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Virtual Machine History 
• 1970’s: VMMs 

• 1997: Disco 

• 1999: VMWare (binary translation) 

• 2003: Xen (para-virtualization) 

• 2006(ish): Hardware support 
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VM Origins 
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Virtual Machine Monitor (VMM) 
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Disco 
 Trap and emulate 
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What about x86? 
 x86 can’t use trap and emulate 

 Classic Example:  popf  instruction 
 Same instruction behaves differently depending on 

execution mode 
 User Mode:  changes ALU flags 
 Kernel Mode:  changes ALU and system flags 
 Does not generate a trap in user mode 

 

4/17/2015 UNIVERSITY OF WISCONSIN 6 



VMWare 
 Solution: binary translation 

 Only need to translate OS code 
 Makes SPEC run fast by default 

 Most instruction sequences don’t change 

 Instructions that do change: 
 Indirect control flow:  call/ret, jmp 
 PC-relative addressing 
 Privileged instructions 
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Overheads 
 Traps are heavy weight 

 Binary translation 
 Bad for OS-heavy workloads (many server apps) 

 What if you’re allowed to change OS a little? 
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Paravirtualization and Xen 
 Use hypercalls to bypass VMM 

 Still emulate for 
corner cases & 
safety reasons 

 Commonly used! 
 Amazon EC2 

 Not “full virtualization” 
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Hardware Support 
 Another ring 
 int moves from user-mode to kernel-mode 
 vmrun moves from kernel-mode to vmm-mode 

 Many other instructions 

 What about virtual memory? 
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Let’s recall virtual memory 
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Virtualize the OS’s memory? 
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Two dimensions of translation 
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Two dimensions of translation 
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What about the TLB? 
 Want to cache virtual → machine in TLB 

 (Relatively) Easy with software-loaded TLBs 
 TLB miss is a trap (virtual → guest physical) 
 Guest OS loads TLB (VMM trap) 
 Translates guest physical → machine physical 
 VMM actually does the TLB insert 

 Problem? 
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Hardware walked pagetable 
 Page table walker walks nested pagetable 

 Need a “fake” page table 
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gPA 

Shadow Paging 
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Hardware support 
 Today’s hardware is aware of nested pagetable 

 Nested page table walk 
 For each level, must do a full pagetable walk 
 Can be very high overhead 
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Support for Virtualizing Memory 
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Tradeoffs 
Nested Paging 

 Up to 24 memory references 

 

 Updates to either page tables 
without VMM intervention 

 

 Beneficial with 

 Low TLB miss rate 

 High page table updates 

Shadow Paging 

 Up to 4 memory references 

 

 Updates to either page tables 
requires costly VMM intervention 

 

 Beneficial with 

 High TLB miss rate 

 Low page table updates 
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Cost of virtualization 
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Cost of virtualization 
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Cost of virtualization 
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Cost of virtualization 
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Reducing translation overhead 
Bhargava et. al: page walk cache 

 Opportunity? 
 PTE reuse (10% of entries cover 90% of accesses) 

 Why? 
 Nested translations are redundant 
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Reducing translation overhead 
Bhargava et. al: page walk cache 

 Page walk cache 
 Why not cache L1 entries? 

 What is the NTLB? 
 Caches guest physical to system physical 
 Skips the 2nd dimension walk 
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DEVICES AND VIRTUAL MEMORY 
That was fun, let’s make it more complicated… 
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No IOMMU: No Virtualization 
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Virtualization 
● Devices accessed by physical addresses 

o Emulation of IO devices is too expensive! 
 

● Approach 1: VMM driver (paravirtualization) 
o Protection domains: IOMMU checks permissions for the 

memory location; use physical address 
o Need to rewrite drivers! 

 
● Approach 2: Guest driver (true virtualization) 

o Direct Assignment: driver uses guest physical address 
o IOMMU translates to machine physical address 
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History 
● Initially combination of  

o GART (graphics aperture remapping table) and 
o DEV (device exclusion vector) 

● GART 
o Physical-to-physical translation so graphics 

addresses appear contiguous 
o IOMMU is a generalization 

● DEV 
o Devices classified into domains 
o Each domain is allowed to access a set of physical 

addresses 

 



Laundry list of features 
● I/O page tables for I/O devices to access memory 

o permission checking 
o virtual address translation 

● Interrupt remapping for I/O interrupts 
● Service page faults from I/O devices 
● Legacy I/O 
● User mode device access 
● VM guest device access 
● Virtualized user mode device access 
● Two-level address translation 
● Interrupt virtualization 
● … 



IOMMU data structures 



I/O page tables 



Memory 
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Page faults (before) 

● Generated if the I/O device accesses 
unallowed memory 

● Fatal error 
● Written to a log 
 
● Requires pinned memory 
 



Page faults (now) 

● Generated if the I/O device accesses 
unallowed memory 

● Written to a buffer 
● Interrupt raised on CPU core 

o (Kernel) driver handles the fault 
● No support to notify the device it should 

retry 
o Device keeps on executing/waiting for the TLB 

miss 
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