CS354: Machine
Organization and

Programming
Lecture 29

Monday the November 09t 2015

Section 2

Instructor: Leo Arulraj

© 2015 Karen Smoler Miller
© Some examples, diagrams from the CSAPP text by Bryant and O’Hallaron

Midterm2 Review Lecture

|. Too much to cover in one lecture. So, will skip
through some slides and you can take a look at
them after the class.

What we need to know how to do. . .

(what the compiler must be able to implement)

call

return

AR and local variables
return value
parameters

R =

pushl

does %esp <- %esp - 4
movl “, (%esp)
popl *
does movl (%esp), *

sesp <- %esp + 4

THE STACK

1. call

e remember the return address

e go tofcn

this is such a common operation that the
x86 architecture supports it with a single

instruction

call fcn
does the equivalent of

push S$eilp <):2

jmp fcn

PC

addr 0

-« Jo€Sp

2. return

use the return address pushed onto the stack

ret
does the equivalent of

O

popl %elp

ra

addr 0

-« Jo€sp

3. incorporate AR

For example, assume we need AR space for 3 ints.
gcc on x86 allocates AR space in multiples of 16 bytes.

Before fcn
starts, but
after the

instruction

%esp —>

%esp —

prev %ebp

ra

addr O

<+— %ebp

%oebp

-~

After fcn
prologue

prologue code
pushl %ebp

movl zesp, %sebp
subl $16, %esp

addr 0
%esp —>
Before fcn After fcn
starts, but prologue
after the
call
instruction

prev %ebp |«— %ebp

%esp — ra

epilogue code

leave does movl %ebp, %esp
popl %ebp

ret does popl %eip
addr 0
g — After
epilogue
Before
epilogue prev %ebp [«— %ebp
ra
%esp —
<—%ebp

4. return value

On x86, return value goes in $eax (by convention)

int b(() |}

c();

return 4:

call e
movl $4,
leave

ret

seax

5. parameters
No room in registers on the x86, so parameters go onto
the stack.

Caller allocates space and places copies (for call by
value). Child retrieves and uses copies.

main () { main: pushl
!
ait i, ‘R,) subl $12, %esp
movl $1, (%esp)
movl $2, 4 (%esp)
" ()
call a
} leave

EEt

A view of the stack

taken from the
CSAPP textbook

Increasing
address

+4+4n

Argument 7

+8

Argument 1

.+
Frame pointer 4

Return address

Sebp E—

Saved $ebp

4

Saved registers,
local variables,
and
temporaries

Stack pointer

sesp E—

Argument
build area

> Earlier frames

> Caller’s frame

> Current frame

Demo

. The following slides step through the assembly
instructions for the program

simplefunctionsl.c from Lecture 16 and
show how the stack changes.

. Keep the files simplefunctionsl.c and
simplefunctionsl.objdump open while
going over the following slides that show the
stack layout.

Prologue: After executing Instruction : 0x80483be: push %ebp

Y%esp 2> %ebp of main’s caller

SIOSSAIPPYV

0] Je JoUSIH
wWo030g Je IoMO]

Prologue: After executing Instruction : 0x80483bf: mov %esp,%ebp

Y%esp > %ebp main’s caller < %ebp

SASSAIPPV

doj 1e J9y3Iy
W03110q Je JOMO']

Prologue: After executing Instruction : 0x80483c1: sub $0x18,%esp
Allocating Space for local variables : a, b, c and parameters to funcl
(gcc allocates in multiples of 16 bytes)

%ebp main’s caller < %ebp

int
intb
int a

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483c4: movl $0xc,-0xc(%ebp)
Initializing local variable a;

%ebp main’s caller

Int ¢

int b

imta:0Oxc==12

< %ebp

doy je 1oy3IyHg
wo03110q Je JI9MO]
SISSAIPPVY

After executing Instruction : 0x80483cb: movl $0x18,-0x8(%ebp
Initializing local variable b;

%ebp main’s caller < %ebp

Int ¢
intb:0x18 == 24
imta:0Oxc==12

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483d2: mov -0x8(%ebp),%eax
Fetch b in %eax;

%ebp main’s caller < %ebp

Int ¢
int b;: 0x18 == 24
int a;: Oxc == 12

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483d5: mov %eax,0x4(%esp)
Set up parameter b;

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24

imta:0xc==12

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483d9: mov -0xc(%ebp),%eax
Fetch a into %eax;

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24

inta:0xc==12

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483dc: mov %eax,(%esp)
Set up parameter a;

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24
imta:0Oxc==12

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

After executing Instruction : 0x80483df: call 8048394 <funcl>
Call function funcl: which pushes return address on stack and jumps to funcl;

