
CS354: Machine
Organization and

Programming
Lecture 29Monday the November 09th 2015
Section 2Instructor: Leo Arulraj

© 2015 Karen Smoler Miller© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Midterm2 Review Lecture

1. Too much to cover in one lecture. So, will skip
through some slides and you can take a look at
them after the class.

Current frame

Caller’s frame

Saved %ebp
Saved registers,
local variables,

and
temporaries

Argument
build area

Return address
Argument 1

Argument n
•
••

•
••

•
••

Frame pointer%ebp

Stack pointer%esp
Stack “top”

Stack “bottom”

Increasing
address

+4
+8

+4+4n

–4

Earlier framesA view of the stack
taken from the
CSAPP textbook

Demo
1. The following slides step through the assembly instructions for the program simplefunctions1.c from Lecture 16 and show how the stack changes.
2. Keep the files simplefunctions1.c and simplefunctions1.objdump open while going over the following slides that show the stack layout.

%esp %ebp of main’s caller
Prologue: After executing Instruction : 0x80483be: push %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x80483bf: mov %esp,%ebp
%esp %ebp main’s caller  %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x80483c1: sub $0x18,%esp
Allocating Space for local variables : a, b, c and parameters to func1
(gcc allocates in multiples of 16 bytes)

%ebp main’s caller  %ebp
int c
int b
int a

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483c4: movl $0xc,-0xc(%ebp)
Initializing local variable a;

%ebp main’s caller  %ebp
int c
int b

int a : 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483cb: movl $0x18,-0x8(%ebp)
Initializing local variable b;

%ebp main’s caller  %ebp
int c

int b : 0x18 == 24
int a : 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d2: mov -0x8(%ebp),%eax
Fetch b in %eax;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a: 0xc == 12

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d5: mov %eax,0x4(%esp)
Set up parameter b;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483d9: mov -0xc(%ebp),%eax
Fetch a into %eax;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483dc: mov %eax,(%esp)
Set up parameter a;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483df: call 8048394 <func1>
Call function func1: which pushes return address on stack and jumps to func1;

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

%esp Return address: 0x80483e4

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048394: push %ebp
Push %ebp of main into stack

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048395: mov %esp,%ebp
Setup frame for func1

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main  %ebp

Addresses
Lower at bottom
Higher at top

Prologue: After executing Instruction : 0x8048397: sub $0x10,%esp
Allocate space for local variables: diff, sum (gcc allocates in multiples of 16 bytes)

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Caller’s Frame
main() is the caller

Callee’sFrame
func1() is the callee

After executing Instruction : 0x804839a: mov 0xc(%ebp),%eax
Fetch second parameter into %eax
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x804839d: mov 0x8(%ebp),%edx
Fetch first parameter into %edx
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483a0: mov %edx,%ecx
0x80483a0: mov %edx,%ecx
0x80483a2: sub %eax,%ecx
0x80483a4: mov %ecx,%eax

These instruction calculate x-y and store
it in %eax

After executing Instruction : 0x80483a6: mov %eax,-0x8(%ebp)
Store result in diff

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp

int sum
int diff = x-y

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483a9: mov 0xc(%ebp),%eax
0x80483ac: mov 0x8(%ebp),%edx
0x80483af: lea (%edx,%eax,1),%eax

These instruction fetch parameters x, y
into temporary registers, calculate x+y
into register %eax

After executing Instruction : 0x80483b2: mov %eax,-0x4(%ebp)
Store result in sum

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main  %ebp
int sum = x+y
int diff = x-y

%esp

Addresses
Lower at bottom
Higher at top

After executing Instructions :
0x80483b5: mov -0x4(%ebp),%eax
0x80483b8: imul -0x8(%ebp),%eax

These instructions fetch sum into %eax, and
then calculate product of sum and diff into
register %eax
Since by x86 conventions, the result of a
function is left in %eax, we do not need to
anything further.

After executing First part of Instruction : 0x80483bc: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%esp %ebp of main  %ebp

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Second part of Instruction : 0x80483bc: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
a

%esp Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483bd: ret
Return to main by poping into %eip

%ebp main’s caller  %ebp
int c

int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483e4: mov %eax,-0x4(%ebp)
Store result into local variable c

%ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Instruction : 0x80483e7: mov $0x0,%eax
Store result of main (value 0) into %eax by x86 convention

%ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
%esp a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Part 1 of Instruction : 0x80483ec: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%esp %ebp main’s caller  %ebp
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

After executing Part 2 of Instruction : 0x80483ec: leave
Set up stack for returning to main.
Part 1: moves %ebp into %esp
Part 2: pops from stack into %ebp.

