CS354: Machine

Organization and

Programming
Lecture 7

Friday the September 18™ 2015

Section 2

Instructor: Leo Arulra;
© 2015 Karen Smoler Miller

Class Announcements

1. Questions about Assignment 17?

2. Come meet us at office hours for hands-on
help. <2 students show up every hours now.

3. Start Early! Assign 1 1s much much harder
than Assign 0!

4. Hands-on overview of File I/0 and related C
Programming aspects relevant to P1 during
lecture?

Lecture Overview

1. Integer Arithmetic (Addition,
Subtraction, Multiplication, Division,
Sign Extension, Logical Operations)

2. Data Representation (Floating Point)

Unsigned Representation

B2U (x,,.) = Sum._q .. X;.2!

ec 1

B2U,([0101]) = 0.23 + 1.22+ 0.21 + 1.20 = 5

B2U,, 1s a byjection:

- associates a unique value to each bit vector
of length w

- each 1integer between 0 and 2V-1 has a
unique binary representation as a bit vector of
length w

Two’s complement Representation

B2T (x,,.) = -x, 2" + Sum._,., , x.2!

vec

B2T,([1011]) =-1.23+0.22+ 1.21 + 1.20 = -5

B2T,, 1s a bjjection:

- associates a unique value to each bit vector
of length w

- each integer between -2%-1 and 2%-1-1 has a
unique binary representation as a bit vector of
length w

Conversion from 2’s complement to
unsigned

Rule: The numeric values might
change but the bit patterns do not.

T2U_ (x) equals:
x+2V, 1f x <0

x, 1f x>=0

2’s Complement Addition

Of two signed 2’complement w bit values X &
Y

X + Y equals:

- X+Y-2V if 21 <= (X+Y) Positive overflow

- X+4Y, if 2% <= (X+Y) < 2%! Normal

- X+Y+2%, if (X+Y) < -2%! Negative overflow

Two's Complement Addition

Two's Complement Addition

(-2)
(1)
(=1)

O 0 0 0 0 0 O 1

-+

1111 1 1 1 1

(-16)
(48)

O 0 0 O
O 0 0 O

1

1

1
1

0 O
0 01 00000

(32)

Overflow

The condition in which the result of an
arithmetic operation cannot fit into the
fixed number of bits available.

For example:

+8 cannot fit into a 3-bit, unsigned
representation. It needs 4 bits: 1000

Overflow Detection

» Most architectures have hardware that
detects when overflow has occurred (for
arithmetic operations).

» The detection algorithms are simple.

Unsigned Overflow Detection
6-bit examples:

Q01111 111111
+001111 +000001
100000 Carry out from

msbs is overflow
+100000 in unsigned

Unsigned Overflow Detection
6-bit examples:

O01111 111111
+001111 +000001
/011110 /‘OOOOOO
0 No Overflow Overflow!

100000
+1 00000
/‘OOOOOO

Overflow!

Carry out from msbs is overflow in unsigned

10

Two's Complement Overflow Detection

When adding 2 numbers of like sign
+ 1o +
-to -
and the sign of the result is different!

4= o

= -

+ +

- +

Overflow! Overflow!

11

Addition

Overflow detection: 2's complement

6-bit examples

111111 () 100000
+ 111111 () + 011111
()
011111 ()

+ 011111 ()
()

(
(
(

)
)
)

11

Addition

Overflow detection: 2's complement

6-bit examples

111111 (1) 100000 (32
+ 111111 (1) + 011111 (31)
111110 (2) 111111 1)

011111 (31)
+ 011111 (31)

111110 (-2)

12

Subtraction

basic algorithm is like decimal...

0-0=0

111000
= Q1OLLE

12

Subtraction
basic algorithm is like decimal...

0-0=0

V O

1 -
]1 -
0 -

— = 0O

Unsigned
111000 56

- 010110 22
100010 34

> BORROW!
WO'S

complement
-8
22
-30

13

Subtraction

For two's complement representation
» The implementation redefines the
operation:
a — b becomesa + (-b)
» This is a 2-step algorithm:
1. "take the two's complement of b"

(common phrasing for: find the additive
inverse of b)

2. do addition

2’s Complement Inverse

Additive inverse of a 2’complement w bit value
X equals:

2w gf x = 2w

X, if X > 2wl

2’s Complement Inverse: Easy
Techniques

1) Toggle all bits and then add 1:
E.g. Inverse of 0101 (5) 1s 1011 (-5)
Inverse of 1000 (-8) 1s 1000 (-8)

