CS354: Machine

Organization and

 Programming Lecture 7Friday the September $18^{\text {th }} 2015$

Section 2

Instructor: Leo Arulraj
© 2015 Karen Smoler Miller

Class Announcements

1. Questions about Assignment 1?
2. Come meet us at office hours for hands-on help. <2 students show up every hours now.
3. Start Early! Assign 1 is much much harder than Assign 0!
4. Hands-on overview of File I/O and related C Programming aspects relevant to P1 during lecture?

Lecture Overview

1. Integer Arithmetic (Addition,

Subtraction, Multiplication, Division, Sign Extension, Logical Operations)
2. Data Representation (Floating Point)

Unsigned Representation

$\mathrm{B} 2 \mathrm{U}_{\mathrm{w}}\left(x_{\text {vec }}\right)=\operatorname{Sum}_{\mathrm{i}=0->\mathrm{w}-1} \mathrm{x}_{\mathrm{i}} \cdot 2^{\mathrm{i}}$

B2 $_{4}([0101])=0.2^{3}+1.2^{2}+0.2^{1}+1.2^{0}=5$
$B 2 \mathrm{U}_{\mathrm{w}}$ is a bijection:

- associates a unique value to each bit vector of length w
- each integer between 0 and $2^{\mathrm{w}}-1$ has a unique binary representation as a bit vector of length w

Two's complement Representation

B2T $\mathrm{w}_{\mathrm{w}}\left(x_{\text {vec }}\right)=-\mathrm{x}_{\mathrm{w}-1} 2^{\mathrm{w}-1}+\operatorname{Sum}_{\mathrm{i}=0->\mathrm{w}-2} \mathrm{X}_{\mathrm{i}} \mathrm{2}^{\mathrm{i}}$

B2 $\mathrm{T}_{4}([1011])=-1.2^{3}+0.2^{2}+1.2^{1}+1.2^{0}=-5$
$B 2 \mathrm{~T}_{\mathrm{w}}$ is a bijection:

- associates a unique value to each bit vector of length w
- each integer between $-2^{\mathrm{w}-1}$ and $2^{\mathrm{w}-1}-1$ has a unique binary representation as a bit vector of length w

Conversion from 2's complement to unsigned

Rule: The numeric values might change but the bit patterns do not.
$T 2 \mathrm{U}_{\mathrm{w}}(\mathrm{x})$ equals:
$x+2^{w}$, if $x<0$
x, if $x>=0$

2's Complement Addition

Of two signed 2'complement w bit values X \& Y
$X+Y$ equals:

- $\mathrm{X}+\mathrm{Y}-2^{\mathrm{w}}$, if $2^{\mathrm{w}-1}<=(\mathrm{X}+\mathrm{Y})$ Positive overflow
- $\mathrm{X}+\mathrm{Y}$, if $-2^{\mathrm{w}-1}<=(\mathrm{X}+\mathrm{Y})<2^{\mathrm{w}-1}$ Normal
- $\mathrm{X}+\mathrm{Y}+2^{\mathrm{w}}$, if $(\mathrm{X}+\mathrm{Y})<-2^{\mathrm{w}-1}$ Negative overflow

Two's Complement Addition

Two's Complement Addition

$$
\begin{array}{rrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & (-2) \\
+ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & (-1)
\end{array}
$$

$$
\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & (-16)
\end{array}
$$

$$
\begin{array}{rccccccccc}
+ & 0 & 1 & 1 & 0 & 0 & 0 & 0 & (48) \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & (32)
\end{array}
$$

Overflow

The condition in which the result of an arithmetic operation cannot fit into the fixed number of bits available.
For example:
+8 cannot fit into a 3-bit, unsigned representation. It needs 4 bits: 1000

Overflow Detection

> Most architectures have hardware that detects when overflow has occurred (for arithmetic operations).
> The detection algorithms are simple.