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24

imta:0Oxc==12

b
a
Return address: 0x80483e4

doy je 1oy3IyHg
wo03110q Je JI9MO]
SISSAIPPVY

Prologue: After executing Instruction : 0x8048394: push %ebp
Push %ebp of main into stack

%ebp main’s caller < %ebp

Int ¢
int b;: 0x18 == 24
imta:0Oxc==12

b
a
Return address: 0x80483¢e4
%ebp of main

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

Prologue: After executing Instruction : 0x8048395: mov %esp,%ebp
Setup frame for funcl

%ebp main’s caller

Int ¢
intb: 0x18 ==24

mmta:0Oxc==12

b
a

Return address: 0x80483e4
%ebp of main

doy je 1oy3IyHg
wo03110q Je JI9MO]
SISSAIPPVY

Prologue: After executing Instruction : 0x8048397: sub $0x10,%esp
Allocate space for local variables: diff, sum (gcc allocates in multiples of 16 bytes)

%ebp main’s caller

Int ¢
int b:; 0x18 == 24
inta:0Oxc==12

swrery s I3[[e)

J3[1ed 3y3 SI (Jurewr

b
a
Return address: 0x80483e4
%ebp of main

"’U

d3[1ed 2Y3 ST () [ouny

int sum
int diff

swrexy s,9337e))

After executing Instruction : 0x804839a: mov Oxc(%ebp),%eax
Fetch second parameter into %eax
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller

Int ¢
int b; 0x18 == 24

inta:0Oxc==12

b
a

Return address: 0x80483e4

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

%ebp of main

int sum
int diff

After executing Instruction : 0x804839d: mov 0x8(%ebp),%edx
Fetch first parameter into %edx
General rule is : parameter i is at offset (4+4*i) from %ebp

%ebp main’s caller

Int ¢
intb: 0x18 == 24

mmta:Oxc==12

b

a
Return address: 0x80483e4

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

%ebp of main

int sum
int diff

After executing Instructions :
0x80483a0: mov %edx,%ecx
0x80483a0: mov %edx,%ecx
0x80483a2: sub %eax,%ecx
0x80483a4: mov %ecx,%eax

These instruction calculate x-y and store
it in %eax

After executing Instruction : 0x80483a6: mov %eax,-0x8(%ebp)
Store result in diff

%ebp main’s caller

Int ¢
int b; 0x18 == 24
inta:0Oxc==12

b

a
Return address: 0x80483e4
%ebp of main

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

Int sum

int diff = x-y

After executing Instructions :
0x80483a9: mov 0xc(%ebp),%eax
0x80483ac: mov 0x8(%ebp),%edx
0x80483af: lea (%edx,%eax,1),%eax

These instruction fetch parameters x, y
into temporary registers, calculate x+y
into register %eax

After executing Instruction : 0x80483b2: mov %eax,-0x4(%ebp)
Store result in sum

%ebp main’s caller

Int ¢
intb: 0x18 == 24

mmta:Oxc==12

b

a
Return address: 0x80483e4

%ebp of main

doy je 1oy3IyHg
wo03110q Je JI9MO]
SISSAIPPVY

int sum = x+y

int diff = x-y

After executing Instructions :
0x80483b5: mov -0x4(%ebp),%eax
0x80483b8: imul -0x8(%ebp),%eax

These instructions fetch sum into %eax, and

then calculate product of sum and diff into
register %eax

Since by x86 conventions, the result of a
function is left in %eax, we do not need to
anything further.

After executing First part of Instruction : 0x80483bc: leave
Set up stack for returning to main.

Part 1: moves %ebp into %esp

Part 2: pops from stack into %ebp.

%ebp main’s caller

Int ¢
intb: 0x18 ==24
imta:0Oxc==12

b
a

Return address: 0x80483¢e4

%ebp of main

Int sum

int diff = x-y

doy je 1oy3IyHg
wo03110q Je JI9MO]

SISSAIPPY

After executing Second part of Instruction : 0x80483bc: leave
Set up stack for returning to main.

Part 1: moves %ebp into %esp

Part 2: pops from stack into %ebp.

