
CS354: Machine
Organization and

Programming
Lecture 14: Midterm1 Review
Monday the October 5th 2015

Section 2
Instructor: Leo Arulraj

© 2015 Karen Smoler Miller
© Some diagrams and text in this lecture from CSAPP lectures by Bryant &

O’Hallaron

Logical Machine Organization

Simple hello world Program
• What is C? A High Level Language

• What is Assembly?

• What is Machine Code?

Compilation Process Overview

Arithmetic Operators
Op. Description

Example
A=10,B=20

+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B / A will give 2
%

Modulus Operator and remainder of after
an integer division B % A will give 0

++
Increments operator increases integer

value by one A++ will give 11
--

Decrements operator decreases integer
value by one A-- will give 9

Relational Operators
Op. Description

Example
A=10, B=20

==
Checks if the values of two operands are equal or not, if yes then

condition becomes true.
(A == B) is
not true.

!=
Checks if the values of two operands are equal or not, if values

are not equal then condition becomes true.
(A != B) is

true.

>
Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.
(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.
(A < B) is

true.

>=
Checks if the value of left operand is greater than or equal to the

value of right operand, if yes then condition becomes true.
(A >= B) is
not true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.
(A <= B) is

true.

Logical Operators
Op. Description

Example
A=true,
B=false

&&
Called Logical AND operator. If both the
operands are non-zero, then condition

becomes true.
(A && B) is

false.

||
Called Logical OR Operator. If any of the two

operands is non-zero, then condition
becomes true

(A || B) is
true.

!

Called Logical NOT Operator. Use to
reverses the logical state of its operand. If a
condition is true then Logical NOT operator

will make false.
!(A && B) is

true.

Bitwise Operators
Op. Description

ExampleA(60) = 0011 1100
B(13) = 0000 1101

&
Binary AND Operator copies a bit to the result if

it exists in both operands.
(A & B) will give 12, which

is 0000 1100
|

Binary OR Operator copies a bit if it exists in
either operand.

(A | B) will give 61, which is
0011 1101

^
Binary XOR Operator copies the bit if it is set in

one operand but not both.
(A ^ B) will give 49, which is

0011 0001

~
Binary Ones Complement Operator is unary and

has the effect of 'flipping' bits.
(~A) will give -61, which is

1100 0011 in 2's
complement form.

<<
Binary Left Shift Operator. The left operands

value is moved left by the number of bits
specified by the right operand.

A << 2 will give 240 which
is 1111 0000

>>
Binary Right Shift Operator. The left operands

value is moved right by the number of bits
specified by the right operand.

A >> 2 will give 15 which is
0000 1111

Assignment Operators 1
Op. Description Example
=

Simple assignment operator, Assigns values
from right side operands to left side operand

C = A + B will assign
value of A + B into C

+=
Add AND assignment operator, It adds right

operand to the left operand and assign the result
to left operand

C += A is equivalent
to C = C + A

-=
Subtract AND assignment operator, It subtracts
right operand from the left operand and assign

the result to left operand
C -= A is equivalent

to C = C - A

*=
Multiply AND assignment operator, It multiplies
right operand with the left operand and assign

the result to left operand
C *= A is equivalent

to C = C * A

/=
Divide AND assignment operator, It divides left
operand with the right operand and assign the

result to left operand
C /= A is equivalent

to C = C / A

Assignment Operators 2
Op. Description Example

%=
Modulus AND assignment operator, It takes

modulus using two operands and assign the result
to left operand

C %= A is equivalent
to C = C % A

<<= Left shift AND assignment operator
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator
C >>= 2 is same as

C = C >> 2
&= Bitwise AND assignment operator

C &= 2 is same as C
= C & 2

^= bitwise exclusive OR and assignment operator
C ^= 2 is same as C

= C ^ 2
|= bitwise inclusive OR and assignment operator

C |= 2 is same as C
= C | 2

Miscellaneous Operators
Op. Description Example

sizeof()
Returns the
size of an
variable.

sizeof(a), where a is integer, will
return 4.

Unary &
Returns the
address of
an variable.

&a; will give actual address of the
variable.

Unary *
Value of a

pointer
*a; will value stored in the address

a.

