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Computer systems are at a crossroads. Instead of counting on low-level device improvements from the semiconduc-
tor industry, processors are increasingly heterogeneous, using specialized accelerators to increase performance. 
Simultaneously, big-data is enabling new applications that consume terabytes of data in real-time, and the Internet 
of things is enabling developers to reach millions of devices. Computer architecture research is going to play a vital 
role in continuing the information revolution by bridging the gap between emerging applications and the underlying 
physical technology. 

The increasing hardware heterogeneity driven by the slowdown of Moore’s Law puts significant burdens on the 
application programmers. With current interfaces, developers must manually manage all aspects of accelerator com-
putation. For instance, programmers must explicitly move data from CPU to GPU memory, even if the physical 
memory is shared because each device has a logically separate address space. My work increases the logical inte-
gration of physically integrated on-chip accelerators by providing conventional CPU properties to accelerators spe-
cifically on-die GPUs which are found on most products from AMD, Intel, and mobile systems. This logical integration 
simplifies programming heterogeneous devices. Through interdisciplinary collaborations, I have leveraged the per-
formance improvements from this logical integration which was enabled by my previous research. I show that using 
integrated GPUs for analytic database workloads can increase performance and decrease energy consumption. I 
am excited to explore new research problems exposed by the evolving microprocessor industry from novel proces-
sors like always-on sensors to new applications that will consume processor cycles. 

Current Research 
Programmable accelerators 
Until about 10 years ago, energy efficiency, and therefore performance, doubled every few years through a combi-
nation of Moore’s Law and Dennard scaling. However, this trend is waning; for instance, Intel no longer reduces the 
transistor size every 2 years, shifting to an every 3–4 year cadence. In response, the microprocessor industry has 
increased the heterogeneity of systems. A single chip now has CPUs, GPUs, image processors, and video accelerators 
with many other accelerators proposed for the future. Unfortunately, although these heterogeneous components 
are physically on the same silicon die, most are not logically integrated. For instance, GPUs have been shown to 
provide significant performance improvement for some workloads. However, developers must use cumbersome 
programming models to interface with these accelerators which leads to suboptimal performance, wasting up to 
95% of the execution time for some workloads. My work logically integrates the memory systems of CPUs and GPUs 
in two ways: coherent data access and a consistent address space. Additionally, I developed a mechanism to ensure 
safety in the presence of logically integrated third-party accelerators. 

Coherent data access and a consistent address space  simplify the programmer’s interface to tightly-integrated 

accelerators. Parallel hardware has been ubiquitous for at least the last 15 years, and while programming parallel 
machines is still difficult, it is simplified by two important properties: coherent data access so when developers ac-
cess a memory location it will hold the most up-to-date data and a consistent address space so programmers can 
use the same data structures on any processor in the system. The cache coherence hardware and the virtual memory 
management unit provide these properties on current CPU systems. Without coherent data access and a consistent 
address space, programmers manually transform and move data between the CPU and other accelerators. My work 
is the first to bring these semantics to on-die integrated GPUs, easing programmers’ use of this pervasive hardware. 

I found the main impediment to providing a shared virtual address space and cache coherence between the inte-
grated GPU and the CPU is the immense bandwidth demand of the GPU. GPUs have more compute resources and 
can issue many more memory requests, producing an order of magnitude more bandwidth than typical CPU work-
loads. Thus, applying CPU techniques to heterogeneous systems results in poor performance for GPU applications. 

For instance, when applying the traditional CPU coherence mechanisms to CPU-GPU coherence, I found the central-
ized shared hardware directory is the bottleneck. My insight in Heterogeneous System Coherence (HSC) [1] is to 
leverage the spatial locality inherent in accelerator programs and decouple coherence permission from memory 
access. HSC eliminates 94% of directory accesses, improving performance by 2× compared to traditional CPU tech-
niques and paving the way for the GPU to be a first-class participant in the cache coherence protocol. 
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Similarly, conventional CPU address translation mechanisms applied directly to the GPU result in a 4× performance 
degradation due to queuing delays at the centralized address translation hardware. In Supporting x86-64 Address 
Translation for 100s of GPU Lanes [2] I show how to gain the performance back by parallelizing address translation 
and judiciously using CPU-centric memory management unit optimizations. These techniques logically unify the 
physically integrated GPU and pave the way for programmers to use the integrated GPU as just another CPU core. 

Providing safety for heterogeneous systems  allows system designers the freedom to integrate third-party ac-

celerators into their own products. Logically integrating accelerators provides enormous benefits; however, many 
emerging accelerators are not implemented in-house; for example, Apple used Imagination Technologies’ GPUs in 
the iPhone6 system-on-a-chip. Logically integrated accelerators may be given unfettered access to the memory sys-
tem to enable high performance. However, bugs or malicious third-party hardware can allow attackers to break the 
confidentiality and integrity of system memory even if the application on the accelerator has never accessed it. 
Border Control [3] sandboxes the processes running on accelerators. In my design, every memory access can be 
checked when crossing the border from the trusted to untrusted domain with low overhead by decoupling permis-
sion checking from address translation. Each access is checked against a small permission table, built on-the-fly from 
the operating system page table permissions.  

Simulation infrastructure for heterogeneous systems  is required to investigate these emerging technologies. 