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24

mmta:0Oxc==12

b
a

Return address: 0x80483e4
%ebp of main

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

Int sum

int diff = x-y

After executing Instruction : 0x80483bd: ret
Return to main by poping into %eip

%ebp main’s caller < %ebp

Int ¢
int b: 0x18 ==24

inta:0Oxc==12

b
a
Return address: 0x80483e4
%ebp of main

doy je 1oy3IyHg
wo03110q Je JI9MO]
SISSAIPPVY

Int sum

int diff = x-y

After executing Instruction : 0x80483e4: mov %eax,-0x4(%ebp)
Store result into local variable c

%ebp main’s caller < %ebp

Int ¢ = return value of
funcl()

int b: 0x18 ==24

mmta:0Oxc==12

b
a
Return address: 0x80483¢e4
%ebp of main

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

Int sum

int diff = x-y

After executing Instruction : 0x80483e7: mov $0x0,%eax
Store result of main (value 0) into %eax by x86 convention

%ebp main’s caller < %ebp

int ¢ = return value of
funcl()

int b;: 0x18 == 24
mmta:0Oxc==12

b
a
Return address: 0x80483¢e4
%ebp of main

SISSAIPPY

doy je 1oy3IyHg
wo03110q Je JI9MO]

Int sum

int diff = x-y

After executing Part 1 of Instruction : 0x80483ec: leave
Set up stack for returning to main.

Part 1: moves %ebp into %esp

Part 2: pops from stack into %ebp.

%esp 2> %ebp main’s caller < %ebp

int ¢ = return value of
funcl()

int b: 0x18 == 24

imta:0Oxc==12

SISSAIPPY

b
a
Return address: 0x80483¢e4
%ebp of main

doy je 1oy3IyHg
wo03110q Je JI9MO]

Int sum

int diff = x-y

After executing Part 2 of Instruction : 0x80483ec: leave
Set up stack for returning to main.

Part 1: moves %ebp into %esp

Part 2: pops from stack into %ebp.

%ebp main’s caller

int ¢ = return value of
funcl()

int b; 0x18 == 24

inta:0xc==12

b
a
Return address: 0x80483e4

%ebp of main

Int sum

int diff = x-y

doy je 1oy3IyHg
wo03110q Je JI9MO]

SISSAIPPY

[|

1A 32 convention

caller save

zeax sedx Zecx
callee save

zebx zesi zedil

Which is $ebp ?

NN

Stack Smashing

Caused by Buffer overflow

Attacker can store arbitrary code in the stack and
execute 1t leading to attacks that can comprise
privacy of your data or even destroy it.

As a programmer, avoid using versions of library
functions that can cause buffer overflow issues. E.g
use strncpy() instead of strcpy()

Also, check for return values of library functions
and handle appropriately.

Stack Smashing

» Stack Randomization: Location of the Stack in the
memory layout of the program varies between
executions of a program. (Other segments can also be
relocated: Address Space Layout)

Reduce executable code locations: mark data, stack ,
heap as not executable.

Canary value 1s inserted by compiler during function
call and checked just before return to detect buffer
overflow attacks.

Memory Hierarchy Table from CSAPP Textbook

Type What cached Where cached Latency (cycles) Managed by

CPU registers 4-byte or 8-byte word On-chip CPU registers 0 Compiler

TLE Address translations On-chip TLB 0 Hardware MMU
L1 cache 6d-byte block On-chip L1 cache 1 Hardware

L2 cache 6d-byte block On/off-chip L2 cache 100 Hardware

L3 cache 6d-byte block Omn/off-chip L3 cache 30 Hardware
Virtual memory 4-KB page Main memory 100 Hardware + O8
Buffer cache Parts of files Main memory 100 O8

Ihsk cache Disk sectors Disk controller Controller irmware
Network cache Parts of files Local disk AFS/NFS client
Browser cache Web pages Local disk Web browser
Web cache Web pages Remote server disks Web proxy server

72)@ Pajfemj come ﬁom 7%6.
fetdy v execute cycle

D fetch rnstroctro
©) U,oc/a)‘e PC : @
B e s @
ope 19
@ j: o,o’e)raf?'ér\-/

\ (O pot resolt) ey ()
memory referen i

/ﬂ'lay e)C/n‘[g[f [qujg(f?/

temporal locality

Recently referenced memory locations are likely to
referenced again (soon!)

loop: instr 1 @ Al
instr 2 @ A2
instr 3 @ A3
Li‘f}h‘f.\'_".rb lOOp @ A4
Instruction stream references:
Al A2 A3 A4 A1l A2 A3 A4 A1 A2 A3 ..
N U U
' ' '

Note that the same memory location is repeatedly
read (for the fetch).

J/

© Karen Miller, 201!

spatial locality

Memory locations near to referenced
locations are likely to also be referenced.

Code must do something to
i each element of the array.

array < X Must load each element.

memory

© Karen Miller, 201!

The fetch of the code exhibits a high
degree of spatial locality.

12 is next to I1.
T1
I2
I3 _ .
- If these instructions are
- not branches,

then we fetch
. T1
' I2

I3

etc.

© Karen Miller, 201!

