
CS354: Machine
Organization and

Programming
Lecture 4

Friday the September 11th 2015

Section 2
Instructor: Leo Arulraj

© 2015 Karen Smoler Miller

Class Announcements
Student Note Takers needed.

Students who are looking for an easy way to earn some extra
money should read this email. The McBurney Center is recruiting a
paid notetaker for your CS/ECE354 class. You'll receive a stipend
of about $30 per credit for notes provided for the entire duration
and scope of the class. No extra time outside of class is required,
except for a short orientation for new notetakers. Detailed
instructions will be on the Notetaker Information Form you'll get
from the McBurney student as soon as you are hired.

If interested, make copies of sample notes from the last lecture and
email or submit them to me as soon as possible. Make sure you
include your name, phone number and email address with your
sample notes. If your notes are selected, you will be contacted
directly by the student who needs the notetaker.

Lecture overview

1. Arrays vs. Pointers
2. Function Pointers
3. Structs and Unions
4. malloc & free functions
5.  Static vs. Dynamic Memory

Allocation

Swap two variables

void swap(int a, int b){
 int temp;
 temp = a;
 a = b;
 b = temp;
}

Swap two variables using pointers

void swap(int *px, int *py){
 int temp;
 temp = *px;
 *px = *py;
 *py = temp;
}

Example C Program on swap
using pointers

Arrays vs. Pointers

Arrays and Pointers are often used
interchangeably
Example:

int ar[100]; /* an array of 100 integers */
int *arptr = ar;
arptr[4] = 10; //sets the 5th element to 10

Arrays vs. Pointers

•  And, we could now change the value of the
7th element of the array to 1000 with

 *(arptr+6) = 1000;

•  We can even do the same thing with

 (ar+6) = 1000; / 7th item is at offset of 6
from the element at index=0 */

Arrays vs. Pointers

•  Stated a little more formally,
a[i] is the same as *(a+i)
and &a[i] is the same as a+i

•  However, a pointer is a variable, but an array
name is not a variable. So,
arptr = arr is legal,
but arr = arptr and arr++ are not legal.

•  Pointer can be used in place of an array.
Array can not be used as a pointer in all
scenarios.

Pointers increment with sizeof(type)

int ar[5]={0,6,-1,15,102}; !
int *ap = ar; !
printf("ptr ap = %0x val *ap= %d
\n",ap, *ap); !
ap+=1; !
printf("ptr ap = %0x val *ap= %d
\n",ap, *ap); !
Output:

ptr ap = a81b0d60 val *ap= 0

ptr ap = a81b0d64 val *ap= 6

Example C Program on pointer
arithmetic

Multiple Indirection

•  Consider this:

int a = 3;

int *b = &a;

int **c = &b; //char** argv used in main func
int ***d = &c;

•  The values of these pointers equate to each other like this:

*d == c;
**d == *c == b;
***d == **c == *b == a == 3;

Pointers and Const

The following two declarations specify the int variable as
const.

•  const int *ptr_a;

•  int const *ptr_a;

•  So, *ptr_a = 10 is not allowed

The following one however specifies the pointer as const.

•  int *const ptr_b;

•  So, ptr_a ++ is not allowed

Example C Program on const
pointers

Function Pointers 1

Syntax: return_type (*POINTER_NAME)(arg_type arg1, …)

Useful to pass callbacks to other functions.

Practically useful example: Sorting an array using qsort function in
stdlib.h library

Qsort function takes in a pointer to a comparison function as last
argument

void qsort (void *array, size_t count, size_t size, comparison_fn_t
compare)

Function Pointers 2

Let us define our comparison function as:

int compare_doubles (const void *a, const void *b) {
 const double *da = (const double *) a;
 const double *db = (const double *) b;
 return (*da > *db) - (*da < *db);
}

This returns:

-1 if *a < *b
 0 if *a == *b
+1 if *a>*b

Function Pointers 3

int main(){
 double a[10];
 qsort (a, 10, sizeof (double), compare_doubles);
 return 0;
}

Example program using function
pointers to sort

Structures

Structures are a derived type that collect a set of variables
under one type

For example,

struct line {
 int a, b, c; /* line is ax + by = c */
};

struct line diagonal;
diagonal.a = 1;
diagonal.b = 1;
diagonal.c = 0;

The . (period) is an operator on a structure, to access the
correct member of the structure.

Operations on Structures

•  Copy it

•  Assign to it (as a whole unit)

•  Get its address (with the & operator)

•  Access a member variable (using . operator)

•  CANNOT compare two structures even if
they are of the same type.

The -> operator

•  We often have a pointer to a structure and want to access its
members and it can be done with:

 (*ptr).member
 [parantheses needed because unary * is of lower

precedence than . operator.]

•  Convenient Alternative:

 ptr->member

•  The dot(.) and -> operators are left to right associative and
have highest precedence. So, use parentheses when needed.

Example C program on

. and -> operators

Unions

Very Similar to Structures but:

•  Memory allocated for a union
variable is the maximum needed by
any of its members.

•  Only one member used in each
union variable.

Unions

Example:

union job {
 char name[32];
 float salary;
 int worker_no;
};

struct job1 {
 char name[32];
 float salary;
 int worker_no;
};

Example C Program on the Storage
sizes needed for a Structure and a
Union

malloc – Basic Memory Allocation

void * malloc (size_t size) [from stdlib.h]

•  returns a pointer to a newly allocated block size bytes long,
or

•  a null pointer if the block could not be allocated.

Example usage:

struct foo *ptr;

ptr = (struct foo *) malloc (sizeof (struct foo));

if (ptr == 0) abort ();

memset (ptr, 0, sizeof (struct foo)); //initialize to 0

calloc –Allocating cleared space

void * calloc (size_t count, size_t eltsize) [from stdlib.h]

•  Allocates a block long enough to contain a vector of
count elements, each of size eltsize.

•  Its contents are cleared to zero before calloc returns

•  Aside: use man pages for quick information about
system functions. Eg. Type “man 3 free” in shell

•  Aside: 3 is for section name. Section 3 contains C
Library Functions. use “man man” to know more.

free –Allocating cleared space

void free (void *ptr) [from stdlib.h]

•  When you no longer need a block that you got with
malloc or calloc, use the function free to make the
block available to be allocated again

•  The free function deallocates the block of memory
pointed at by ptr.

•  If you forget to call free, not the end of the world
because all of the program’s space is given back to
the system when the process terminates.

Dynamic Memory Allocation

1.  Dynamic memory allocation is done from
the heap.

2.  Allocators are used to manage memory

3.  Heap is maintained as a collection of various-
sized blocks.

4.  A block is a contiguous chunk of virtual
memory that is either allocated or free.

5.  More details on allocators in a future lecture.

size command in linux

GNU size command lists the section sizes---and
the total size---for each of the object in its
argument list

For example:

size command output for endian.c program

 text data bss dec hex filename

 1263 492 16 1771 6eb endian

size command in linux

text: (readonly) Has code and constant data.

data: (readwrite) The data area contains global and
static variables used by the program that are
explicitly initialized with a non-zero (or non-
NULL) value.

bss: (Block Started by Symbol) The BSS segment
contains all global variables and static variables that
are initialized to zero or do not have explicit
initialization in source code.