%ebp main’s caller
int c = return value of

func1()
int b: 0x18 == 24
int a : 0xc == 12

b
a

Return address: 0x80483e4
%ebp of main

int sum
int diff = x-y

Addresses
Lower at bottom
Higher at top

Stack Smashing
• Caused by Buffer overflow
• Attacker can store arbitrary code in the stack and execute it leading to attacks that can comprise privacy of your data or even destroy it.
• As a programmer, avoid using versions of library functions that can cause buffer overflow issues. E.guse strncpy() instead of strcpy()
• Also, check for return values of library functions and handle appropriately.

Stack Smashing
• Stack Randomization: Location of the Stack in the

memory layout of the program varies between
executions of a program. (Other segments can also be
relocated: Address Space Layout)

• Reduce executable code locations: mark data, stack ,
heap as not executable.

• Canary value is inserted by compiler during function
call and checked just before return to detect buffer
overflow attacks.

Memory Hierarchy Table from CSAPP Textbook

• • • B–110
• • • B–110

Valid
Valid

Tag
TagSet 0:

B = 2b bytes
per cache block

E lines per set

S = 2s sets

t tag bits
per line1 valid bit

per line

Cache size: C = B x E x S data bytes

•••

• • • B–110
• • • B–110

Valid
Valid

Tag
TagSet 1: •••

• • • B–110
• • • B–110

Valid
Valid

Tag
TagSet S -1: •••

•••

Generic Cache Organization

Valid
Valid

Valid

Tag
Tag

Tag

•••
Set 0:
Set 1:

Set S -1:t bits s bits0 0 0 0 1
0m-1

b bits
Tag Set index Block offset

Selected set
Cache block
Cache block

Cache block

Looking up a memory address
in Direct Mapped Cache

1

t bits s bits 100i0110
0m-1

b bits
Tag Set index Block offset

Selected set (i):

=1?

= ? (3) If (1) and (2), then
cache hit,
and block offset
selects
starting byte.

(1) The valid bit must be set

(2) The tag bits in the cache
line must match the
tag bits in the address

0110 w3w0 w1 w2
30 1 2 74 5 6

Looking up a memory address
in Direct Mapped Cache

Types of Misses
• Compulsory or cold misses: Cache is empty

to start with and will miss.
• Conflict misses: Cache has space but because

objects map to the same cache block they keep
missing.

• Capacity misses: Cache does not have space
because size of the working set exceeds the
size of the cache.

Valid TagSet 0: E=2 lines per set

Set 1:

Set S - 1:
•••

Cache block
Valid Tag Cache block

Valid Tag Cache block
Valid Tag Cache block

Valid Tag Cache block
Valid Tag Cache block

Set Associative Cache Organization

Valid
Valid

Tag
Tagset 0:

Valid
Valid

Tag
Tagset 1:

Valid
Valid

Tag
Tagset S -1:

•••

t bits s bits0 0 0 0 1
0m-1

b bits
Tag Set index Block offset

Selected set

Cache block
Cache block

Cache block
Cache block

Cache block
Cache block

Looking up a memory address
in Set Associative Cache

1 0110 w3w0 w1 w2
1 1001

t bits s bits 100i0110
0m-1

b bits
Tag Set index Block offset

Selected set (i):

=1?

= ?
(3) If (1) and (2), then
cache hit, and
block offset selects

starting byte

(2) The tag bits in one
of the cache lines must
match the tag bits in
the address

(1) The valid bit must be set
30 1 2 74 5 6

Looking up a memory address
in Set Associative Cache

Valid
Valid

Tag
TagSet 0: E = C/B lines in

the one and only set
Valid Tag

•••

Cache block
Cache block

Cache block

Fully Associative Cache Organization

More circuitry and hence more expensive than
Direct mapped and Set Associative Caches

Valid
Valid

Tag
Tag

Valid Tag

•••t bits
0m-1

b bits
Tag Block offset

Set 0:The entire cache is one set, so
by default set 0 is always selected

Cache block
Cache block

Cache block

Looking up a memory address
in Fully Associative Cache

t bits 1000110
0m-1

b bits
Tag Block offset

Entire cache

=1 ?