Needed terminology:

. o # of misses
miss ratio = total # of accesses
_ o # of hits
hit ratio = total # of accesses
or 1 - miss ratio

You already assumed that
total # of accesses = # of misses + # of hits

© Karen Miller, 201:

Wl\en a memory access Caqvsel @
miss, Place, that hbcahon’s é))rfe.s
and its mljl;borj (Sfméaj /ora]h‘y)
info the cache . Kecp Yhe. block.
of byfes there. for as /0_'7g as
possidle. (temporal focaliy).

A stabstc 4o measvre how well
Hus works -

A s

v
95003 Q

e @

QuircK exampla -'
Te = | nsec
Tm = o?O nsec

hit vatio I's .98
‘FOV‘ meus vred Pr?j ram
AMAT = | + ((02)(20)

= |4 nsec

)\/ofe, . I'ﬂdl'w'a/ua,é memoly
acerss Hakes ethey
| nsee (hit)

or o?/ nsec (rm'rS),

S = 2 sets <

Generic Cache Organization

1 Valiq bit rtag 1F)i‘cs B = 2 bytes
per line peilme per cache block

4 N

Cache size: C = Bx E x S data bytes

> E lines per set

Looking up a memory address
in Direct Mapped Cache

Set O: Cache block

Selected set v Set 1- Cache block

thits - sbUs__ BBits g5, Cache block

0
Set index Block offset

This cache is called
direct mapped
or
1-way set associative
or
set associative, with a set size of 1

Each index # maps to exactly 1 block frame

© Karen Miller, 201!

COOI(UP a/70r/'7%m, :
(CacA@ rece|ves aaférd‘s)
[Use index to identify frame

[l'f frame is valid

Addyess’ -/*aﬁ
HIT
else

MISS
e llse 3

[,f frame's tag matches

S data blaks

MISS

l

Looking up a memory address
in Direct Mapped Cache

=17 (1) The valid bit must be set

4

0 1 2 3

Selected set (1) Il ||0110 | IWn

W,

=]

(2) The tag bits in the cache)
line must match the N
tag bits in the address I

4 N\ 4 N

¢ bits s bits b bits
0110 1 100

m-1 0

Tag Set index Block offset

(3) If (1) and (2), then

cache hit,

and block offset

selects

starting byte.

On a huss

» Send the memory reﬁuejf 4 ma'n
'nemory.

*Memory retorns +he entrve black
Cont: f""’fi the neec{fq/ 67~/§/4/0r5{ ,

O?ZQCC ‘/Ac block int The fﬂme.
~Set +he —ﬁ'zj bifs
-'malk ‘f/)e frame Vd,é{.o'é.

And., while a/oz'nj Thi's, extract
he A)H’C/word ¥ retorn 14 7o
the processor (ompk}mj the

Memory access .

Types of Misses

* Compulsory or cold misses: Cache 1s empty
to start with and will miss.

* Conflict misses: Cache has space but because
objects map to the same cache block they keep
missing.

* Capacity misses: Cache does not have space
because size of the working set exceeds the
size of the cache.

/f"

‘

V’€JUC€, an[/@f MIS-JCS

Increase Set assoc 'cd‘lfvﬂ?/

& Wey Set assotiati /e

e? blocks per set (Une)

I G { xy dade B
= /‘////// y P/ P7 \:’\/_\\\::\::}fr_\\\\\\\\\\&
!

—

1-w

wesy sef aSsoctative

Jw ded Jx°3 e oy dadn) dede
IRE

e

=

|

Set Associative Cache Organization

Cache block .
E=2 lines per set
Cache block

Cache block

Cache block
Cache block

9 'fencls +o Jead o %/9/,6/*
/’u"f raf1o (dve 1o fewey CO/’)f// C

amount of crreys %ry goes vp,
[. : /
'/ md’mj fo increase |n /e

Looking up a memory address
in Set Associative Cache

Valid Cache block
Valid Cache block

set O:

Valid Cache block
Valid Cache block

Selected set | ot 1-

»

A Valid Cache block

tbits [5 Sboit(s) 1) bbits setS-I: Valid Cache block

Set index Block offset0

Looking up a memory address
in Set Associative Cache

(1) The valid bit must be set

0 1 2 3 4 5 6 7

1 1001
Selected set (1) IT_'I |C110 | IWO W, | W, Wzl

A

(2) The tag bits in one !] (3) If (1) and (2), then

of the cache lines must =7 cache hit, and

match the tag bits in I r block offset selects
the address - starting byte

tbits sbits b bits
0110 : 100

m-1

Tag Set index Block offset’

Fully Associative Cache Organization

Cache block

Cache block

Cache block

X E =C/B lines in

the one and only set

More circuitry and hence more expensive than
Direct mapped and Set Associative Caches

