
CS354: Machine
Organization and

Programming
Lecture 8Monday the September 21th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some diagrams and text in this lecture from CSAPP lectures by Bryant & O’Hallaron

Class Announcements
1. Urmish’s office hours from 9-10 AM was

cancelled. Alternated office hours details soon.
2. If you need alternate Midterm 1 email me with

your name and the reason.
3. Questions about Prog.Assign. 1?
4. Details about hands-on intro to C Program.

relevant to Prog.Assign. 1 soon.

Lecture Overview
• IEEE Floating Point
• ISA history and intro
• Assembly Intro, Disassembly
• IA32 Registers
• IA32 Operand forms
• IA32 Data Movement Instructions

Floating Point (Won’t be on exam)
1. Fractional Binary Notation

• • •bm bm–1 b2 b1 b0 b–1 b–2 b–3 b–n+1• • • .
1
2
4
2m–1
2m

• • •

• • •1/2
1/4
1/8

1/2n–1

b–n

1/2n

IEEE Floating Point (Won’t be on
exam)

• Limitations with binary Notation:
• Can only exactly represent numbers of the form

x/2k
• Just one setting of binary point within the w bits

• IEEE Standard 754
• Established in 1985 as uniform standard for

floating point arithmetic
• Nice standards for rounding, overflow,

underflow

IEEE Floating Point (Won’t be on
exam)

• Numerical Form: (–1)s M 2E
• S is sign bit : negative or positive
• Significand M normally a fractional value in range [0.0,2.0).
• Exponent E weights value by power of two

• Encoding
• MSB s is sign bit s
• exp field encodes E (but is not equal to E)
• frac field encodes M (but is not equal to M)

s exp frac

IEEE Floating Point (Won’t be on
exam)

1. Normalized values: Exp neither all zeroes nor all
ones)E = Exp – Bias and M = 1 + f

2. Denormalized values: Exp is all zeroesE = 1 – Bias and M = f
3. Special values: Exp is all ones : Inf, NaN
(Bias is 2k-1-1 , E.g. for k=4 bit exp field, Bias = 7) +−

0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

IEEE Floating Point (Won’t be on
exam)

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac
1 8-bits 23-bits

s exp frac
1 11-bits 52-bits

s exp frac
1 15-bits 63 or 64-bits

IEEE Floating Point (Won’t be on
exam)

Focus: x86 architecture
• 1960s: CISCSystem/360(IBM),B5000(Burroughs), Motorola 68000
• 1970s: Large Scale Integration8008,8080,8086 (Intel), PDP-11,VAX(DEC)
• 1980s: RISC, Instruction Level Parallelism, Pipelining80286, 80386,80486(Intel), Motorola 68020
• 1990s - today: Multi-threading , Multi-Core, Open source processorsPentium, Pentium Pro, Intel Core(Intel), Athlon series(AMD)

Assembly Programmer’s view
• Programmer-Visible State

• PC: Program counter
• Address of next instruction
• Called “EIP” (IA32) or “RIP”

(x86-64)
• Register file

• Heavily used program data
• Condition codes

• Store status information about
most recent arithmetic operation

• Used for conditional branching

• Memory
• Byte addressable array
• Code, user data, heap,

(some) OS data
• Includes stack used to

support procedures

Assembly Language
• Why learn assembly ?

• Preferred for low level tasks: boot loaders, system calls
• Less overhead than with HLL code
• Helpful while debugging
• Can access some new features of processor only through assembly until compilers add support.
• One of the oldest tools in Programmers toolbox

• We will use the ATT syntax and not the Intel syntax. Consider:Intel: mov eax,1; mov ebx,0ffh ; int 80h AT&T: movl $1,%eax; movl $0xff,%ebx; int $0x80

Characteristics of Assembly
Programs: Data Types

1. Integer data of 1,2,or 4 bytes (data
values, addresses)

2. Floating point data of 4,8,or 10 bytes
3. No aggregate types such as arrays or

structures (Just contiguously allocated
bytes in memory)

Characteristics of Assembly
Programs: Operations

1. Arithmetic operations on memory or
registers

2. Transfer data between memory and
registers: Load and Store

3. Transfer control: Unconditional jumps,
Conditional branches

Example Assembly Program
.include "defines.h“.datahw:.string "hello world\n“.text.globl mainmain:movl $SYS_write,%eaxmovl $1,%ebxmovl $hw,%ecxmovl $12,%edxint $0x80movl $SYS_exit,%eaxxorl %ebx,%ebxint $0x80ret

Generating Assembly Code from C
Example C Program and its assembly
#include <stdio.h>int a = 10,b =20;int main(){int t = a;a =b;b =t;printf("%d %d\n",a,b);return 0;}

Disassembly of Executables
1. objdump –S
2. gdb and then disassembly command
3. Compile with –g for source code info:

man gcc says :
-g Produce debugging information in the
operating system's native format
(stabs, COFF, XCOFF, or DWARF 2).
GDB can work with this debugging information.

Registers
1. %esp, %ebp : stack pointer, base pointer
2. %eip : instruction pointer
3. x86-64 : %rax, %rbx etc. (64 bits)
What to do when there are not enough registers?
Answer: Store temporarily in memory.

Cannot do memory to memory transfer
with a single instruction

Some more operand formats in IA32

Five possible combination of
Source and Destination Types

movl $0x4050,%eax Immediate--Register, 4 bytes
movw %bp,%sp Register--Register, 2 bytes
movb (%edi,%ecx),%ah Memory--Register, 1 byte
movb $-17,(%esp) Immediate--Memory, 1 byte
movl %eax,-12(%ebp) Register--Memory, 4 bytes

