CS354: Machine Organization and Programming

Lecture 6

Wednesday the September $16^{\text {th }} 2015$

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller
© Some diagrams and text in this lecture from CSAPP lectures by Bryant \& O'Hallaron

Class Announcements

1. How many of you attended the WACM tutorial and found it useful?
2. Assignment 1 released - due before 9AM on Sep 30 .

- You can find partners using Piazza too.
- Start Early! Much much harder than Assign 0!

3. Make sure you don't change your files to add very small changes like formatting, comments etc. after deadline. You get points deducted even if it is a small change.

Lecture Overview

1. Doubly Linked Lists
2. Data Representation (Unsigned, 2's complement)
3. Signed <-> Unsigned Conversions
4. Integer Arithmetic (Addition)

Example C Program on

 Singly Linked List
Deleting a node in a Singly Linked List without copying

Doubly Linked List

1. In order to delete a node in a singly linked list without copying values, a pointer to the previous node is also needed.
2. Doubly linked lists allow inserts and deletes in constant number of operations with only the node's address.
3. Doubly linked lists are easier to manipulate they allow fast and easy sequential access to the list in both directions.
struct node \{
int theint;
struct node *next;
struct node *previous;
\};

DOUBLY LINKED

For convenience, name this user-defined type:
typedef struct node \{
int theint;
struct node *next;
\} Node;

Now, declarations have less (keyboard) typing:

Node one, two, three;
Node *head;

Some code, to show pointers and such. . .

one.theint = 1;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL;
head
head = \&one;

Some code, to show pointers and such. . .

one.theint $=1$;
one. next $=$ \&two;
one.next->next $=$ \&three;
three.next $=$ NULL;
head
head $=$ \&one;

Some code, to show pointers and such. . .

one.theint = 1;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL;
head
head = \&one;

Some code, to show pointers and such. . .

one.theint $=1$;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL; head
head = \&one;

int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) \{ ptr->theint = value * 11; value++; ptr = ptr->next;
\}

Some code, to show pointers and such. . .

one.theint $=1$;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL; head
head = \&one;

int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) \{ ptr->theint = value * 11; value++; ptr = ptr->next;
\}

Some code, to show pointers and such. . .

one.theint $=1$;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL; head
head = \&one;

int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) \{ ptr->theint = value * 11; value++; ptr = ptr->next;
\}

Some code, to show pointers and such. . .

one.theint $=1$;
one.next = \&two;
one.next->next $=$ \&three;
three.next = NULL; head
head = \&one;

Why is this now incorrect?

With the correct code, what happens when this code is executed?

$$
\begin{aligned}
& \text { ptr }=\text { three.next; } \\
& \text { ptr }=\text { ptr->next; }
\end{aligned}
$$

Some code, to show pointers and such. . .

```
one.theint = 1;
one.next = &two;
one.next->next = &three;
three.next = NULL;
head
head = &one;
```


With the correct code, what happens when this code is executed?

Runtime error:

 NULL pointer dereference
In Linux:
 Segmentation
 fault
 (core dumped)

Example C Program on

 Doubly Linked List
Detailed Example C Program on Singly Linked List

Bits, Nibbles, Bytes, Words

1. Bits represented using "high \& low voltages", "magnetic domain oriented clockwise or anticlockwise" etc.
2. 4 Bits $==$ Nibble ; 8 Bits $==$ Byte ; 16/32/64 Bits $==$ Word (depending on architecture);
3. Group of bits collected together with some interpretation is more useful than individual bits.

Word size

1. It is the nomimal size of integers and pointer data
2. Determines the maximum size of virtual address space
3. w bit word can address a virtual memory of size $\left(2^{w}\right)$ ranging from 0 to $2^{w}-1$.
4. Modern computers have 64 bit words. (Theoretically: $2^{64}=16$ Exabytes.)