Looking up a memory address
in Fully Associative Cache

The entire cache is one set, so
by default set 0 is always selected

t bits b bits

Tag Block offset0

Cache block
Set 0: Cache block

Cache block

Looking up a memory address
in Fully Associative Cache

=17 (1) The valid bit must be set

A A A A

0

1

2

1001

0110

Entire cache

0110 |

W, |

1110

y

(2) The tag bits in one of the ‘ =9 "
cache lines must match the tag
bits in the address

s I\

t bits

r Y

b bits

0110

100

Tag

Block offset0

(3) If (1) and (2), then
cache hit, and block
offset selects
starting byte

Implementing writes
V Tag Data

*

memory

. write through

change data in the cache, and send the
write To main memory

slow @, but very little circuitry ©

© Karen Miller, 201!

. write back

- at first, change data in the cache
* write to memory only when necessary

) o V Tag Data
dirty bit is set ona
write, to identify blocks
to be written back to
memor
F L—— dirty bit

when a program completes, all dirty

blocks must be written to memory. .. |
/ R —

© Karen Miller, 2011

@ write back (continued)

> faster ©
multiple stores to the same location result
in only 1 main memory access

> more circuitry ©
> must maintain the dirty bit

> dirty miss: a miss caused by a read or write to
a block not in the cache, but the required block
frame has its dirty bit set. So, there is a write

of the dirty block, followed by a read of the
requested block.

© Karen Miller, 201]

Writing during cache miss:
(Two approaches)

* Write Alloc: Load block 1n cache and
update word (often used along with Write
back)

* Write No-Alloc (a.k.a.Write around): Just

update memory (often used along with
Write through)

V Tag Data

How about
2 separate caches ?

I-cache
= for instructions only
= can be rather small,

and still have excellent performance.

VTag Data V Tag Data

D-cache

= for data only

= needs to be fairly large

35
© Karen Miller, 201!

We can send memory accesses to the 2
caches independently. . .

© (increased parallelism)

Sfo,.,e D -

P

© Karen Miller, 201!

Strided Access Patterns

int 1, j, sum =0;
for(1=0;1<16;1++)
for(j=0;j<16;)++)
sum += a[i][j]

What if: sum += a[j][1] ?

Writing Cache Friendly Code

1. Focus on the inner loops where bulk of computation
and memory accesses occur

2. Maximize spatial locality by reading data objects
sequentially with stride 1

. Maximize temporal locality by reading a data object
as often as possible once it has been read from
memory.

Read/write heads

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Spindle

Cylinder k

<$ Platter O

I@j> Platter 1
=

— v\) —~ Platter 2

—

Spindle

Hard Disk Overview

Platters: Consists of two sides or surfaces coated with magnetic

recording material

Spindle: Spins the platter at fixed rotational rate (5400 to 15K

revolutions per minute - RPM)

Tracks

Gap

Surface
(> Track £
; \ ~~/
S
/

\
\

T

Sectors

Track: A ring on the magnetic surface made up of sectors.

Sectors: Each track is partitioned into a collection of Sectors.
Gaps 1n between sectors store formatting bits that 1dentify sectors.

Cylinder: Collection of tracks on all surfaces that are
equidistant from the center of the spindle.

Access Time for a Sector

TI/ O= Tseek + Trot + Txfr

Seek Time: Time taken to position the head over the
track that contains the target sector.

Rotational Latency: Time taken for the first bit of the
target sector to pass under the head.

Transfer time: Time taken to read or write the contents
once the first bit of the target sector 1s under the head.

Accessing Disks

Memory mapped 1/0: A block of addresses in the

address space 1s reserved for communicating with the
I/0 devices.

Each of these addresses 1s called an 1/0 Port.

Every device attached to a bus will have a
corresponding I/0O Port.

Small Communication with the I/O devices happens
through the I/0 port.

Textbook Example

Suppose magnetic disk 1s mapped to I/0 port 0xa0
CPU 1nitiates disk read by 3 store instructions:

1) Send a command word indicating to perform a read
along with other parameters like interrupt on
completion of DMA.

Send the logical block number that must be read.

Indicate the main memory address where the
contents of the disk sector should be stored.

Direct Memory Access

After 1ssuing the request, CPU executes other
instructions. Note: A 3GHz processor with a 0.33 ns
clock cycle can execute 9 million 1nstructions 1n 3ms.

After receiving the read command from the CPU, the
disk controller fetches data from the right sector and
transfers 1t directly to the memory without the
involvement of the CPU.

After DMA 1s complete, disk controller notifies by
sending interrupt signal to the CPU.

