
CS 354 Practice Exam 2 Solution Notes
Leo does not guarantee all answers here do not have any mistakes at all.
Question 1: Cache design
Assume a cache with the following characteristics:

1. A block/line size of 16 bytes
2. An associativity of two (2-way set associative)
3. Eight (8) total entries

V Tag Data

V Tag Data

1 1111111100

1 1111111100

1 1000000000

1 1000000010

1 1000000010

(A) Assume 16-bit addresses. Which bits correspond to the tag, index, and offset? / tag 0000 0000 00 / set 00 / offset 0000
(B) Assume the following address stream. What is the state of the cache after the addresses

have been accessed? Ignore the data that is stored/loaded. Fill in the above picture, except
the data portion. 0xff00, 0xff04, 0xff1c, 0x80a0, 0xff10, 0x8010, 0xff00, 0xff04, 0x80b0, 0xff14

0xff00 – 1111111100 | 00 | 0000 - M 0xff04 - 1111111100 | 00 | 0100 - H 0xff1c - 1111111100 | 01 | 1100 - M 0x80a0 - 1000000010 | 10 | 0000 - M 0xff10 - 1111111100 | 01 | 0000 - H 0x8010 - 1000000000 | 01 | 0000 - M 0xff00 - 1111111100 | 00 | 0000 - H 0xff04 - 1111111100 | 00 | 0100 - H 0x80b0 - 1000000010 | 11 | 0000 - M 0xff14 - 1111111100 | 01 | 0100 - H

(C) What is the hit ratio for this address stream? (You can leave your answer as a fraction.)
 5/10 = 0.5

Question 2: Procedure Calls - Calling Conventions

Consider a new processor design called the x97 architecture, which has a total of 32 registers
named r1 through r32 and the same instruction set as x86. The conventions for implementing
procedures is much different in x97 when compared to the x86 architecture. In x97, the registers
always contain the function arguments: starting with argument1 in r1, argument2 in r2, etc., with
up to 16 arguments. In addition, r31 contains the return value, and r32 stores the value of the
return address. The rest of the registers are “callee save”.

2a) What exactly will be stored in the stack during a function call in the x97 architecture?
 Is there still need for a stack?
 Yes, stack will have prev ebp, callee saved registers, live function related registers across function calls, local variables.

2b. Fill in the empty slots in the diagram of the stack on the right side considering the C program
on the left side is running on the x97 architecture.

X86 assembly program:

<f>: push %ebp mov %esp,%ebp sub $0x10,%esp movl $0x14,-0xc(%ebp) # Local var a movl $0x1e,-0x8(%ebp) # Local var b movl $0x28,-0x4(%ebp) # Local var c mov -0xc(%ebp),%eax # mov a to eax imul -0x8(%ebp),%eax # arith mov %eax,%edx # arith sar $0x1f,%edx # arith idivl -0x4(%ebp) # arith leave # return ret <main>: push %ebp mov %esp,%ebp sub $0x1c,%esp #allocate space movl $0x3,-0xc(%ebp) # local var a movl $0x4,-0x8(%ebp) # local var b movl $0x5,-0x4(%ebp) # local var c mov -0xc(%ebp),%eax # set up arg 3 mov %eax,0x8(%esp) mov -0x8(%ebp),%eax # set up arg 2 mov %eax,0x4(%esp) mov -0x4(%ebp),%eax # set up arg 1 mov %eax,(%esp) call 8048394 <f> # call function f leave ret

Corresponding X97 assembly program:
<f>: push %ebp mov %esp,%ebp sub $0x10,%esp movl $0x14,-0xc(%ebp) # Local var a movl $0x1e,-0x8(%ebp) # Local var b movl $0x28,-0x4(%ebp) # Local var c mov -0xc(%ebp),%r31 # mov a to eax imul -0x8(%ebp),%r31 # arith mov %r31,%r30 # arith sar $0x1f,%r30 # arith idivl -0x4(%ebp) # arith leave # return ret <main>: push %ebp mov %esp,%ebp sub $0x10,%esp #allocate space movl $0x3,-0xc(%ebp) # local var a movl $0x4,-0x8(%ebp) # local var b movl $0x5,-0x4(%ebp) # local var c mov -0xc(%ebp),%r3 # set up arg 3 mov -0x8(%ebp),%r2 # set up arg 2 mov -0x4(%ebp),%r1 # set up arg 1 mov %r32,-0x14(%ebp) call 8048394 <f> # call function f mov -0x14(%ebp), %r32 leave ret

2c) Fill in the slots in the stack layout of x97 below considering the instruction (sar
$0x1f,%edx) in function f is being executed by the Processor.

