CS354: Machine

Organization and

Programming
Lecture 8

Monday the September 21% 2015

Section 2

Instructor: Leo Arulraj

© 2015 Karen Smoler Miller

© Some diagrams and text in this lecture from CSAPP lectures by Bryant &
O’Hallaron

Class Announcements

. Urmish’s office hours from 9-10 AM was
cancelled. Alternated office hours details soon.

. If you need alternate Midterm 1 email me with
your name and the reason.

. Questions about Prog.Assign. 17

. Details about hands-on intro to C Program.
relevant to Prog.Assign. 1 soon.

Lecture Overview

IEEE Floating Point

ISA history and 1ntro
Assembly Intro, Disassembly
IA32 Registers

IA32 Operand forms

IA32 Data Movement Instructions

» Assume a set of 4 chars. are in an integer-
sized variable (X).

» Assume an instruction exists to print out
the character all the way to the right...

X J'Af IBI ICI ID!

putc X (prints D)

» Invent instructions, and write code to print
ABCD, without changing X.

35

BEOL.L
o1 bt !
rotl
pute
rotl
BUuLe
yeig & o
putc

XXX X X X X X

.y

~

.y

~

Karen's solution

bits
A
bits
B
bits
C
bilEs
D

Floating Point (Won’t be on exam)

1. Fractional Binary Notation
2m
2m—1

4
2

|
* by by by.b,b,by b, b,
12 —
1/4
1/8

1/271
1/2"

IEEE Floating Point (Won't be on
exam)

* Limitations with binary Notation:

* Can only exactly represent numbers of the form
x/ 2K

» Just one setting of binary point within the w bits

 [EEE Standard 754

» Established 1in 1985 as uniform standard for
floating point arithmetic

* Nice standards for rounding, overflow,
underflow

IEEE Floating Point (Won't be on
exam)

* Numerical Form:
(-1)y*M 2F
* § is sign bit : negative or positive
* Significand M normally a fractional value in range [0.0,2.0).
- Exponent E weights value by power of two

* Encoding
* MSB s is sign bit s
» exp field encodes E (but is not equal to E)
» frac field encodes M (but is not equal to M)

exp frac

IEEE Floating Point (Won't be on
exam)

1. Normalized values: Exp neither all zeroes nor all
ones)
E = Exp—Biasand M =1+ f

2. Denormalized values: Exp 1s all zeroes
E=1-Biasand M = f

3. Special values: Exp is all ones : Inf, NalN
(Bias is 2<!-1 , E.g. for k=4 bit exp field, Bias = 7),

| —Normahzed ~Denorm +Den0rm| +Normalized I

I I _0/ |}O I I

IEEE Floating Point (Won't be on
exam)

* Single precision: 32 bits

s |exp frac

1 8-bits

* Double precision: 64 bits

s |exp frac

1 11-bits 52-bits

* Extended precision: 80 bits (Intel only)

s |exp frac

1 15-bits 63 or 64-bits

IEEE Floating Point (Won't be on

exam)

Zero 0 000 0 0
Smallest positive 001 1/8 1/512
2/8 2/512
3/8 3/512
6/8 &/512
7/8 | 7/512

0 8/512
1/8 9/512
6/8 14/16
7/8 15/16
1/8
2/8

6/8
7/8

m

Largest denorm.

Smallest norm.

B = = T T e T S~ T~ N T~ Y~ T - — T -
el W N e D000 OO
T RS TR TR SR S Sl A A R N o T

Focus: x86 architecture

1960s: CISC
System/360(IBM),B5000(Burroughs), Motorola 68000

1970s: Large Scale Integration
8008,8080,8086 (Intel), PDP-11,VAX(DEC)

1980s: RISC, Instruction Level Parallelism, Pipelining
80286, 80386,80486(Intel), Motorola 68020

1990s - today: Multi-threading , Multi-Core, Open source
Processors

Pentium, Pentrum Pro, Intel Core(Intel), Athlon
series(AMD)

Moore's Law

Process Technology (pm)

10 1 0.1
445nm

10,000 000,000
1,000,000, 00
100,000,000
10,000,000
1,000,000

100,000
10,000
1,000
100

10
1

NMumber of Transistors
per Integrated Circuit

1940 1960 1970 15980 1950 2000 2010

Year

entire architecture on 1 slide:

32- bit architecture
2-address instruction set
CISC (not RISC, load/store)

8 registers (depending on how we count)

Uses condition codes for control instructions

Assembly Programmer’s view

* Programmer-Visible State * Memory

* PC: Program counter * Byte addressable array

» Address of next instruction * Code, user data, heap,

» Called “EIP” (IA32) or “RIP” (some) OS data
(x86-64) * Includes stack used to

- Register file support procedures

* Heavily used program data

» Condition codes

 Store status information about
most recent arithmetic operation

 Used for conditional branching

Assembly Language

 Why learn assembly ?
» Preferred for low level tasks: boot loaders, system calls

* Less overhead than with HLL code

 Helpful while debugging

» Can access some new features of processor only through
assembly until compilers add support.