CPU chip
Register file

:> Disk Controller reads the
<:| data and DMA transfer to

ﬁ memory
Bus interface < > Main
memory

USB Graphics
controller adapter contr@ller

I/0 bus >

MouseKeyboard =~ Monitor

— Disk Controller notifies CPU
PP with an interrupt after DMA
Register file

:> completes
<1,:| Interrupt

. Main
pusintertice [| K>
memory|

USB Graphics Disk
controller adapter controller

I/0 bus >

MouseKeyboard Monitor

Solid State Disks

Made up of flash memory chips that store data instead of the magnetic
surfaces in a conventional disk.

A Flash Translation Layer translates logical block addresses to accesses to the

right block and page within the flash memory chip.
/O bus

Requests to read and
write logical disk blocks

translation layer

Flash memory 1
Block O Block B-1

SSD vs. Magnetic Disks

Advantages: SSDs have no moving parts and hence are

more quiet during operation, faster, need less power and
are more rugged.

Disadvantages:

1. Possibility of wear out after several program-erase
cycles. This 1s mitigated by the flash translation layer.

2. More expensive than magnetic disks.

Storage Trends

DRAM and disk performance are lagging behind CPU performance.
Though SRAM performance also lags, it is roughly keeping up.

100,000,000.0
10,000,000.0
1,000,000.0
100,000.0
10,000.0
1,000.0

100.0

10.0

1.0

0.1

0.0

—&—Disk seek time

—A—Flash SSD access time
—-DRAM access time

—8— SRAM access time
—{1-CPU cycle time

—O—Effective CPU cycle time

1980 1985 1990 1995 2000 2003 2005 2010
Year

UnixI/0

Unix file 1s a sequence of bytes.

All I/0 devices including networks, terminals, disks are modeled
as files. E.g. /dev/sda for disk, /dev/tty for terminal

This way, programmers use a simple low-level interface called the

Unix I/0 to interact with all I/0 devices
Some examples of operations on files:

* Opening and Closing files

* Reading and writing files

* Changing the current file offset

e Read metadata about a file

Unix I/0O APIs

int open(char *filename, int flags, mode_t mode);
ssize_t read(int fd, void *buf, size_t n);

ssize_t write(int fd, const void *buf, size_t n);
off_t Iseek(int fd, off_t offset, int whence);

int fstat(int fd, struct stat *buf);

Each process created by a Unix shell begins life with
three open files: standard input (descriptor 0), standard
output (descriptor 1), and standard error (descriptor 2)

Sharing Files
(Descriptions from CSAPP Text)

Descriptor table: Each process has its own separate descriptor table
whose entries are indexed by the process’s open file descriptors. Each
open descriptor entry points to an entry in the file table.

File table: The set of open files is represented by a file table that 1s
shared by all processes. Each file table entry consists of (for our
purposes) the current file position, a reference count of the number of
descriptor entries that currently point to it, and a pointer to an entry in
the v-node table. Closing a descriptor decrements the reference count in
the associated file table entry. The kernel will not delete the file table
entry until its reference count is zero.

v-node table: Like the file table, the v-node table is shared by all
processes. Each entry contains most of the information in the stat
structure, including the st_mode and st_size members. v-node table and
the related VFS(Virtual File System) interface is the separation between
specific file system implementations and the generic file system
operations.

Typical OS kernel data structures for open files.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)

File A
£40 e —

fd 1
fd 2

File access
File pos File size

fd 3 refcnt=1 File type

fd 4

\E‘E‘L File access

—

File size
File type

File pos

refcnt=1

Standard I/0

C Standard library (libc) provides:

fopen, fclose

fread, fwrite
fgets, fputs
fscanf, fprintf

Standard 1/0O models files as streams and buffers 1/0

Unix I/0 vs Standard I/0 vs RIO

Unix I/0 1s the lowest form of interface and provides basis
for both Standard I/O and RIO

Unix I/0 can be used 1n signal handlers

Unix I/0 does not deal with short counts like Standard I/0
or RIO

Unix I/0 does not have buffering and hence 1s inefficient.

Standard I/0 solves both short counts and buffering issues
of Unix I/0 but cannot be used for networking applications

due to poorly documented restrictions hence the need for
RIO.

Difterent I/0 interfaces in perspective

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

C application program

open read
write 1lseek
stat close

Standard 1/O RIO
functions functions

rio readn
rio writen
rio readinitb
rio readlineb
rio readnb

V4
AA

Data
Status

addresses Oxffffooe8
OXTFTFffoeoc

’/U\ Data

Status

addresses OxffffoO10
Oxffffeei14

} Keyboard

} Display

memory mapped

Now, driver code uvseS a
Spin wait Josp
(1"0 ,'m/?/emenf b/ack;nj I/O)

Kb_spin Z%«fz Keglord St Ayl ol
jz Kb-S e

movl K baard- Data, T €aX
re.‘:ﬁm%

d 15P-3pin - &fes%[Dryalay,-s‘d”f, Dpley -Sets
)z disp-spire
movl “hea, Display- Lot

ret -ﬁ'omﬁf%ﬂf\

: |

mouse keyboard printer monitor

@diské é il "'\ [[E — I{; -
N/

disk graphics
CPU controller USB controller adapter

memory

EE——

Byte transfers are OK,

But, what about faster devices that like to
transfer more than a byte ?

the solution: DMA

Direct Memory Access

Al

controller

Issue for spin wait loop
iImplementations:

One byte only in Data has the potential
for an incorrect result.