2d) Write a short sequence of assembly instructions that emulates the "leave" instruction.
 mov %ebp, %esp popl %ebp

 %ebp of main’s caller
 C
 B
 A
 %r32 saved reg
 %ebp of main %ebp
 C
 B
 A
%esp

Address
Lower
at
bottom

Question 3: Procedure Calls
3a) Fill in the empty slots in the diagram of the stack on the right side considering the C program
on the left side is running and the instruction at address 0x804839a is executing.

08048394 <f>: 8048394: push %ebp 8048395: mov %esp,%ebp 8048397: sub $0x10,%esp 804839a: movl $0x14,-0xc(%ebp) #local var a 80483a1: movl $0x1e,-0x8(%ebp) #local var b 80483a8: movl $0x28,-0x4(%ebp) #local var c 80483af: mov -0xc(%ebp),%eax # fetch a 80483b2: imul -0x8(%ebp),%eax #arith 80483b6: mov %eax,%edx #arith 80483b8: sar $0x1f,%edx #arith 80483bb: idivl -0x4(%ebp) #arith 80483be: leave # return 80483bf: ret 080483c0 <main>: 80483c0: push %ebp 80483c1: mov %esp,%ebp 80483c3: sub $0x1c,%esp 80483c6: movl $0x3,-0xc(%ebp) # Local var a 80483cd: movl $0x4,-0x8(%ebp) # Local var b 80483d4: movl $0x5,-0x4(%ebp) # Local var c 80483db: mov -0xc(%ebp),%eax 80483de: mov %eax,0x8(%esp) #set up arg 3 80483e2: mov -0x8(%ebp),%eax 80483e5: mov %eax,0x4(%esp) #set up arg 2 80483e9: mov -0x4(%ebp),%eax 80483ec: mov %eax,(%esp) #set up arg 1 80483ef: call 8048394 <f> # call f 80483f4: leave 80483f5: ret

 %ebp of
main’s caller

 C
 B
 A

 A
 B
 C
 ret address 0x80483f4

 %ebp of main %ebp
 A
 B
 C
%esp

3b) State one technique used by the compiler to detect and minimize the ill effects of stack
smashing attacks during runtime.

 Canary values

3c) State one technique used by the Operating System to reduce the possibility of stack smashing
attacks.

 Address space layout randomization or stack randomization

3d) State one precautionary measure that you as a programmer can take to avoid stack smashing
attacks on the programs that you write.
 Check return values Don’t use function that can cause buffer overflow (eg. Strcpy

Address:
Lower at
bottom

Question 4: Cache Organization

Assume the following is true for this question:
• The memory is byte addressable.
• Memory accesses are to 1-byte words (not 4-byte words).
• Physical addresses are 12 bits wide.
• The cache is 2-way set associative, with a 8-byte block size and 64 total cache lines.
In the following tables, all numbers are in hexadecimal format. The contents of the cache are
as follows:

2 way set associative cache
All values are in hexadecimal notation

I
n
d
e
x

T
a
g

V
a
l
i
d

B
y
t
e
0

B
y
t
e
1

B
y
t
e
2

B
y
t
e
3

B
y
t
e
4

B
y
t
e
5

B
y
t
e
6

B
y
t
e
7

T
a
g

V
a
l
i
d

B
y
t
e
0

B
y
t
e
1

B
y
t
e
2

B
y
t
e
3

B
y
t
e
4

B
y
t
e
5

B
y
t
e
6

B
y
t
e
7

0 2 0 34 29 34 29 39 AE 34 29 3 0 68 F2 34 29 39 AE 34 29
1 3 1 0D 8F 0D 8F 0C 3A 0D 8F 1 1 A4 DB 0D 8F 0C 3A 0D 8F
2 A 1 E2 4 E2 4 D2 4 E2 4 D 1 3C A4 E2 4 D2 4 E2 4
3 3 0 AC 1F AC 1F B5 70 AC 1F 5 0 66 95 AC 1F B5 70 AC 1F
4 0 1 60 35 60 35 19 57 60 35 1 1 8D 0E 60 35 19 57 60 35
5 A 1 B4 17 B4 17 67 DB B4 17 6 1 DE AA B4 17 67 DB B4 17
6 C 0 3F A4 3F A4 3A C1 3F A4 A 0 20 13 3F A4 3A C1 3F A4
7 D 0 34 29 34 29 39 AE 34 29 9 0 68 F2 34 29 39 AE 34 29
8 3 1 0D 8F 0D 8F 0C 3A 0D 8F 0 1 A4 DB 0D 8F 0C 3A 0D 8F
9 A 1 E2 4 E2 4 D2 4 E2 4 D 1 3C A4 E2 4 D2 4 E2 4
A 3 0 AC 1F AC 1F B5 70 AC 1F 5 0 66 95 AC 1F B5 70 AC 1F
B 1 1 60 35 60 35 19 57 60 35 1 1 8D 0E 60 35 19 57 60 35
C A 1 B4 17 B4 17 67 DB B4 17 7 1 DE AA B4 17 67 DB B4 17
D C 0 3F A4 3F A4 3A C1 3F A4 2 0 20 13 3F A4 3A C1 3F A4
E 1 0 3F A4 3F A4 3A C1 3F A4 6 0 20 13 3F A4 3A C1 3F A4
F A 1 34 29 34 29 39 AE 34 29 B 1 68 F2 34 29 39 AE 34 29
10 3 1 0D 8F 0D 8F 0C 3A 0D 8F C 1 A4 DB 0D 8F 0C 3A 0D 8F
11 A 1 E2 4 E2 4 D2 4 E2 4 2 1 3C A4 E2 4 D2 4 E2 4
12 E 0 AC 1F AC 1F B5 70 AC 1F 5 0 66 95 AC 1F B5 70 AC 1F
13 2 1 60 35 60 35 19 57 60 35 C 1 8D 0E 60 35 19 57 60 35
14 A 1 B4 17 B4 17 67 DB B4 17 7 1 DE AA B4 17 67 DB B4 17
15 8 0 3F A4 3F A4 3A C1 3F A4 A 0 20 13 3F A4 3A C1 3F A4
16 3 0 34 29 34 29 39 AE 34 29 3 1 68 F2 34 29 39 AE 34 29
17 4 1 0D 8F 0D 8F 0C 3A 0D 8F A 1 A4 DB 0D 8F 0C 3A 0D 8F
18 A 1 E2 4 E2 4 D2 4 E2 4 4 1 3C A4 E2 4 D2 4 E2 4
19 B 0 AC 1F AC 1F B5 70 AC 1F 0 0 66 95 AC 1F B5 70 AC 1F
1A 7 1 60 35 60 35 19 57 60 35 7 1 8D 0E 60 35 19 57 60 35
1B E 1 B4 17 B4 17 67 DB B4 17 D 1 DE AA B4 17 67 DB B4 17
1C C 0 3F A4 3F A4 3A C1 3F A4 1 0 20 13 3F A4 3A C1 3F A4
1D A 0 3F A4 3F A4 3A C1 3F A4 C 0 20 13 3F A4 3A C1 3F A4
1E C 0 3F A4 3F A4 3A C1 3F A4 3 0 20 13 3F A4 3A C1 3F A4
1F F 0 0 FF 0 FF B1 5F 0 FF 5 0 AC 96 0 FF B1 5F 0 FF

4a. The box below shows the format of a physical address. Indicate (in the diagram) the bits that
are used to determine the following: O(the block offset within the cache line), I (the cache
index), and T (the cache tag).

Bit

11 10 09 08 07 06 05 04 03 02 01 00
Use T T T T I I I I I O O O

4b. Now, for the following 12 bit addresses, perform lookup on the cache and fill in the table:

Address

Address in binary form
Tag
(hex)

Index
(hex)

Offset
(hex)

Hit?