* One of the oldest tools in Programmers toolbox

 We will use the ATT syntax and not the Intel syntax.

Consider:
Intel: mov eax,1; mov ebx,0fth ; int 80h

AT&T: movl $1,%eax; movl $0xff,%ebx; int $0x80

Characteristics of Assembly
Programs: Data Types

. Integer data of 1,2,or 4 bytes (data
values, addresses)

. Floating point data of 4,8,or 10 bytes

. No aggregate types such as arrays or
structures (Just contiguously allocated
bytes in memory)

Characteristics of Assembly
Programs: Operations

1. Arithmetic operations on memory or
registers

2. Transfer data between memory and
registers: LL.oad and Store

3. Transfer control: Unconditional jumps,
Conditional branches

Example Assembly Program

Anclude "defines.h*
.data
hw:
.string "hello world\n*
text
.globl main
main:
movl $SYS_write,%eax
movl $1,%ebx
movl $hw,%ecx
movl $12,%edx
int $0x80
movl $SYS_exit,%eax
xorl %ebx,%ebx
int $0x80
ret

Generating Assembly Code from C

Example C Program and its assembly

Hinclude <stdio.h>
inta = 10,b =20;
int main(){
Intt = a;
a =b;
b =t;
printf("%d %d\n",a,b);
return O;

j

Disassembly of Executables

1. objdump —S
2. gdb and then disassembly command

3. Compile with —g for source code info:
man gcc says :

-g Produce debuggling i1nformation in the
operating system's native format

(stabs, COFF, XCOFF, or DWARFEF 2).

GDB can work with this debugging information.

Registers
31

Y%eax

%%oecx

Y%oedx

Yoebx

“double word”

4 More Registers
31

%esi

Y%edi

%esp

Y%ebp

Registers

1. %esp, %ebp : stack pointer, base pointer

2. %eip : 1instruction pointer
3. x86-64 : %rax, %rbx etc. (64 bits)

What to do when there are not enough
registers?

Answer: Store temporarily in memory.

On to the instruction set. Our coverage will be
of a small subset.

Classify instructions:
data movement
arithmetic

logical (and shift)
control

Operands

Syntax

Addressing mode
name

Effect

S Tman

immediate

value in machine code

3R

register

value in register r

abhsolute

address given by Imm

register direct
(incorrect in textbook)

address in 3R

hase displacement

address is
Tmm + %R

Imm(Eb,Ei)
(:Eiss)

Imm(,E,;,S)
(Eb!Ei!S)
Imm(Eb,Ei ,S)

MIR[E,] + R[E;]]

M[Imm + R[E,] + R[E;]]
MIR[E,] - s]

M[Imm + R[E;] - 5]
MIR[E,] + RIE;] - 5]
M[Imm + R[E,] + R[E;] - 5]

Indexed
Indexed
Scaled indexed
Scaled indexed
Scaled indexed
Scaled indexed

Address

Value

0x100
0x104
0x108
0x10C

OxFF
OxAB
0x13
Ox11

Operand

Jheax

0x104

$0x108

(%eax)

4 (Yeax)

9 (%eax, hedx)
260 (%ecx, fedx)
0xFC(,%ecx,4)
(%eax,%edx,4)

Operand Value Comment

heax 0x100 Register

0x104 OxAB Absolute address
$0x108 0x108 Immediate
(heax) O0xFF Address 0x100

4 (Yeax) OxAB Address 0x104

9 (%eax, fedx) Ox11 Address 0x10C
260 (%ecx, %edx) 0x13 Address 0x108
OxFC(,%ecx,4) OxFF Address 0x100
(%eax,%edx,4) Ox11 Address 0x10C

Data Movement Instructions

nondestructive copy of Sto D

movasbhw
movskl
movswl

sign-extended, nondestructive copy of S to D
byte to word

byte to double word

word to double word

movebhw
movzbhl
mMovawW |

zero-extended, nondestructive copy of S to D
byte to word

byte to double word

word to double word

pushl

push double word S onto the stack

popl

pop double word off the stack into D

F1ive possible combination of
Source and Destination Types

movl $0x4050,%eax

Immediate--Register, 4 bytes

movw %bp,%sp

Register--Register, 2 bytes

movb (%ed1,%ecx),%ah

Memory--Register, 1 byte

movb $-17,(%esp)

Immediate--Memory, 1 byte

movl %eax,-12(%ebp)

Register--Memory, 4 bytes