? :
Conditional
Expression

If Condition is true ? Then value X :
Otherwise value Y

Integer Types
The actual size of integer types varies by implementation. Standard only

requires size relations between the data types and minimum sizes for each.
Type Storage size Value range
char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255
signed char 1 byte -128 to 127

int 2 or 4 bytes
-32,768 to 32,767 or -

2,147,483,648 to 2,147,483,647
unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767
unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

Floating Point Types
The value representation of floating-point types is implementation-defined

Type
Storage

size Value range Precision
float 4 byte

1.2E-38 to
3.4E+38

6 decimal
places

double 8 byte
2.3E-308 to
1.7E+308

15 decimal
places

long double 10 byte
3.4E-4932 to
1.1E+4932

19 decimal
places

Void type

1

Function returns as void
There are various functions in C which do not return value or you can

say they return void. A function with no return value has the return type
as void.

For example, void exit (int status);

2

Function arguments as void
There are various functions in C which do not accept any parameter. A

function with no parameter can accept as a void.
For example, int rand(void);

3

Pointers to void
A pointer of type void * represents the address of an object, but not its

type.
For example a memory allocation function void *malloc(size_t size);

returns a pointer to void which can be casted to any data type.

Strings in C
• Strings in C are one dimensional arrays of characters

terminated with a null character.
Examples: char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

char greeting[6] = “Hello”;
char* greeting = “Hello”;

Index 0 1 2 3 4 5
Content H e l l o \0
Memory
Address.

0x88321 0x88322 0x88323 0x88324 0x88325 0x88326

Declarations
Global Variable: A global variable is a variable that is declared outside all functions.
Local Variable: A local variable is a variable that is declared inside a function.
Examples:
const int foo = 10; // foo is const integer with value 10
char foo; // foo is a char
double foo();// foo is a function returning a double

If Statement

if(boolean_expression){
/* statement(s) will execute if the

boolean expression is true */
}

If-else Statement
if(boolean_expression){

/* statement(s) will execute if the boolean
expression is true */

}else{
/* statement(s) will execute if the boolean

expression is false */
}

Else-if Statement
if(expression){/*Block of statements;*/ }else if(expression){/*Block of statements;*/}else{/*Block of statements;*/}

Switch

switch(expression){
case constant-expression1: statements1;
[case constant-expression2: statements2;]
[case constant-expression3: statements3;]
[default: statements4;]}

While loop

while (expression) {
Single statement or
Block of statements;

}

For loop
for(expression1;expression2;expression3){

Single statement or
Block of statements;

}
You can also skip expression1, expression2,
expression3.
What does this do ? for(;;){printf("a\n");}

Do while loop

do{
Single statement or
Block of statements;

}while(expression);

Break; Continue; Statements
C provides two commands to
control how we loop:
• break -- exit form loop or switch.
• continue -- skip 1 iteration of

loop.

Goto and Labels
goto label; label: statement;

You can have better label names(e.g. mycalc, complexcalc etc.)

Functions 1
Function Prototype (Declaration):
return_type function_name(

type(1) argument(1),....,type(n) argument(n));

Function Definition:
return_type function_name(
type(1) argument(1),..,type(n) argument(n))
{
//body of function
}

Functions 2
Function Call:
function_name(argument(1),....argument(n));
Return Statement:
return (expression);

C always passes arguments `by value': a copy of the
value of each argument is passed to the function; the
function cannot modify the actual argument passed to
it.

Functions
C always passes arguments `by value': a copy of the value of each argument
is passed to the function; the function cannot modify the actual argument
passed to it.

Simple I/O Example
int b, a; long int b; char s[10], float d;
printf("%d\n",b);
scanf("%d", &a);
printf("%3d\n",b);
printf("%3.2f\n",d);
printf(”%ld\n",b);

Format String 1
Specifier Description Example
%i or %d int 12345

%c char y
%s string “sdfa”
%f Display the floating point number using decimal representation 3.1415
%e Display the floating point number using scientific notation with e 1.86e6
%E Like e, but with a capital E in the output 1.86E+06
%g Use shorter of the 2 representations: f or e 3.1 or 1.86e6
%G Like g, except uses the shorter of f or E 3.1 or 1.86E6

Arrays
Declarations: /* an array of 100 integers */
int ar[100];
Arrays are always allocated consecutively in
memory.
Access:
ar[4] = 10; // 5th element set to value 10

Pointers
A pointer is a memory address.

Simple example:
int a,b;
int*a_ptr = &a; a

a_ptr
0x12345

0x23456

Pointers
A pointer is a memory address.

Simple example:
*a_ptr = 10;

“*” operator is called
“Indirection Operator” a=10

a_ptr

Pointers
A pointer is a memory address.

Simple example:
a_ptr = &b;

“&” operator is called
“Address of ” operator b

a_ptr
0x12345

0x23456

0x34567
a

Pointers
A pointer is a memory address.