= ? (3) If (1) and (2), then
cache hit, and block

offset selects
starting byte

(2) The tag bits in one of the
cache lines must match the tag

bits in the address

1
0

1001

(1) The valid bit must be set

0110
1
0

0110
1110

w3w0 w1 w2

30 1 2 74 5 6

Looking up a memory address
in Fully Associative Cache

• Write Alloc: Load block in cache and
update word (often used along with Write
back)

• Write No-Alloc (a.k.a.Write around): Just
update memory (often used along with
Write through)

Writing during cache miss:
(Two approaches)

Strided Access Patterns
int i, j, sum =0;
for(i=0;i<16;i++)

for(j=0;j<16;j++)
sum += a[i][j]

What if: sum += a[j][i] ?

Writing Cache Friendly Code
1. Focus on the inner loops where bulk of computation

and memory accesses occur

2. Maximize spatial locality by reading data objects
sequentially with stride 1

3. Maximize temporal locality by reading a data object
as often as possible once it has been read from
memory.

Arm

Read/write heads

Spindle

Platters: Consists of two sides or surfaces coated with magnetic
recording material
Spindle: Spins the platter at fixed rotational rate (5400 to 15K
revolutions per minute - RPM)

Surface 0
Surface 1Surface 2
Surface 3Surface 4
Surface 5

Cylinder k

Spindle

Platter 0
Platter 1
Platter 2

Hard Disk Overview

Spindle

SurfaceTracks
Track k

Sectors

Gap
s

Track: A ring on the magnetic surface made up of sectors.
Sectors: Each track is partitioned into a collection of Sectors.
Gaps in between sectors store formatting bits that identify sectors.
Cylinder: Collection of tracks on all surfaces that are
equidistant from the center of the spindle.

Access Time for a Sector
TI/O = Tseek + Trot + Txfr

Seek Time: Time taken to position the head over the track that contains the target sector.

Rotational Latency: Time taken for the first bit of the target sector to pass under the head.

Transfer time: Time taken to read or write the contents once the first bit of the target sector is under the head.

Accessing Disks
Memory mapped I/O: A block of addresses in the
address space is reserved for communicating with the
I/O devices.
Each of these addresses is called an I/O Port.
Every device attached to a bus will have a
corresponding I/O Port.
Small Communication with the I/O devices happens
through the I/O port.

Textbook Example
Suppose magnetic disk is mapped to I/O port 0xa0
CPU initiates disk read by 3 store instructions:
1) Send a command word indicating to perform a read

along with other parameters like interrupt on
completion of DMA.

2) Send the logical block number that must be read.
3) Indicate the main memory address where the

contents of the disk sector should be stored.

Direct Memory Access
After issuing the request, CPU executes other
instructions. Note: A 3GHz processor with a 0.33 ns
clock cycle can execute 9 million instructions in 3ms.
After receiving the read command from the CPU, the
disk controller fetches data from the right sector and
transfers it directly to the memory without the
involvement of the CPU.
After DMA is complete, disk controller notifies by
sending interrupt signal to the CPU.

Main
memory

ALU
Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

MouseKeyboard Monitor
Disk

I/O bus

Bus interface

Disk Controller reads the
data and DMA transfer to
memory

Main
memory

ALU
Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

MouseKeyboard Monitor
Disk

I/O bus

Bus interface

Interrupt

Disk Controller notifies CPU
with an interrupt after DMA
completes

Solid State Disks
Made up of flash memory chips that store data instead of the magnetic
surfaces in a conventional disk.
A Flash Translation Layer translates logical block addresses to accesses to the
right block and page within the flash memory chip.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…Block 0 … Page 0 Page 1 Page P-1…Block B-1
Flash memory

Solid State Disk (SSD)
Requests to read and
write logical disk blocks

SSD vs. Magnetic Disks
Advantages: SSDs have no moving parts and hence are
more quiet during operation, faster, need less power and
are more rugged.
Disadvantages:
1. Possibility of wear out after several program-erase
cycles. This is mitigated by the flash translation layer.
2. More expensive than magnetic disks.

Storage Trends

0.0
0.1
1.0

10.0
100.0

1,000.0
10,000.0

100,000.0
1,000,000.0

10,000,000.0
100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM and disk performance are lagging behind CPU performance.
Though SRAM performance also lags, it is roughly keeping up.

