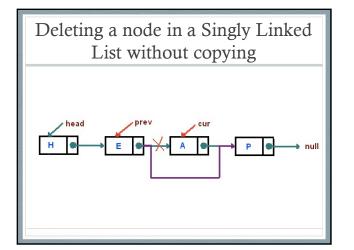
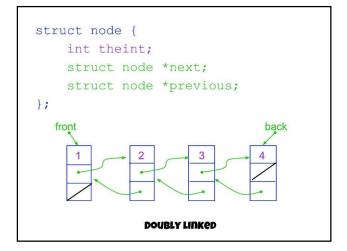
CS354: Machine Organization and Programming

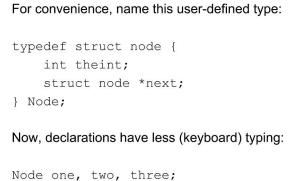
Lecture 6 Wednesday the September 16th 2015

Section 2 Instructor: Leo Arulraj © 2015 Karen Smoler Miller © Some diagrams and text in this lecture from CSAPP lectures by Bryant & O'Hallaron

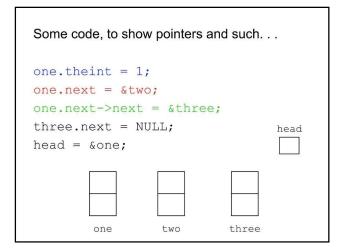

Class Announcements

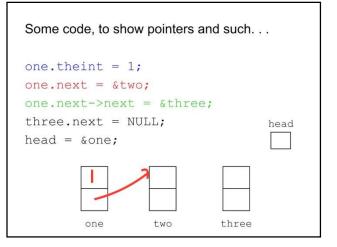
- 1. How many of you attended the WACM tutorial and found it useful ?
- 2. Assignment 1 released due before 9AM on Sep 30.
- You can find partners using Piazza too.
- Start Early! Much much harder than Assign 0!
- 3. Make sure you don't change your files to add very small changes like formatting, comments etc. after deadline. You get points deducted even if it is a small change.

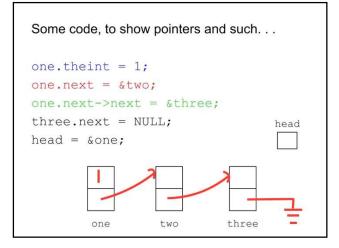

Lecture Overview


- 1. Doubly Linked Lists
- 2. Data Representation (Unsigned , 2's complement)
- 3. Signed <-> Unsigned Conversions
- 4. Integer Arithmetic (Addition)

Example C Program on Singly Linked List

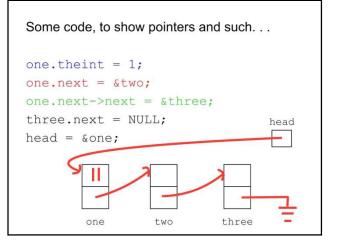


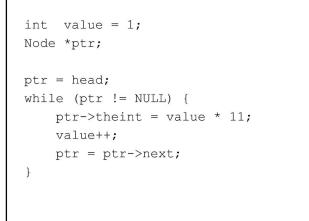


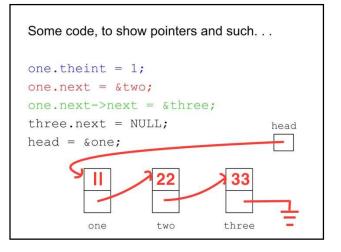


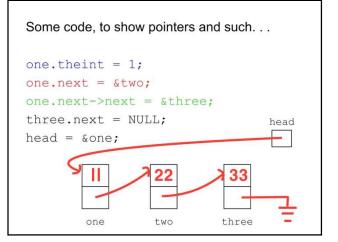


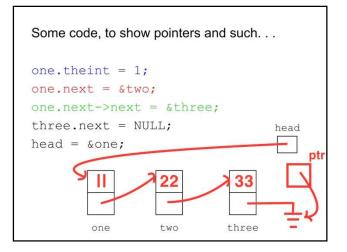
Node *head;

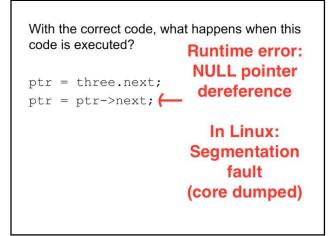




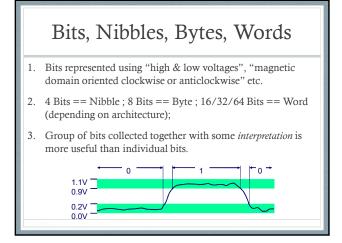



```
int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) {
    ptr->theint = value * 11;
    value++;
    ptr = ptr->next;
}
```