Unsigned Overflow Detection

6-bit examples:

$$
\begin{array}{r}
001111 \\
+001111 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
100000 \\
+100000 \\
\hline
\end{array}
$$

Carry out from msbs is overflow in unsigned

Unsigned Overflow Detection

6-bit examples:

Carry out from msbs is overflow in unsigned

Two's Complement Overflow Detection

When adding 2 numbers of like sign

+ to +
- to -
and the sign of the result is different!

Addition

Overflow detection: 2's complement 6-bit examples

$$
\begin{aligned}
& 111111 \text { () } 100000 \text { () } \\
& \text { + } 111111 \text { () + } 011111 \text { () } \\
& \text { () } \\
& 011111 \text { () } \\
& \text { + } 011111 \text { () } \\
& \text { () }
\end{aligned}
$$

Addition

Overflow detection: 2's complement 6-bit examples

$$
\begin{gathered}
111111(-1) \\
+111111(-1) \\
\hline 111110(-2) \\
\frac{011111}{(31)} \begin{array}{c}
(-32) \\
+0111111 \\
\hline 11110
\end{array}(-2)
\end{gathered}
$$

Subtraction

 basic algorithm is like decimal...$$
\begin{aligned}
& 0-0=0 \\
& 1-0=1 \\
& 1-1=0 \\
& 0-1=? \text { BORROW! }
\end{aligned}
$$

$$
\begin{array}{r}
111000 \\
-\quad 010110
\end{array}
$$

Subtraction

 basic algorithm is like decimal...$$
\begin{array}{cc}
0-0=0 \\
1-0=1 \\
1-1=0 & \\
0-1=? ~ B O R R O W W_{\text {Two's }} \\
\text { Unsigned } & \text { complement } \\
11100056 & -8 \\
-01011022 & 22 \\
\hline 10001034 & -30
\end{array}
$$

Subtraction

For two's complement representation
> The implementation redefines the operation:

$$
\mathrm{a}-\mathrm{b} \text { becomes } \mathrm{a}+(-\mathrm{b})
$$

> This is a 2-step algorithm:

1. "take the two's complement of b" (common phrasing for: find the additive inverse of b)
2. do addition

2's Complement Inverse

Additive inverse of a 2'complement w bit value X equals:
$-2^{\mathrm{w}-1}$, if $\mathrm{x}=-2^{\mathrm{w}-1}$
$-X$, if $X>-2^{w-1}$

2's Complement Inverse: Easy Techniques

1) Toggle all bits and then add 1 :
E.g. Inverse of 0101 (5) is 1011 (-5)

Inverse of $1000(-8)$ is $1000(-8)$
2) Toggle all bits until (not including) the rightmost 1 bit:
E.g. Inverse of 0111 (7) is 1001 (-7)

Inverse of 1010 (-6) is 0110 (6)

Subtraction

6-bit, 2's complement examples

$$
\begin{array}{r}
001111() \\
-111100()
\end{array}
$$

$$
000010 \text { () }
$$

$$
\text { - } 011100 \text { () }
$$

Subtraction

6-bit, 2's complement examples

$$
\begin{array}{rrr}
001111 & (15) \\
-111100 & (-4)
\end{array} \begin{array}{r}
001111 \\
+000100 \\
\hline 010 \\
\hline 010011 \\
\hline 19
\end{array}
$$

$$
\begin{array}{r}
000010() \\
-011100()
\end{array}
$$

Subtraction

6-bit, 2's complement examples

001111	(15)	001111
-111100	(-4)	+000100
	4	
010011	19	

Multiplication

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

> Same algorithm as decimal...
> There is a precision problem
n bits
$\frac{*}{n+n \text { bits }}$

In HW, space is always designated for a larger precision product.

32 bits
* $\quad 32$ bits
64 bits

Unsigned Multiplication

	01111
\star	01101

Unsigned Multiplication

128+64+2+1 195
 000113

Unsigned Multiplication

	11111
$*$	11111

Unsigned Multiplication

	11111	31
*	11111	31
	111111	
	11111 11111	
	1111000001	961
	$512+256+128+64+1=961$	
	00001	1

Two's Complement

Slightly trickier: must sign extend the partial products (sometimes!)