Word
Returned
(if known) 11 10 9 8 7 6 5 4 3 2 1 0

 0x3B6 0 0 1 0 1 0 1 1 0 1 1 0 3 16 6 H 34

0xD3A 1 1 1 0 0 0 1 1 1 0 1 0 D 7 2 M

0xABC 1 0 1 0 1 0 1 1 1 1 0 0 A 17 4 H 0C
0x97A 1 0 0 1 0 1 1 1 1 0 1 0 9 F 2 M

4c. State one advantage and one disadvantage of a Set associative cache when compared to a
direct mapped cache. Adv: less conflict misses Disadv: More circuitry and more Tc cache access time

4e. The following table gives the parameters for a number of different caches, where m is the
number of physical address bits, C is the cache size (number of data bytes), B is the block size in
bytes, and E is the number of lines per set. For each cache, determine the number of cache sets
(S), tag bits (t), set index bits (s), and block offset bits (b).

Cache m C B E S t s b
1 32 1024 4 256 1 30 0 2
2 16 1024 4 1 256 5 9 2
3 12 256 8 8 4 7 2 3
4 32 512 32 4 4 25 2 5

Question 5: Interrupts and Exceptions

When a system starts running, the operating system is the first piece of code to execute, and it
informs the CPU of the location of various trap and interrupt handlers via a special instruction;
on x86, the ldt (or load descriptor table) instruction is used. This way, the CPU knows what code
to run when one of these exceptional events occurs.

5a) On x86, the ldt instruction can only be executed when the CPU is in privileged mode.

What is privileged mode?
 No restrictions on instructions or memory accesses in privileged mode.

5b) Why does the CPU need to be in privileged mode for ldt to run? What bad things
could happen otherwise?
 Otherwise, malicious programs could change the IDT and could set up their own code as exception handlers leading to chaos.

5c) What happens when a normal user application, such as a program you wrote and
compiled, tries to execute a privileged instruction such as ldt?

 There is a fault caused for executing privileged instruction and probably a signal is also sent to the process that tried to execute it.

5d) What are the four types of exceptions and what distinguishes one from the other?
 Exceptions: Interrupts, Traps, Aborts, Faults

Interrupts are caused when an event occurs that needs attention from the CPU. Examples of Interrupts: Timer interrupt, key press, mouse movement
Traps are intentionally issued by executing an instruction. Example: System calls Faults result from error conditions that might be correctable. Examples: Page fault, Divide error Aborts result from unrecoverable fatal errors. Example: parity errors due to DRAM bit corruption

5e) What is the difference between a re-entrant and non re-entrant interrupt handler? In
what types of scenarios might a re-entrant interrupt handler be better? Reentrant : higher priority interrupts can interrupt a reentrant signal handler. Better for real time systems.

Question 6: Caches and Disks (mixed set of questions)
6a) State any one victim selection policy that can be used to pick the victim to be replaced in a
set associative cache in order to make space for a new block of contents fetched from memory? Least Recently Used, First in First out
6b) What components make up the positioning time during an access to data on a magnetic disk? Rotataional and Seek latency

6c) What is the need for sophisticated flash translation layer (FTL) for Solid State Drives? To manage mapping between logical block addresses and physical pages in such a way that the program-erase overheads can be minimized and wear leveling can be achieved.

6d) What is memory mapped I/O?
 Writing to memory addresses (I/O Ports) translates to accessing the I/O device.

6e) What is Direct Memory Access (DMA) ?
 Device transfers data directly to memory without the involvement of the CPU.

6f) What is the AMAT for a cache that has a hit rate of 20%, a miss latency of 10 cycles, and a
hit latency of 3 cycles?
 3 + 0.8*10 = 11

6g) What are the three kinds of cache misses? Explain each one.
 Capacity, conflict and compulsory/cold misses.
6h) Explain one way you may restructure your code to be more cache friendly.
 Use stride-1 or lesser strided access pattern.

6i) Assume there is a disk with a 5ms average seek time, a spin rate of 6000 RPM, and a transfer
rate of 50 MB/s.
 6i-1) What is the average rotational latency for this disk? 10/2 = 5 msecs
 6i-2) What is the average total access time to read a file of 512 KB (0.5 MB) including
positioning time? 5 + 5 + 10 = 20 msecs
 6i-3) After you read this 512 KB file, you immediately want to re-read the first 5 KB. How
long does this take (exactly)? 1 full rotation + access time = 10 + 0.1 = 10.1 msecs