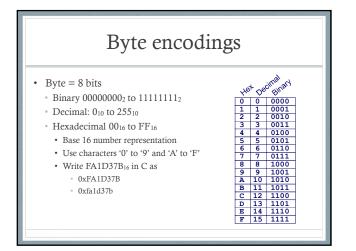


```
int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) {
    ptr->theint = value * 11;
    value++;
    ptr = ptr->next;
}
```

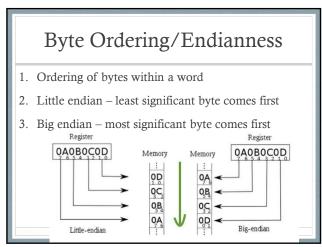



```
int value = 1;
Node *ptr;
ptr = head;
while (ptr != NULL) {
    ptr->theint = value * 11;
    value++;
    ptr = ptr.next;
}
Why is this now incorrect?
```

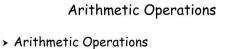

With the correct code, what happens when this code is executed?

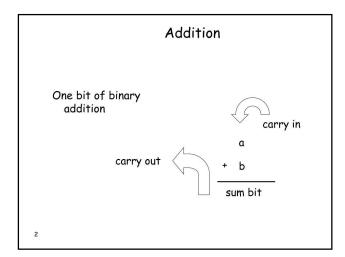
ptr = three.next; ptr = ptr->next;




Example C Program on Doubly Linked List Detailed Example C Program on Singly Linked List

Word size


- 1. It is the nomimal size of integers and pointer data
- 2. Determines the maximum size of virtual address space
- 3. *w* bit word can address a virtual memory of size (2^w) ranging from 0 to 2^w-1.
- Modern computers have 64 bit words. (Theoretically: 2⁶⁴ = 16 Exabytes.)



Representations

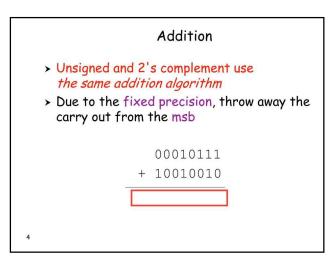
- 1. Unsigned encodings positive integers
- 2. Two's complement signed integers
- 3. Floating point real numbers
- 4. Because of limited number of bits to encode a number, some operations can "overflow" when results are too large.

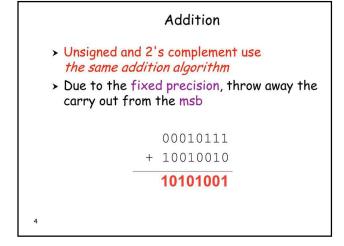
- ➤ addition
- > subtraction
- > multiplication
- > division
- > Each of these operations on the integer representations:
 - > unsigned
 - > two's complement

Addition Truth Table						
Carry In	۵	b	Carry Out	Sum Bit		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1		

Unsigned Representation

 $B2U_w(x_{vec}) = Sum_{i=0->w-1} x_i . 2^i$


 $B2U_4([0101]) = 0.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = 5$


B2U_w is a bijection: - associates a unique value to each bit vector of length w - each integer between **0 and 2^w-1** has a unique binary representation as a bit vector of length w

Unsigned Addition

Of two unsigned w bit values X & Y

- X + Y equals:
- X+Y, if $(X+Y) < 2^{w}$
- X+Y-2^w, if $2^{w} \le (X+Y) \le 2^{w+1}$

Two's complement Representation $B2T_w(x_{vec}) = -x_{w-1}2^{w-1} + Sum_{i=0->w-2} x_i 2^i$ $B2T_4([1011]) = -1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = -5$ $B2T_w \text{ is a bijection:} - associates a unique value to each bit vector of length w - each integer between -2^{w-1} and 2^{w-1}-1 has a unique binary representation as a bit vector of$

length w

Range of Values for Unsigned and 2's Complement (16 bits)

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	1000000 0000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	0000000 00000000	

#include <limits.h> declares constants, e.g., ULONG_MAX, LONG_MAX, LONG_MIN (Values platform specific)

4-bit Unsigned and 2's complement						
Integers						
	X	B2U(X)	B2T(X)			
	0000	0	0			
	0001	1	1			
	0010	2	2			
	0011	3	3			
	0100	4	4			
	0101	5	5			
	0110	6	6			
	0111	7	7			
	1000	8	-8			
	1001	9	-7			
	1010	10	-6			
	1011	11	-5			
	1100	12	-4			
	1101	13	-3			
	1110	14	-2			
	1111	15	-1			