Unix I/O
Unix file is a sequence of bytes.
All I/O devices including networks, terminals, disks are modeled as files. E.g. /dev/sda for disk, /dev/tty for terminal
This way, programmers use a simple low-level interface called the Unix I/O to interact with all I/O devices
Some examples of operations on files:
• Opening and Closing files
• Reading and writing files
• Changing the current file offset
• Read metadata about a file

Unix I/O APIs
int open(char *filename, int flags, mode_t mode);
ssize_t read(int fd, void *buf, size_t n);
ssize_t write(int fd, const void *buf, size_t n);
off_t lseek(int fd, off_t offset, int whence);
int fstat(int fd, struct stat *buf);
Each process created by a Unix shell begins life with
three open files: standard input (descriptor 0), standard
output (descriptor 1), and standard error (descriptor 2)

Sharing Files
(Descriptions from CSAPP Text)

Descriptor table: Each process has its own separate descriptor table whose entries are indexed by the process’s open file descriptors. Each open descriptor entry points to an entry in the file table.
File table: The set of open files is represented by a file table that is shared by all processes. Each file table entry consists of (for our purposes) the current file position, a reference count of the number of descriptor entries that currently point to it, and a pointer to an entry in the v-node table. Closing a descriptor decrements the reference count in the associated file table entry. The kernel will not delete the file table entry until its reference count is zero.
v-node table: Like the file table, the v-node table is shared by all processes. Each entry contains most of the information in the stat structure, including the st_mode and st_size members. v-node table and the related VFS(Virtual File System) interface is the separation between specific file system implementations and the generic file system operations.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)
Open file table

(shared by
all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1...
File pos
refcnt=1...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Typical OS kernel data structures for open files.

Standard I/O
C Standard library (libc) provides:
fopen, fclose
fread, fwrite
fgets, fputs
fscanf, fprintf
Standard I/O models files as streams and buffers I/O

Unix I/O vs Standard I/O vs RIO
Unix I/O is the lowest form of interface and provides basis for both Standard I/O and RIO
Unix I/O can be used in signal handlers
Unix I/O does not deal with short counts like Standard I/O or RIO
Unix I/O does not have buffering and hence is inefficient.
Standard I/O solves both short counts and buffering issues of Unix I/O but cannot be used for networking applications due to poorly documented restrictions hence the need for RIO.

Different I/O interfaces in perspective

Anatomy of an exception
An exceptions is an abrupt change in control flow.
Examples: div by 0, arithmetic overflow, page fault, I/O
request completes, Ctrl-C

Application
program Exception

handler

Exception
Exception
processingException

return
(optional)

IcurrInext

Event
occurs

here

Classes of Exceptions
1. Interrupts (Asynchronous): Always return to next instruction.
2. Traps & System Calls (Synchronous): Always return to next instruction.
3. Faults (Synchronous): Might return to next instruction.
4. Aborts (Synchronous): Never returns

Interrupts

(2) Control passes
to handler after current

instruction finishes
(3) Interrupt
handler runs(4) Handler

returns to
next instruction

IcurrInext

(1) Interrupt pin
goes high during

execution of
current instruction

Examples of Interrupts:
- Timer interrupt
- Arrival of a packet from a network
- When a key is pressed on the keyboard
- When the mouse is moved

Traps
Traps are intentionally issued by executing an
instruction.
Example: System calls

(2) Control passes
to handler

(3) Trap
handler runs(4) Handler returns

to instruction
following the syscall

syscallInext

(1) Application
makes a

system call

Faults
Faults result from error conditions that might be
correctable.
Examples: Page fault, Divide error

(2) Control passes
to handler

(3) Fault
handler runs

(4) Handler either reexecutes
current instruction or aborts.

Icurr
(1) Current
instruction

causes a fault
abort

Aborts
Aborts result from unrecoverable fatal errors.
Example: parity errors due to DRAM bit corruption

(2) Control passes
to handler

(3) Abort
handler runs
(4) Handler returns to abort routine

Icurr(1) Fatal hardware
error occurs

abort

Exception Table
Exception table

Exception
table

01
2 ...

n-1

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception Table lookup
Exception is similar to procedure calls except for some
important differences:
- Return address is not the next instruction always
- Push EFLAGS register also onto kernel stack
- Run exception handler in kernel mode

Exception table

+

Exception number
(x)

01
2

n-1

Address of entry
for exception # kException table

base register

...

IA32 Exception Table
From CSAPP text book:

Exception Number Description Exception Class
0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort
32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap
129-255 OS-defined Interrupt or trap

Processes
1. Process: an instance of a program in execution
2. Give the illusion that our program is the only

one currently running in the system
3. Process Context consists of state including:

Virtual Memory Layout, CPU registers, file
descriptors, environment variables etc.

