

Heterogeneous System Coherence for Integrated CPU-GPU Systems Jason Power', Arkaprava Basu*, Junli Gu⁺, Sooraj Puthoor⁺, Bradford M Beckmann⁺, Mark D Hill^{*+}, Steven K Reinhardt⁺, David A Wood^{*+}

To DRAM

Methodology

▲ Simulation

- gem5 for CPU and memory system
- Ruby for caches
- GPU modeled off of GCN
- Workloads
- Subset of Rodinia
- AMD APP SDK

CPU Clock	2 GHz
CPU Cores	2
CPU Shared L2 Cache	2 MB
GPU Clock	1 GHz
Compute Units	32
GPU L1 Data Cache	32 KB
GPU Shared L2 Cache	4 MB
L3 Memory-side Cache	16 MB
Peak Memory Bandwidth	700 GB/s
Baseline Directory	262,144 entries
Region Directory	32,768 entries
MSHRs	32 entries
Region Buffer	16,384 entries

Results Summary

- Largest speedup for workloads which constrained resources hurt the most
- Massive bandwidth reduction
- Due to offloading data onto direct-access bus
- More than theoretical max of 94% in some cases
 - Region buffers can "prefetch" cache permissions
- HSC significantly improves performance over the baseline design
- Decreases bandwidth requirement of directory

b 3.5

