
Virtual Virtual Memory

Jason Power

4/17/2015 UNIVERSITY OF WISCONSIN 1

3/20/2015

With contributions from Jayneel Gandhi and Lena Olson

Virtual Machine History
• 1970’s: VMMs

• 1997: Disco

• 1999: VMWare (binary translation)

• 2003: Xen (para-virtualization)

• 2006(ish): Hardware support

4/17/2015 UNIVERSITY OF WISCONSIN 2

VM Origins

4/17/2015 UNIVERSITY OF WISCONSIN 3

1974

Virtual Machine Monitor (VMM)

4/17/2015 UNIVERSITY OF WISCONSIN 4

P1 P2

OS 1

P1 P2

OS 2

CPU Mem

I/O dev Disk

Virtual Machine Monitor

VMM also called a hypervisor

Disco
 Trap and emulate

4/17/2015 UNIVERSITY OF WISCONSIN 5

P1 P2

OS 1

P1 P2

OS 2

CPU Mem

I/O dev Disk

Virtual Machine Monitor

What about x86?
 x86 can’t use trap and emulate

 Classic Example: popf instruction
 Same instruction behaves differently depending on

execution mode
 User Mode: changes ALU flags
 Kernel Mode: changes ALU and system flags
 Does not generate a trap in user mode

4/17/2015 UNIVERSITY OF WISCONSIN 6

VMWare
 Solution: binary translation

 Only need to translate OS code
 Makes SPEC run fast by default

 Most instruction sequences don’t change

 Instructions that do change:
 Indirect control flow: call/ret, jmp
 PC-relative addressing
 Privileged instructions

4/17/2015 UNIVERSITY OF WISCONSIN 7

Overheads
 Traps are heavy weight

 Binary translation
 Bad for OS-heavy workloads (many server apps)

 What if you’re allowed to change OS a little?

4/17/2015 UNIVERSITY OF WISCONSIN 8

Paravirtualization and Xen
 Use hypercalls to bypass VMM

 Still emulate for
corner cases &
safety reasons

 Commonly used!
 Amazon EC2

 Not “full virtualization”

4/17/2015 UNIVERSITY OF WISCONSIN 9

P1 P2

OS 1

P1 P2

OS 2

CPU Mem

I/O dev Disk

Virtual Machine Monitor

Hardware Support
 Another ring
 int moves from user-mode to kernel-mode
 vmrun moves from kernel-mode to vmm-mode

 Many other instructions

 What about virtual memory?

4/17/2015 UNIVERSITY OF WISCONSIN 10

Let’s recall virtual memory

4/17/2015 UNIVERSITY OF WISCONSIN 11

P1 P2

OS 1

0 264 0 264

0 234

Virtualize the OS’s memory?

4/17/2015 UNIVERSITY OF WISCONSIN 12

OS 1 OS 2

Hypervisor

0 234 0 234

0 234

Two dimensions of translation

4/17/2015 UNIVERSITY OF WISCONSIN 13

P1 P2

OS 1

P1 P2

OS 2

Hypervisor

0 234

Virtual addresses

Guest physical addresses

Physical addresses

Two dimensions of translation

14

Guest Virtual
Address

Guest Physical
 Address

gVA gPA cr3 hPA

Host Physical
 Address

cr3

Guest
Page Table

Nested
Page Table

1 2

What about the TLB?
 Want to cache virtual → machine in TLB

 (Relatively) Easy with software-loaded TLBs
 TLB miss is a trap (virtual → guest physical)
 Guest OS loads TLB (VMM trap)
 Translates guest physical → machine physical
 VMM actually does the TLB insert

 Problem?

4/17/2015 UNIVERSITY OF WISCONSIN 15

Hardware walked pagetable
 Page table walker walks nested pagetable

 Need a “fake” page table

4/17/2015 UNIVERSITY OF WISCONSIN 16

gPA

Shadow Paging

17

hPA

Nested Page
Table

Guest Page
Table

cr3cr3

1 2

gVA

cr3

Shadow Page Table
Keeping shadow page table coherent introduces

overheads

VMM creates shadow page
tables

VMM keeps them coherent

Hardware support
 Today’s hardware is aware of nested pagetable

 Nested page table walk
 For each level, must do a full pagetable walk
 Can be very high overhead

4/17/2015 UNIVERSITY OF WISCONSIN 18

Support for Virtualizing Memory

CR3

gVA

nc
r3

gP
A

nc
r3

gP
A

nc
r3

gP
A

nc
r3

gP
A

nc
r3

gP
A

hPA

Tradeoffs
Nested Paging

 Up to 24 memory references

 Updates to either page tables
without VMM intervention

 Beneficial with

 Low TLB miss rate

 High page table updates

Shadow Paging

 Up to 4 memory references

 Updates to either page tables
requires costly VMM intervention

 Beneficial with

 High TLB miss rate

 Low page table updates

20

Cost of virtualization

4/17/2015 UNIVERSITY OF WISCONSIN 21

0%
200%
400%
600%
800%
1000%
1200%

0%

20%

40%

60%

80%

100%

4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M 4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M

graph500 memcached NPB:CG gups

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

Overheads (native)