4. Key abstraction provided by a process:
a. Independent logical control flow
b. Private address space

Logical Control Flow
The single physical control flow of CPU is partitioned
into logical control flows of several processes.

Time

Process A Process B Process C

Concurrent and Parallel Flows
1. A logical flow whose execution overlaps in

time with another flow is called a concurrent
flow.

2. E.g. A & B are concurrent in previous slide, A
& C are also concurrent while B & C are not
concurrent.

3. Parallel flows: A subset of concurrent flows
where the individual flows run on multiple
cores or machines in parallel.

Private Address Space
1. A process provides each program the illusion

that it has exclusive use of the system’s address
space through virtual memory.

2. This concept of private address space per
process makes writing programs much easier
rather than dealing with physical memory
addresses. (e.g. frees the programmer from
managing the physical memory resources)

Privileged Mode
1. User Mode: Cannot execute privileged instructions like one that halts the CPU. Also cannot access kernel area of address space.
2. Kernel Mode (Privileged/Supervisor Mode):Can execute any instruction and access any memory location.
Process runs application code in user mode and switches to kernel mode only via an exception like interrupt, system call etc.

Signals
Unix Signal is a higher level software form of
exceptional control flow.
A Signal is a small message that notifies a process
that an event of some type has occurred in the
sytem.
Processes and the Operating System can interrupt
other processes using Signals.

Signal Handling
Control flow while handling signals.

(2) Control passes
to signal handler

(3) Signal
handler runs(4) Signal handler

returns to
next instruction

IcurrInext

(1) Signal received
by process

Signals
Low level exception we discuss in last lecture are handled by the Operating System’s exception handlers and are not visible to user level processes.
Signals provide a mechanism for exposing these low level exceptions to user processes.
E.g. - If a process executes an illegal instruction, then OS kernel sends a SIGILL signal.

- If a process divides by zero, then the OS kernel sends the process a SIGFPE signal.

Signals
List of Linux Signals in “man 7 signal”
The transfer of a signal occurs in two distinct
steps:
1) Sending a signal
2) Receiving a signal

Sending Signals
OS Kernel sends/delivers a signal to a destination
process by updating the process context.
A signal can be sent in two ways:
1) Kernel has detected an event like divide-by-

zero or termination of a child process
2) A process has invoked the kill function to

explicitly request the kernel to send a signal to
the destination process.

Four ways of Sending Signals
1. With /bin/kill program:

a. “/bin/kill -9 pid” sends signal 9 (SIGKILL) to process 15213
b. “/bin/kill -9 -pid” sends signal 9 to all processes in process group 15213

2. Sending signals from the keyboard:
a. Typing Ctrl-C on shell sends SIGINT signal to every process in the foreground process group.
b. Typing Ctrl-Z sends SIGTSTP to every foreground process and the result is to suspend them.

Four ways of Sending Signals
3. Sending signals with the kill function:

int kill(pid_t pid, int sig);
• positive pid sends signal to that process
• negative pid sends signal to every process in process

group abs(pid)
4. Sending signals with the alarm function:

unsigned int alarm(unsigned int secs)
• A process can send SIGALRM signals to itself

by calling the alarm function.

Receiving Signals
Before kernel returns control to a process after executing a exception handler, it checks the set of unblocked pending signals.
• If the set is empty(the usual case), then control goes to the next instruction.
• If the set is not empty, then OS kernel chooses one of the pending signals and forces the process to receive the signal.

Receiving Signals
Each signal has a predefined default action which
is one of:
1) The process terminates
2) The process terminates and dumps core
3) The process stops until restarted by a

SIGCONT signal
4) The process ignores the signal

Receiving Signals
However, a process can choose to install its own
modified default action for all signal except
SIGSTOP and SIGKILL using:
sighandler_t signal(int signum, sighandler_t
handler);
Signal handlers are yet another example of
concurrency.

Receiving Signals
The signal function can change the action associated with a signal in one of three ways:
1) If handler is SIG_IGN, then signals of type signumare ignored.
2) If handler is SIG_DFL, then the action for signals of type signum reverts to the default action.
3) Otherwise, handler is the address of a user defined function called signal handler that will be invoked whenever the process receives a signal of type signum.
Example program for user defined signal handler function.

Signal Handing Issues
• Pending signals are blocked: Unix signal handlers block pending signals of the type currently being processed by the handler.
• Pending signals are not queued: There can be atmost one pending signal of any particular type.
• System calls can be interrupted: In some systems, interrupted system calls will return immediately to user with an error condition.

