1a. Most of the time, the x97 uses 2’s complement representation for integers. On an 8-bit version of x97, what is the
range of numbers that can be represented in 2’s complement form?

(oo 0000 —> O i (1L
bac)a)(fﬁ negafive b\g}d}-‘a;z,&'i'ﬁ\/@

- 128 |2 F

1b. The x97 designers decided that just using 2’s complement all of the time was boring, and added a new processor
mode which uses a different representation for integers which they call “sign and magnitude”. In this form, the most
significant bit is simply used to indicate whether the integer is positive or negative (the “sign™); the other bits are used
for the value of the number. On an 8-bit machine, what is the range of numbers that can be represented with “sign and

magnitude” representation?
7 |2 T

- 172 % &
(e L O L

asume =) V'\e;)uflve

. MMSB
o =) \f)og\"h'ue

1c. “Sign and magnitude” form, much like many other aspects of x97, has some problems as compared to 2’s comple-
ment. What are they? Are there any ways in which “sign and magnitude” is better than 2’s complement?

?Vbbléb'uﬁs ¢
—» 5 ()V@S er\—ci ﬁbms

and © oo 0000
C?NC ﬁt <

qdd tibn y ubtre ef1d iy

C/‘(4 Z2E€Vo
| o0 O oo

'—> SU?L’WH\/ SVV\G”GV Vtu/t(}f"

._> o vder +D Cl o

Rewnefits
— €asy to exp %

2a. The x97 has a new instruction set, quite different than the x86. One example is found in the registers: instead of all
the crazy names for general-purpose registers (that the Intel engineers never seemed to be able to remember), there are
just a uniform set of registers named r1,r2, ..., r32. Actually, you can help out Intel here too; what are the names of
the Intel x86 general-purpose registers?

Cax € bx (€ b[') '(/‘/
ccx est esp
edx ed . i

2b. On x97, all instructions are register based, meaning that they only can have registers (like r1 through r32)
as their operands; further, all operands are specified explicitly. Thus, something as simple as an add instruction
looks like this: add registerl,register2, register3.In thisadd instruction, the contents of registerl
and register2 are added together; the result is put into register3. Given the following x86 add instruction,
specifically add regl, reg2,how would you rewrite it in an equivalent form on x97?

i ol By ' m =¥ + €0
add vreq, ,req, 'S reg, =€9. J

€.9-, add Y eay, % € bx
i ng (sre) (sve) Cdst)
add reg,, reg,, v,

(S fhe €,CC Civalent

69/ Gdc(L/‘(/'2' /’1

2¢. Immediate values are generated a little differently on x97 too. On x86, amov $10, $eax would put the value
10 into register eax. On x97, you have a specific init instruction, which takes two operands: the first is the target
register, and the second is an immediate value. Rewrite themov $10, %eax instruction in x97 assembly:

k86 W
mov $10 , % edx

2d. On x97, there are a number of conditional jump instructions, which look like this: jXX regl,reg2,target.
For example, the j1e will jump to the target address if regl is less than or equal to reg2. Other similar instructions
exist for jump greater, greater-than-or-equal, jump-if-equal, etc. What is the x86 equivalent of the x97 jump instruction

jle regl,reg2,target?

>

- e) Lx s Bl
C M {'-j v ('.0)2, P C9 i +nwd 118 No(h(&)

g'éz’(z ven (e

.

J X € ta vget

first: does ¢ ompar e, |
set¢ cowd. code (’CCS')‘

se ((‘JHcJ : doey /"u' v p
(} a se C(O gz‘ C <

o

2e. Moving values among registers is easy in x97; you just use the rmove instruction. The instruction takes two
operands, e.g., rmove regl,reg2 and moves the contents of regl into reg2. How is this similar to x86? How is it

different?
S‘i\m!ﬁlqr x Bk (nshruction - oV

e.9. , oy Yo eay, % €bx

iQ V) '{" X 8\6 wo\V l‘-S Mo Ve ﬁt’ﬁf[’Q/
szd Can Lhwe Sv¢ ov CfS?“

@ Q@ (}/l/lftﬂnocy /o’(_q('{bv\ '{"OQ

2f. One last difference is found in how memory is accessed. On x97, there are two specific instructions to access
memory: load and store. The load instruction has the following form: load registerl, register2,
which treats register1 as an address; it then loads the value at that address into register2. The store instruction
is similar, but stores the contents of register] into the memory location of register2. You now have to translate the
following x86 instruction into x97 form: movl 20 (regl,reg2,1),reg3. What sequence of instructions could
you use on x97 to perform the equivalent load from memory? s »

- ‘) commpe e addess’

xP6 ! r, e, rs cax + ebx +20
\ : % e b l) 7 ecx . ‘ mh;ﬁy‘; "
. mov A 20 (% evy, 76 € Vs S 790 2) fetch addreSs,
\X\ {vf in &X
x%f
ks VA%]'ZO
add m,, Iy vseg vy for
5 ildeety pal eo kb
vd d v . address (f/LU/Q)
C\(d 2 i 49 6 |) \
(DGCL]"‘L' y b’rg SYe . ¥,) Fe

d S’t"; \fR

4a. Consider the following x86 code snippet:

foo:
pushl %ebp '%l
movl %esp, %ebp e
movl 12(%ebp),%ecx) e :
xorl %eax,%eax © = €9x (vé)c(%)
movl 8(%ebp),%edx % => edy
cmpl %ecx,%edx y 2)
jle .L3 v ()(< '7?() Fwvidh
«I5 ¢
addl %edx, %eax edy = €Y - X (k\
decl %edx x = x-| |
cmpl %ggf'%edx L Cn? \/) ,/ E
jg .L5 = =
«L33
leave
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: only use

symbolic variables z, y, i, and result, from the source code in your expressions below — do nor use register names,

as that wouldn’t make any sense!)
Blebp) < (ebp)
int foo(int x, int y)

{
int i, result=0;
for (i=_ O ; X '7>/' P X") A
vesolt += X
}
return result;
}
(=2
resolt ¥ =1,

4b. Now rewrite the x86 assembly from the previous problem (4a) into x97; if you need some new instructions, please

feel free to define them, but keep consistent to the x97 philosophy!

//(’cmue ntidu
/W (onven t1di

0 // o resu(t

re t. v‘(’g'S“’r

‘Foof ,/1“'(; V3 ‘
fntt 3, , O /[l pret O n
)'/Qe r‘/ rl /QL?)
' - : in ¥
5 g/\l*‘ y»&1 4 l // f b ;L b
L5 , =
. 7 posulF F5 X
add r,, 3, vy /0"
sub r,ry , /X
Jg 0, -5
L3

re t

10