For example, if the user types 2
characters on the keyboard before
getchar () is called.

The needed fix introduces a kernel-
maintained queue for each device.

Then, the kernel polls to check status bits
and handle any ready devices.

Because polling is so inefficient,

instead of

//OS\

device 1| |device 2 device n
ready? ready? - " lready?

©These slides may be freely used, distributed, and incorporated into other works.

Turn the situation upside down

device 1| |device 2 device n

©These slides may be freely used, distributed, and incorporated into other works.

Anatomy of an exception

An exceptions 1s an abrupt change in control flow.

Examples: div by 0, arithmetic overflow, page fault, I/0
request completes, Ctrl-C

Application Exception
program handler

Event .
0CCUrS | Exception

here / " Exception
\ processing
Exception

return
(optional)

Classes of Exceptions

. Interrupts (Asynchronous): Always return to
next instruction.

. Traps & System Calls (Synchronous): Always
return to next mstruction.

. Faults (Synchronous): Might return to next
instruction.

. Aborts (Synchronous): Never returns

Interrupts

Examples of Interrupts:

Timer interrupt

Arrival of a packet from a network
When a key is pressed on the keyboard
When the mouse is moved

(2) Control passes
(1) Interrupt pin to handler after current
goes high during Iy | instruction finishes
execution of loxt 1 (3) Interrupt
current instruction \ handler runs
(4) Handler

returns to
next instruction

Traps

Traps are intentionally 1ssued by executing an
instruction.

Example: System calls

(2) Control passes

1) Application
()mglfes i syscall . to handler
/

system call next

(3) Trap
handler runs
(4) Handler returns
to instruction
following the syscall

Faults

Faults result from error conditions that might be
correctable.

Examples: Page fault, Divide error

(1) Current (2) Control passes

; . | to handler
instruction curr ¥,

causes a fault (3) Fault
handler runs
+ abort

(4) Handler either reexecutes
current instruction or aborts.

y

Aborts

Aborts result from unrecoverable fatal errors.

Example: parity errors due to DRAM bit corruption

(2) Control passes

(1) Fatal hardware |_ l to handler
error occurs " (3) Abort

handler runs

[

(4) Handler returns
to abort routine

Exception Table

Exception table

Code for
exception handler O

Exception

exception handler 1
e P
o

./

Code for
exception handler 2

-

Code for
exception handler n-1

Exception Table lookup

Exception 1s similar to procedure calls except for some
important differences:

- Return address 1s not the next instruction always
- Push EFLAGS register also onto kernel stack

- Run exception handler in kernel mode

EXCGP’UO(;‘()”Umber Exception table

0
1

Address of entry 2
Exception table X, for exception # k
base register o\

n-1

[A32 Exception Table

From CSAPP text

hoOK:

Exception Number

Description

Exception Class

0

Divide error

Fault

13

General protection fault

Fault

14

Page fault

Fault

18

Machine check

Abort

32-127

OS-defined

Interrupt or trap

128 (0x80)

System call

Trap

129-255

OS-defined

Interrupt or trap

/Ka%er |’MPOV+¢n:f‘, bot nst
covered in textloolc.

TFf running a hand ler and a
new l'n'}erfuf)‘f' V‘oth?Sf arrivel,
what should lqappm_?

R Continue on, £0mp/ef€ AdnaM'nj
of <urrent” atenpt, then, when
done., deal with new regwéf‘?

(probebly) non reentrant

K Tferropt +he handling o
Hhis mfcrr‘i/o:’" ?ﬁ 4

reentrant

Consider the x86 instruction:
cli clear IF

What happens if an application includes this
cli instruction?

Irrelevant (to this discussion) x86 instruction:
sti set IF

Non veentrant Limeling

L

Q,t,;l

iﬁ%\en’f\f ant Hmeline
IRgl_

dev 2 1
fr?x::g_ué e WSL‘@*”

Processes

. Process: an instance of a program in execution

. Guve the 1llusion that our program 1s the only
one currently running in the system

. Process Context consists of state including:
Virtual Memory Layout, CPU registers, file
descriptors, environment variables etc.