Cost of virtualization

4/17/2015 UNIVERSITY OF WISCONSIN 22

0%
200%
400%
600%
800%
1000%
1200%

0%

20%

40%

60%

80%

100%

4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M 4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M

graph500 memcached NPB:CG gups

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

Overheads (native) Overheads (virtualized)

20
2%

Cost of virtualization

4/17/2015 UNIVERSITY OF WISCONSIN 23

0%
200%
400%
600%
800%
1000%
1200%

0%

20%

40%

60%

80%

100%

4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M 4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M

graph500 memcached NPB:CG gups

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

Overheads (native) Overheads (virtualized)

20
2%

12

6%

Cost of virtualization

4/17/2015 UNIVERSITY OF WISCONSIN 24

0%
200%
400%
600%
800%
1000%
1200%

0%

20%

40%

60%

80%

100%

4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M 4K
4K

+
4K

4K
+

2M 2M
2M

+
2M 4K

4K
+

4K
4K

+
2M 2M

2M
+

2M

graph500 memcached NPB:CG gups

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

E
xe

cu
ti

on
 t

im
e

ov
er

h
ea

d

Overheads (native) Overheads (virtualized)

20
2%

12

6%

Reducing translation overhead
Bhargava et. al: page walk cache

 Opportunity?
 PTE reuse (10% of entries cover 90% of accesses)

 Why?
 Nested translations are redundant

4/17/2015 UNIVERSITY OF WISCONSIN 25

Reducing translation overhead
Bhargava et. al: page walk cache

 Page walk cache
 Why not cache L1 entries?

 What is the NTLB?
 Caches guest physical to system physical
 Skips the 2nd dimension walk

4/17/2015 UNIVERSITY OF WISCONSIN 26

DEVICES AND VIRTUAL MEMORY
That was fun, let’s make it more complicated…

4/17/2015 UNIVERSITY OF WISCONSIN 27

No IOMMU: No Virtualization

Proc Kernel

Physical

Device

No IOMMU (virtualized)

Proc Kernel

Guest
Phys

Device

VMM
Kernel

Physical

Virtualization
● Devices accessed by physical addresses

o Emulation of IO devices is too expensive!

● Approach 1: VMM driver (paravirtualization)
o Protection domains: IOMMU checks permissions for the

memory location; use physical address
o Need to rewrite drivers!

● Approach 2: Guest driver (true virtualization)

o Direct Assignment: driver uses guest physical address
o IOMMU translates to machine physical address

CPU

TLB

MMU

GPU I/O
Device

IOTLB

IOMMU Memory

IOMMU Overview

Read memory

Send interrupts

Address
translation

service

Device
table

lookup

Interrupt
remapper

VM
proc

proc
VM

proc

History
● Initially combination of

o GART (graphics aperture remapping table) and
o DEV (device exclusion vector)

● GART
o Physical-to-physical translation so graphics

addresses appear contiguous
o IOMMU is a generalization

● DEV
o Devices classified into domains
o Each domain is allowed to access a set of physical

addresses

Laundry list of features
● I/O page tables for I/O devices to access memory

o permission checking
o virtual address translation

● Interrupt remapping for I/O interrupts
● Service page faults from I/O devices
● Legacy I/O
● User mode device access
● VM guest device access
● Virtualized user mode device access
● Two-level address translation
● Interrupt virtualization
● …

IOMMU data structures

I/O page tables

Memory

PT PT Data Data

CPU

TLB

MMU

GPU I/O Device

IOTLB

Hit
Miss

Hit

IOMMU

Dev. Table

ATS

Miss

TLB

Device memory access

Page faults (before)

● Generated if the I/O device accesses
unallowed memory

● Fatal error
● Written to a log

● Requires pinned memory

Page faults (now)

● Generated if the I/O device accesses
unallowed memory

● Written to a buffer
● Interrupt raised on CPU core

o (Kernel) driver handles the fault
● No support to notify the device it should

retry
o Device keeps on executing/waiting for the TLB

miss

	Virtual Virtual Memory
	Virtual Machine History
	VM Origins
	Virtual Machine Monitor (VMM)
	Disco
	What about x86?
	VMWare
	Overheads
	Paravirtualization and Xen
	Hardware Support
	Let’s recall virtual memory
	Virtualize the OS’s memory?
	Two dimensions of translation
	Two dimensions of translation
	What about the TLB?
	Hardware walked pagetable
	Shadow Paging
	Hardware support
	Support for Virtualizing Memory
	Tradeoffs
	Cost of virtualization
	Cost of virtualization
	Cost of virtualization
	Cost of virtualization
	Reducing translation overhead
	Reducing translation overhead
	Devices and virtual memory
	No IOMMU: No Virtualization
	No IOMMU (virtualized)
	Virtualization
	IOMMU Overview
	History
	Laundry list of features
	IOMMU data structures
	I/O page tables
	Device memory access
	Page faults (before)
	Page faults (now)