Byte encodings

- Byte $=8$ bits
- Binary 00000000_{2} to 11111111_{2}
- Decimal: 0_{10} to 255_{10}
- Hexadecimal 00_{16} to FF_{16}
- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
- Write FA1D37B16 in C as
- 0xFA1D37B
- 0xfa1d37b

$\lambda^{e^{t}}$		
$e^{i n}$ 0 0 0000 1 1 0001 2 2 0010 3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110 F 15 1111		

Byte Ordering/Endianness

1. Ordering of bytes within a word
2. Little endian - least significant byte comes first
3. Big endian - most significant byte comes first

Little-endian

Representations

1. Unsigned encodings - positive integers
2. Two's complement - signed integers
3. Floating point - real numbers
4. Because of limited number of bits to encode a number, some operations can "overflow" when results are too large.

Arithmetic Operations

> Arithmetic Operations
> addition
> subtraction
> multiplication
> division
> Each of these operations on the integer representations:
> unsigned
> two's complement

Addition

One bit of binary

 addition
a

Addition Truth Table

Carry In	a	b	Carry Out	Sum Bit
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Unsigned Representation

$B 2 \mathrm{U}_{\mathrm{w}}\left(x_{\text {vec }}\right)=\operatorname{Sum}_{\mathrm{i}=0->\mathrm{w}-1} \mathrm{x}_{\mathrm{i}} \cdot 2^{\mathrm{i}}$

B2 $_{4}([0101])=0.2^{3}+1.2^{2}+0.2^{1}+1.2^{0}=5$
$B 2 \mathrm{U}_{\mathrm{w}}$ is a bijection:

- associates a unique value to each bit vector of length w
- each integer between 0 and $2^{\mathrm{w}}-1$ has a unique binary representation as a bit vector of length w

Unsigned Addition

Of two unsigned w bit values X \& Y $X+Y$ equals:

- $\mathrm{X}+\mathrm{Y}$, if $(\mathrm{X}+\mathrm{Y})<2^{\mathrm{w}}$
$-\mathrm{X}+\mathrm{Y}-2^{\mathrm{w}}$, if $2^{\mathrm{w}}<=(\mathrm{X}+\mathrm{Y})<2^{\mathrm{w}+1}$

Addition

> Unsigned and 2's complement use the same addition algorithm
> Due to the fixed precision, throw away the carry out from the msb

$$
\begin{array}{r}
00010111 \\
+\quad 10010010
\end{array}
$$

Addition

> Unsigned and 2's complement use the same addition algorithm
> Due to the fixed precision, throw away the carry out from the msb

$$
\begin{array}{r}
00010111 \\
+\quad 10010010 \\
\hline 10101001
\end{array}
$$

Two's complement Representation

B2T $\mathrm{w}_{\mathrm{w}}\left(x_{\text {vec }}\right)=-\mathrm{x}_{\mathrm{w}-1} 2^{\mathrm{w}-1}+\operatorname{Sum}_{\mathrm{i}=0->\mathrm{w}-2} \mathrm{X}_{\mathrm{i}} \mathrm{2}^{\mathrm{i}}$

B2 $\mathrm{T}_{4}([1011])=-1.2^{3}+0.2^{2}+1.2^{1}+1.2^{0}=-5$
$B 2 \mathrm{~T}_{\mathrm{w}}$ is a bijection:

- associates a unique value to each bit vector of length w
- each integer between $-2^{\mathrm{w}-1}$ and $2^{\mathrm{w}-1}-1$ has a unique binary representation as a bit vector of length w

Range of Values for Unsigned and 2's Complement (16 bits)

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111	11111111
TMax	32767	$7 F ~ F F$	01111111	11111111
TMin	-32768	$80 \quad 00$	10000000	00000000
-1	-1	FF FF	11111111	11111111
0	0	$00 \quad 00$	00000000	00000000

\#include <limits.h> declares constants, e.g., ULONG_MAX, LONG_MAX, LONG_MIN (Values platform specific)

4-bit Unsigned and 2's complement Integers

X	$\mathrm{~B} 2 \mathrm{U}(X)$	$\mathrm{B} 2 \mathrm{~T}(X)$
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