. Key abstraction provided by a process:
2. Independent logical control flow

b. Private address space

Logical Control Flow

The single physical control flow of CPU is partitioned
into logical control flows of several processes.

Process A Process B Process C

Concurrent and Parallel Flows

I. Alogical flow whose execution overlaps in
time with another flow 1s called a concurrent
flow.

. E.g. A & B are concurrent in previous slide, A
& C are also concurrent while B & C are not
concurrent.

. Parallel flows: A subset of concurrent flows
where the individual flows run on multiple
cores or machines in parallel.

Private Address Space

|. A process provides each program the illusion
that 1t has exclusive use of the system’s address
space through virtual memory.

. This concept of private address space per
process makes writing programs much easier
rather than dealing with physical memory
addresses. (e.g. frees the programmer from
managing the physical memory resources)

Privileged Mode

. User Mode: Cannot execute privileged
instructions like one that halts the CPU. Also
cannot access kernel area of address space.

2. Kernel Mode (Privileged/Supervisor Mode):

Can execute any instruction and access any
memory location.

Process runs application code in user mode and
switches to kernel mode only via an exception like
interrupt, system call etc.

Signals

Unix Signal 1s a higher level software form of
exceptional control flow.

A Signal 1s a small message that notifies a process
that an event of some type has occurred in the
sytem.

Processes and the Operating System can interrupt
other processes using Signals.

Signal Handling

Control flow while handling signals.

(1) Signal received (2) Control passes
by process / to signal handler

curr \ >
Inext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Low

hand]

Signals

evel exception we discuss in last lecture are
ed by the Operating System’s exception

hand]

ers and are not visible to user level processes.

Signals provide a mechanism for exposing these
low level exceptions to user processes.

E.g. -

If a process executes an 1illegal instruction,

then OS kernel sends a SIGILL signal.

If a process divides by zero, then the OS

kernel sends the process a SIGFPE signal.

Signals

List of Linux Signals 1n “man 7 signal”

The transfer of a signal occurs 1n two distinct
steps:

1) Sending a signal

2) Recewving a signal

Sending Signals

OS Kernel sends/delivers a signal to a destination
process by updating the process context.

A signal can be sent in two ways:

1) Kernel has detected an event like divide-by-
zero or termination of a child process

2) A process has invoked the kill function to
explicitly request the kernel to send a signal to
the destination process.

Four ways of Sending Signals

|, With /bin/kill program:

a. ‘“/bin/kill -9 p1d” sends signal 9 (SIGKILL) to process
15213

b. “/bin/kill -9 -p1d” sends signal 9 to all processes in
process group 15213

2. Sending signals from the keyboard:

a. Typing Ctrl-C on shell sends SIGINT signal to
every process in the foreground process group.

b. Typing Ctrl-Z sends SIGTSTP to every
foreground process and the result 1s to suspend
them.

Four ways of Sending Signals

5. Sending signals with the kill function:
int kill(pid_t pid, int sig);
* positive pid sends signal to that process

* negative pid sends signal to every process 1in process
group abs(pid)

4. Sending signals with the alarm function:
unsigned 1nt alarm(unsigned int secs)

* A process can send SIGALRM signals to itself
by calling the alarm function.

Recelving Signals

Before kernel returns control to a process after
executing a exception handler, 1t checks the set of
unblocked pending signals.

» If the set 1s empty(the usual case), then control
goes to the next instruction.

- If the set 1s not empty, then OS kernel chooses
one of the pending signals and forces the
process to receive the signal.

Recelving Signals

Each signal has a predefined default action which
1s one of:

1) The process terminates
2) The process terminates and dumps core

5) The process stops until restarted by a
SIGCONT signal

4) The process 1ignores the signal

Recelving Signals

However, a process can choose to install 1ts own
modified default action for all signal except

SIGSTOP and SIGKILL using:

sighandler_t signal(int signum, sighandler_t
handler);

Signal handlers are yet another example of
concurrency.

Recelving Signals

The signal function can change the action associated with
a signal 1n one of three ways:

1) If handler 1s SIG_IGN, then signals of type signum
are 1gnored.

2) If handler 1s SIG_DFL, then the action for signals of
type signum reverts to the default action.

3) Otherwise, handler 1s the address of a user defined
function called signal handler that will be invoked
whenever the process receives a signal of type signum.

Example program for user defined signal handler
function.

Signal Handing Issues

Pending signals are blocked: Unix signal handlers
block pending signals of the type currently being
processed by the handler.

Pending signals are not queued: There can be
atmost one pending signal of any particular type.

System calls can be interrupted: In some systems,
interrupted system calls will return immediately to
user with an error condition.