Simple example:
*a_ptr =20;

b=20

a_ptr
0x12345

0x23456

0x34567
a

Pointers: Some Allowed Operations
1. Assignment to other pointers of the

same type
2. Addition and subtraction of a

pointer to an integer
3. Assignment of the value 0
4. Comparison to the value 0

Pointers: Some Allowed Operations
int a = 3; int b = 8; int c = 0; /*declaration and
initialization */
int *ap; int *bp; int *cp; /*declaration of pointers to
integers */
ap = &a; bp = &b; cp = &c;

c = *ap + *bp;
a = b + *cp;
(*bp)++;
cp++;

Pointers: Some Unwise Operations
1. Multiplication or division on a pointer
2. Addition or subtraction of two pointer values
3. Assignment of a value (a literal) other than 0

to a pointer

Swap two variables

void swap(int a, int b){
int temp;
temp = a;
a = b;
b = temp;

}

Swap two variables using pointers

void swap(int *px, int *py){
int temp;
temp = *px;
*px = *py;
*py = temp;

}

Arrays vs. Pointers
Arrays and Pointers are often used
interchangeably
Example:
int ar[100]; /* an array of 100 integers */
int *arptr = ar;
arptr[4] = 10; //sets the 5th element to 10

Arrays vs. Pointers
• And, we could now change the value of the

7th element of the array to 1000 with
*(arptr+6) = 1000;

• We can even do the same thing with
(ar+6) = 1000; / 7th item is at offset of 6

from the element at index=0 */

Arrays vs. Pointers
• Stated a little more formally, a[i] is the same as *(a+i) and &a[i] is the same as a+i
• However, a pointer is a variable, but an array name is not a variable. So, arptr = arr is legal, but arr = arptr and arr++ are not legal.
• Pointer can be used in place of an array.Array can not be used as a pointer in all scenarios.

Pointers increment with sizeof(type)
int ar[5]={0,6,-1,15,102};int *ap = ar;printf("ptr ap = %0x val *ap= %d\n",ap, *ap);ap+=1;printf("ptr ap = %0x val *ap= %d\n",ap, *ap);
Output:
ptr ap = a81b0d60 val *ap= 0
ptr ap = a81b0d64 val *ap= 6

Structures
Structures are a derived type that collect a set of variables under one type
For example,
struct line {int a, b, c; /* line is ax + by = c */};
struct line diagonal;diagonal.a = 1;diagonal.b = 1;diagonal.c = 0;
The . (period) is an operator on a structure, to access the correct member of the structure.

Operations on Structures
• Copy it
• Assign to it (as a whole unit)
• Get its address (with the & operator)
• Access a member variable (using . operator)
• CANNOT compare two structures even if

they are of the same type.

The -> operator
• We often have a pointer to a structure and want to access its

members and it can be done with:
(*ptr).member

[parantheses needed because unary * is of lower
precedence than . operator.]
• Convenient Alternative: ptr->member
• The dot(.) and -> operators are left to right associative and

have highest precedence. So, use parentheses when needed.

malloc – Basic Memory Allocation
void * malloc (size_t size) [from stdlib.h]
• returns a pointer to a newly allocated block size bytes long, or
• a null pointer if the block could not be allocated.
Example usage:
struct foo *ptr;
ptr = (struct foo *) malloc (sizeof (struct foo));
if (ptr == 0) abort ();
memset (ptr, 0, sizeof (struct foo)); //initialize to 0

free –Allocating cleared space
void free (void *ptr) [from stdlib.h]
• When you no longer need a block that you got with malloc or calloc, use the function free to make the block available to be allocated again
• The free function deallocates the block of memory pointed at by ptr.
• If you forget to call free, not the end of the world because all of the program’s space is given back to the system when the process terminates.

Stack

Singly Linked List
1. Linked list is made up of nodes.
2. Each node points to the next node.
3. The first node is called “head” of the linked list.
4. The last node is called “tail” of the linked list.

Unsigned Representation
B2Uw(xvec) = Sumi=0->w-1 xi.2i

B2U4([0101]) = 0.23 + 1.22 + 0.21 + 1.20 = 5

B2Uw is a bijection: - associates a unique value to each bit vector of length w - each integer between 0 and 2w-1 has a unique binary representation as a bit vector of length w

Unsigned Addition
Of two unsigned w bit values X & Y
X + Y equals:
- X+Y, if (X+Y) < 2w

- X+Y-2w, if 2w <= (X+Y) < 2w+1

Two’s complement Representation
B2Tw(xvec) = -xw-12w-1 + Sumi=0->w-2 xi2i

B2T4([1011]) = -1.23 + 0.22 + 1.21 + 1.20 = -5

B2Tw is a bijection: - associates a unique value to each bit vector of length w - each integer between -2w-1 and 2w-1-1 has a unique binary representation as a bit vector of length w