OR
Sign extend multiplier and multiplicand to full width of product

And, use only exact number of Isbs of product

Multiplication

Unsigned Division

$11 \quad 11001$
 25/3

Unsigned Division

$11 \begin{gathered}1000(8) \\ \begin{array}{c}11001 \\ \left.\frac{11}{0}\right|_{0} \|_{01}\end{array} \quad 25 / 3\end{gathered}$

Sign Extension

The operation that allows the same 2's complement value to be represented, but using more bits.

$$
\begin{aligned}
& 00101 \text { (5 bits) } \\
& 00101 \text { (8 bits) } \\
& 1110(4 \text { bits) } \\
& \text { _ _ _ _ } 1110 \text { (} 8 \text { bits) }
\end{aligned}
$$

Sign Extension

The operation that allows the same 2's complement value to be represented, but using more bits.

$$
\begin{array}{llllllllll}
& & & 0 & 0 & 1 & 0 & 1 & (5 & \text { bits }) \\
\mathbf{0} & \mathbf{0} & \underline{0} & 0 & 0 & 1 & 0 & 1 & (8 & \text { bits }) \\
& & & & & & & & & \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & (4) \\
\hline
\end{array}
$$

Zero Extension

The same type of thing as sign extension, but used to represent the same unsigned value, but using more bits

$$
\begin{aligned}
& 00101 \text { (5 bits) } \\
& 00101 \text { (8 bits) } \\
& 1111 \text { (4 bits) } \\
& \text { _ _ _ _ } 1111 \text { (8 bits) }
\end{aligned}
$$

Zero Extension

The same type of thing as sign extension, but used to represent the same unsigned value, but using more bits

$$
\begin{aligned}
& 00101 \text { (5 bits) } \\
& \underline{0} \underline{0} \underline{0} 001101 \text { (} 8 \text { bits) } \\
& 1111 \text { (4 bits) } \\
& \underline{0} \underline{0} 0 \underline{0} 11111 \text { (} 8 \text { bits) }
\end{aligned}
$$

Truth Table for a Few Logical Operations

\mathbf{X}	\mathbf{y}	\mathbf{X} and \mathbf{Y}	\mathbf{X} nand \mathbf{Y}	X or \mathbf{Y}	X xor \mathbf{Y}
0	0	0	1	0	0
0	1	0	1	1	1
1	0	0	1	1	1
1	1	1	0	1	0

Logical Operations

Logical operations are done bitwise on every computer
Invented example:
Assume that X, Y, and Z are 8-bit variables

```
and \(Z, X, Y\)
```

If
X is $00 \begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1\end{array} 1$
Y is $0 \begin{array}{lllllll} & 0 & 1 & 0 & 1 & 0 & 1\end{array}$
then
z is

To selectively clear bit(s)

> clear a bit means make it a 0
> First, make a mask:
(the generic description of a set of bits that do whatever you want them to)
> Within the mask,
> 1's for unchanged bits
> 0's for cleared bits
To clear bits numbered 0,1 , and 6 of variable X
mask 1 . . 10111100
and use the instruction
and result, X, mask

To selectively set bit(s)

> set a bit means make it a 1
> First, make a mask:
> 0's for unchanged bits
> 1's for set bits
To set bits numbered 2,3, and 4 of variable X
mask 0 . . 00011100
and use the instruction
or result, X, mask

Shift

Moving bits around

1) arithmetic shift
2) logical shift \dagger
3) rotate

Bits can move right or left

Arithmetic Shift

Right

Left

Logical Shift

Right

Left

Logical left is the same as arithmetic left.

Rotate

Right

Left

No bits lost, just moved
> Assume a set of 4 chars. are in an integersized variable (X).
> Assume an instruction exists to print out the character all the way to the right...

$$
X \left\lvert\, \begin{array}{|l|l|}
\hline A^{\prime} & B^{\prime} \\
\hline & C^{\prime} \\
\hline
\end{array}{ }^{\prime} D^{\prime}\right.
$$

$$
\text { putc } x \quad \text { (prints } D \text {) }
$$

> Invent instructions, and write code to print $A B C D$, without changing X.