2) Toggle all bits until (not including) the
rightmost 1 bit:

E.g. Inverse of 0111 (7) 1s 1001 (-7)
Inverse of 1010 (-6) 1s 0110 (6)

14

Subtraction

6-bit, 2's complement examples

001111 ()
- 111100 ()

000010 ()
- 011100 ()

Subtraction

6-bit, 2's complement examples

001111 (15) 001111 15
- 111100 (-4) +000100 4

010011 19 010011 19

000010

)
- 011100 ()

14

Subtraction

6-bit, 2's complement examples

001111 (5 po1111 15
- 111100 (-4) +000100 4

010011 19 010011 19

000010 (2) 000010 2

011100 (28) +100100 -28
100110 -26

14

16

Multiplication

» Same algorithm as decimal...

» There is a precision problem
n bits
* n bits
n+n bits may be needed

17

In HW, space is always desighated for a
larger precision product.

32 bits
* 32 bits
64 bits

18

Unsigned Multiplication

01111
* 01101

18

Unsigned Multiplication

01111 15
01101 13
01111
0
01111
01111

Lol

11000011

128+64+2+1 195
00011 3

19

Unsigned Multiplication

11111
* (i 1 e

19

Unsigned Multiplication

11111 31
* 11111 31

11111
11111

11111

11111
11111|

1111000001 961
512+256+128+64+1 = 961
00001 1

20

Two's Complement

Slightly trickier: must sign extend the partial
products (sometimes!)

21

OR

Sign extend multiplier and multiplicand
to full width of product

product

And, use only exact number of Isbs of
proauct

22

OK

Multiplication

- + _
b 4 + X - W
signh ext, @
partial | reverse | [dditi
tive
duct addi }
FAes inverses

inverses

[find additive] @
+

x +

OK

23

11

Unsigned Division

11001

25/ 3

23

11

Unsigned Division

1000 (8)

11001

aay)

0001

25/ 3

Sign Extension

The operation that allows the same 2's
complement value to be represented,
but using more bits.

1 & 1 (8 bits)
(8 bits)

= ©
O O
L
o
|

1 1 0 (4 bits)
(8 bits)

T
—
—
O

Sign Extension

The operation that allows the same 2's
complement value to be represented,
but using more bits.

0 01 01 (5 bits)
0 0000101 (8 bits)

1110 (4 bits)
11111110 (8 bits)

Zero Extension

The same type of thing as sign extension,
but used to represent the same unsigned
value, but using more bits

0 1 (5 bits)
(6 bits)

=i
O O
=
-
P

(4 bits)
1 1 (8 bits)

=
=
L
A

Zero Extension

The same type of thing as sign extension,
but used to represent the same unsigned
value, but using more bits

0 01 01 (5 bits)
00 000101 (8 bits)

1 1 1 1 (4 bits)
0 0001111 (8 bits)

Truth Table for a Few Logical
Operations

Xand Y Xnand Y| X or Y | X xor Y

== OO X

Y
0 0 1
1
0
1

0
0 1 1
0 1 1
1 0 1

Logical Operations

Logical operations are done bitwise on every
computer

Invented example:
Assume that X, Y, and 7z are 8-bit variables
and Z2, X, Y
If
X1s 00001111
YIS 01010101
then
AT

28

To selectively clear bit(s)
» clear a bit means make it a 0

» First, make a mask:

(the generic description of a set of bits that do
whatever you want them to)

» Within the mask,
» 1's for unchanged bits
» 0's for cleared bits

To clear bits numbered 0,1, and 6 of variable x
mask 1 . . 1 01 1 1 1 00
and use the instruction

and result, X, mask

29

To selectively set bit(s)
» set a bit means make it a 1

» First, make a mask:
» 0's for unchanged bits
» 1's for set bits

To set bits numbered 2,3, and 4 of variable x
mask O . . 0 0 0 1 1 1 O O

and use the instruction
or result, X, mask

30

Shift

Moving bits around

1) arithmetic shift
2) logical shift
3) rotate

Bits can move right or left

31

Arithmetic Shift

T AW

sign extension!

Left

LI

0

7

ks i
-.\\ﬁ::__..__ o

i

i & 1

o 5/ |
i :

Logical Shift

ST
Y

0

Logical left is the same as arithmetic left.

Right

Left

32

TTTTTT

Right

» Assume a set of 4 chars. are in an integer-
sized variable (X).

» Assume an instruction exists to print out
the character all the way to the right...

X J'Af IBI ICI ID!

putc X (prints D)

» Invent instructions, and write code to print
ABCD, without changing X.