Range of Values for Unsigned and
2’s Complement (16 bits)

 Decimal Hex Binary UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000
 #include <limits.h> declares constants, e.g., ULONG_MAX, LONG_MAX, LONG_MIN

(Values platform specific)

4-bit Unsigned and 2’s complement
Integers
X B2T(X)B2U(X)0000 00001 10010 20011 30100 40101 50110 60111 7–88 –79 –610 –511 –412 –313 –214 –115

10001001101010111100110111101111

01234567

2’s Complement Addition
Of two signed 2’complement w bit values X &
Y
X + Y equals:
- X+Y-2w, if 2w-1 <= (X+Y) Positive overflow
- X+Y, if -2w-1 <= (X+Y) < 2w-1 Normal
- X+Y+2w, if (X+Y) < -2w-1 Negative overflow

2’s Complement Inverse
Additive inverse of a 2’complement w bit value
X equals:
-2w-1, if x = -2w-1

-X, if X > -2w-1

2’s Complement Inverse: Easy
Techniques

1) Toggle all bits and then add 1:
E.g. Inverse of 0101 (5) is 1011 (-5)

Inverse of 1000 (-8) is 1000 (-8)
2) Toggle all bits until (not including) the rightmost 1 bit:
E.g. Inverse of 0111 (7) is 1001 (-7)

Inverse of 1010 (-6) is 0110 (6)

Cannot do memory to memory transfer
with a single instruction

Some more operand formats in IA32

pushl and popl
• pushl %ebp is equivalent to:

subl $4, %esp
movl %ebp, (%esp)

• popl %eax is equivalent to:
movl (%esp), %eax
addl $4, %esp

Examples
Assume %eax is x and %ecx is y
and %edx=10, address 10 has value 100
1. leal 6(%eax), %edx :: ?
2. leal 9(%eax,%ecx,2), %edx :: ?
3. addl %ecx, (%edx) :: ?
4. decl %ecx :: ?

Examples
Assume %eax is x and %ecx is y
and %edx=10, address 10 has value 100
1. leal 6(%eax), %edx :: 6+x
2. leal 9(%eax,%ecx,2), %edx :: 9 + x + 2y
3. addl %ecx, (%edx) :: (y +100) stored @

address 10
4. decl %ecx :: (y-1) stored in %ecx

Examples
Assume x at %ebp+8, y at %ebp+12, z at %ebp+16
1 movl 16(%ebp), %eax z
2 leal (%eax,%eax,2), %eax z*3
3 sall $4, %eax t2 = z*48
4 movl 12(%ebp), %edx y
5 addl 8(%ebp), %edx t1 = x+y
6 andl $65535, %edx t3 = t1&0xFFFF
7 imull %edx, %eax t4 = t2*t3

Examples
Assume x at %ebp+8, y at %ebp+12, z at %ebp+16
1 movl 12(%ebp), %eax y
2 xorl 8(%ebp), %eax t1 = x ^ y
3 sarl $3, %eax t2 = t1 >> 3
4 notl %eax t3 = ~t2
5 subl 16(%ebp), %eax t4 = t3-z

“if ” and “if else” Stmts in
Assembly

Overview of “if ” and “if else” statement:

General Approach:
1. Use compare instructions to set the condition codes
2. Then use the jump instructions to execute the right set

of instructions

if(condition){
statements;

}
if(condition){

statements1;
}else{

statements2;
}

“if else” example
if(x<y){

return y-x;
}else{

return x-y;
}

x at %ebp+8, y at %ebp+12
1 movl 8(%ebp), %edx Get x
2 movl 12(%ebp), %eax Get y
3 cmpl %eax, %edx Compare x:y
4 jge .L2 if >= go to L2
5 subl %edx, %eax result = y-x
6 jmp .L3 Goto done
7 .L2:
8 subl %eax, %edx result = x-y
9 movl %edx, %eax %eax = result
10 .L3: done: Begin completion code

“while” example
result = 1;
while(n>1){

result*=n;
n = n-1;

};

Argument: n at %ebp+8
Registers: n in %edx, result in %eax
1 movl 8(%ebp), %edx get n
2 movl $1, %eax result = 1
3 cmpl $1, %edx compare n:1
4 jle .L7 If <=, goto done
5 .L10: loop:
6 imull %edx, %eax result *= n
7 subl $1, %edx decrement n
8 cmpl $1, %edx compare n:1
9 jg .L10 If >, goto loop
10 .L7: done:
Return result

Conditional Move Instructions

