9/16/15

CS354: Machine Class Announcements

Organization and 1. Assignment 0’s due date was today 9 AM!
PI'O gramming . Some of you sent email about midterm conflicts

and I have noted you down. If you have an
Lecture 5 exam conflict, email me ASAP.

Monday the September 14t 2015 . Links to relevant notes from previous versions of
this course have now been posted in the lecture
schedule. Read them when you get time.

Section 2 .

Inst tor: Leo Arulrai . Handouts page has a few links to notes on pre-

nstructor. L€o Arulraj requisite material now. Read them if you don’t
© 2015 Karen Smoler Miller have prerequisite background.

OXEEEEEEEE

kernel virtual memory memory

Lecture OVerVieW (code, data, heap, stack) T invisible to

user code

user stack

(created at runtime) Y5655 (HEEK GolteT)

4

memory mapped region for
shared libraries

1. Memory layout recap

0x40000000

2. Stacks t o
run-time heap
: : (created at runtime by malloc)
3. Linkedlists
read/write segment
(data, .bss) loaded from the
read-only segment executable file

0%X08048000 (.init, .text, .rodata)

0 unused

Example C Program on
Memory Allocation

Common Operations on Stack

1.
2.
3.
4.

push(item) : adds item to top of stack
pop() : removes item from top of stack
top() : peeks into item at stack top

is_empty() : whether stack is empty or
not

. size() : number of items in stack

9/16/15

Stack

. LIFO : Last In First Out
. Data is both added and ssmm

el

removed from one end
i.e. the top

. Add/Push: place an

item on the top

. Del/Pop: remove an

item from the top

Example C Program on

Stack using arrays

Stacks and Functions(Brief Intro)

In today’s lecture, we will look at a
brief intro about how stacks are used
for Function Calls.

‘We will look at more details in a future
lecture.

Queue: A mention

1. FIFO : First In First
Out

. Once an element is
added to the queue.
All elements that
were added before it
must be removed
before the newly
added element can be
removed.

eeeeeeee) operation

REAR

enqueuel) is the operation for adding an el
dequeue() is the operation for removing an el

QUEUE DATA STRUCTURE

lement from

lement into Queue.

Queue

9/16/15

int main() |

x = a();

9/16/15

The call tree:
main calls a

acallsb

b calls ¢
creturnstob

b returnsto a

a returns to main

0-6-0-F

Partial assembly code for main () and a ()

main:

branch a # call
a_rtn: copy x, a_rtn value
a:

branch b # call
b_rtn: copy y, b_rtn value

branch a_rtn # return from a

Modified assembly code formain () and a ()

[main:

branch a # call
a_rtnl: copy X, a_rtn_value
branch a # another call to a
a_rtn2: copy X, a_rtn_value
a:
branch b # call
b _rtn: copy y, b_rtn_value
branch # return from a

Different example: Recursion

int main() |

x =a(); main
’ |

int a() { a
z =al);

9/16/15

P

main:

rtnl:

rtn2:

la a_rtn, rtnl
branch a
copy out return value

recursive call

la a_rtn, rtn2
branch a

copy out return value

branch (a_rtn)

call

To make this work, the code needs to
— just before each call, save the return address

— before each return, get and use the most recently
saved return address

The data structure required is called a stack.

Different example: Recursion

main:

rtnl:

rtn2:

la a_rtn, rtnl
branch a # call
copy out return value

push a_rtn

recursive call

la a_rtn, rtn2
branch a

copy out return value

pop a_rtn
branch (a_rtn)

The problem of overwritten return addresses is
solved with a stack.
The same problem exists with
- parameters
— variables local to a function
The solution bundles all these saved/restored
values into a single set to be pushed/popped.
The set of items is called an
activation record (AR) or stack frame.

Important detail:
A compiler cannot always know if there is
recursion in a program!
Consider separate compilation.
In file 1:
int a() {
z =Db();
}
In file 2:
int b () {
x = al();

}

Singly Linked List

. Linked list is made up of nodes.

. Each node points to the next node.

. The first node is called “head” of the linked list.

. The last node is called “tail” of the linked list.

head pointer
head node nod

2

A Linked List

9/16/15

Disadvantages of Arrays

. Size of an array is fixed.

. So, programmers allocate array that are large
enough to hold the maximum needed in any
run. (e.g. stack using arrays program earlier)

. Shifting elements to make space for new
elements at the front of an array is expensive

. Linked list can solve these issues.

Assume (for simplicity) that the item to go into
the listis an int.

Start with an empty list.

listadd (1) 1

listadd(2) 2...1
listadd (3) 3..2...1
listadd (4) 4..3...2...1

9/16/15

“Knowing” where the next item in the list is
is simple -- it is a pointer.

We need to associate each item in the list with
a pointer.

Set up a struct with 2 fields:
int
pointer to a struct
(often called a node)
After adding all 4 ints to the example list:

4 f. 3 f 2 f. 1
OROROR O S
struct node {
int theint;
struct node *next; SINGLY LINKED, BUT IN THE REVERSE ORDER
y (ADD TO €ND OR BACK OF THE LIST)
front
1 f. 2 f 3 f. 4
o — —

