate section of the same type.
Relocating symbol references within sections:
Linker modifies every symbol reference in the
bodies of the code and data sections so that they
point to the correct run-time addresses.

Relocation Entries
typedef struct {

int offset; /*offset of the reference to relocate*/
int symbol:24, /*Symb the ref. should point to*/

type: 8; /*Relocation type*/
} Elf32_Rel;

Relocation Algorithm
foreach section s{

foreach relocation entry r{
refptr = s + r.offset; /*ptr to reference to be relocated */
if(r.type is PC relative){

refaddr = ADDR(s) + r.offset;
*refptr = (unsigned)

(ADDR(r.symbol) + *refptr – refaddr);
}
if(r.type is Absolute){

*refptr = (unsigned)
(ADDR(r.symbol) + *refptr);

}
}

}

12/4/2015

7

foreach section s{
foreach relocation entry r{

refptr = s+r.offset; /*ptr to reference to be relocated*/
if(r.type is PC relative){

refaddr = ADDR(s) + r.offset;
*refptr = (unsigned) (ADDR(r.symbol) + *refptr -refaddr);

}
if(r.type is absolute){

*refptr = (unsigned) (ADDR(r.symbol) + *refptr);
}

}

Relocation Algorithm Go over example from CSAPP
Textbook

Relocating PC-Relative References
Relocating Absolute References

ELF Executable Object File Loading Executable Object Files

12/4/2015

8

Dynamic Linking with Shared
Libraries

Loading and Linking Shared
Libraries from Applications

Example program from CSAPP textbook
that dynamically loads and links a shared library.

Position Independent Code (PIC)
How do multiple processes share single copy of a program?
An approach to compile library code so that it can be loaded and executed at any address without being modified by the linker.
GCC option –fPIC
Compiler creates a table called “Global Offset Table (GOT)” at the beginning of the data segment.

PIC Data References
call L1

L1: popl %ebx /*ebx contains current PC*/
addl $VAROFF, %ebx /*ebx->GOT entry for var*/
movl (%ebx), %eax /* reference indirect
movl (%eax), %eax through GOT */

Performance Disadvantage: Each global memory reference now requires five instructions instead of one.

12/4/2015

9

PIC Function Calls
call L1

L1: popl %ebx /*ebx contains the
current PC*/

addl $PROCOFF, %ebx /*ebx ->GOT
entry for proc*/

call *(%ebx) /* call indirect through
GOT*/

Performance Disadvantage: Each procedure call
requires three additional instructions.

PIC Function Calls: Optimization
Lazy binding of PIC function calls using a
Procedure Linkage Table.
After first call, each subsequent call needs only
one instruction and one memory reference.
Go over example in CSAPP textbook.

Tools for Manipulating Object Files
AR: Creates static libraries
STRINGS: lists all printable strings contained in object file.
STRIP: Deletes symbol table info from object file.
NM: Lists symbols defined in symbol table of an object file.
SIZE: Lists the names and sizes of the sections in an object file.
READELF: Displays the complete structure of an object file.
OBJDUMP: Displays information in an object file.
LDD: Lists shared libraries needed by an executable.