I am one of the original creators and lead developers of infrastructure to simulate this emerging heterogeneous 
hardware, the open source project gem5-gpu [4]. gem5-gpu is built with the leading research simulators (gem5 and 
GPGPU-Sim), and it was quickly released to the public so others could use and improve it [5]. gem5-gpu is the main 
infrastructure in many published papers both within and external to the University of Wisconsin.  

Emerging technology for big-data workloads 
The logical integration of GPUs with the rest of the system opens the door to using the GPU for new applications. 
Previous work has shown GPUs can provide up to 100× performance improvement, but these results are limited to 
small working sets (e.g., less than 8 GB). My previous research enables the GPU to access the hundreds of gigabytes 
of system memory and significantly reduces the overheads of conventional GPU programming expanding the scope 
of applications that can leverage this accelerator. I have specifically applied these techniques to analytic databases. 

Analytic queries are growing in complexity, and their response time requirements are shrinking. Service providers 
want to analyze terabytes of data in milliseconds to provide their users with pertinent information (e.g., serving ads, 
suggesting purchases, and search results). To provide low latency, much of the data is stored in memory, not on disk. 
Previous research had shown the significant potential of discrete GPUs; however, due to data movement costs, this 
potential had not been realized. I collaborated with database experts to develop new algorithms to take advantage 
of tight physically and logically integrated GPUs enabled by my previous research, and I showed how to elide data 
copy and transformation operations. My new scan and aggregate algorithms [6] are 3× faster than traditional GPU 
algorithms and use 30% less energy than a CPU-only system. I additionally showed integrating 3D die-stacked DRAM 
into analytic database appliances coupled with my new algorithms can improve performance by 15× [7]. Further, I 
conducted a limit study showing these 3D die-stacked systems provide the best power-performance tradeoff when 
the latency of big-data analytic workloads is paramount (2–5× less power for a 10 ms SLA) [8]. 

While integrating high-bandwidth 3D die-stacked memory (HBM) can provide significant performance improve-
ments by mitigating the off-chip bandwidth bottleneck, its capacity is limited. Therefore, systems with 3D die-
stacked memory will likely additionally have conventional off-chip RAM. In a heterogeneous memory system, using 
HBM as a DRAM cache of off-chip RAM provides transparency to programmers. However, I found that treating HBM 
as a cache wastes its bandwidth because of access amplification. Access amplification measures the non-demand 
accesses that check and update cache metadata. I found there are on average two accesses per DRAM cache request. 
My adaptive victim DRAM cache [9] design avoids access amplification by adaptively shifting between a write-
through and a write-back caching policy by reading metadata only while reading data and writing metadata only 
while writing data. My design performs robustly better than a current DRAM cache design under a wide range of 
memory access patterns including high miss rates and high write traffic. 

Future research directions 
My work on integrated GPUs reveals the promise of architectural support for usability of analytic queries as dis-
cussed above, which is one example new technology. However, programmer support for many emerging technolo-
gies such as other on-die accelerators, heterogeneous memory technologies (e.g., non-volatile memory and high-
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bandwidth memory), and other heterogenous components like sensors is in its infancy. My future research will ex-
pand on my previous work and focus on simplifying programmers’ interaction with other new hardware by providing 
architectural support for conventional programming models like cache coherence and a consistent address space.  

I plan to continue searching for emerging technology that can be adapted to increase the efficiency of diverse appli-
cations, and I intend to investigate architectural innovations to improve the efficiency of these applications. There 
are many workloads not covered by traditional architecture benchmarks. Collaborating across disciplines with work-
load experts and increasing the performance and energy efficiency of these emerging workloads is an important 
research direction to overcome the slowing of Moore’s Law.  

Extending programmability to more accelerators  
My previous work focused on making integrated GPUs a first-class system component because they are ubiquitous 
and popular accelerators. However, there are many other kinds of processors on-chip each with unique memory 
access patterns. Two examples of accelerators that are becoming ubiquitous and popular are image processors and 
low-power sensors. These devices provide a stark contrast to the high-performance GPUs I have previously studied, 
and will require novel techniques to solve the problems of coherent and consistent data access. 

Image processors  which transform the digital information collected by the image sensor are ubiquitous in mobile 

processors. They are increasingly programmable, which gives camera designers the flexibility to quickly implement 
new algorithms to increase image quality or enable new applications. However, the interface to these processors is 
currently rigid, and only the camera’s designers modify the software stack. Simplifying the interface to the image 
processor opens the path for any developer to innovate. For instance, analyzing the sensor data at different stages 
of transformation instead of only after all transformations have been applied could increase the efficiency for many 
computer vision applications such as autonomous driving, augmented reality, and image compression. These inno-
vations can be hastened by logically integrating the image processor with the rest of the system.  

However, unlike CPUs and GPUs, image processors do not process data from memory, but from the image sensor. 
The memory access pattern from a programmable image processor will be unique. For instance, image processors 
may provide accelerated edge or motion detection that an application on the CPU or another accelerator consumes. 
To ease programming and increase flexibility, it is important this data is in a coherent and consistent address space. 

Always-on sensors  are another emerging pervasive accelerator. Currently, these sensors and their processors are 

used for simple applications like step counting and activity detection. However, opening these systems to all devel-
opers could significantly increase their usefulness. A compelling question for low-power sensors is how to efficiently 
transfer the control from the “always-on” ultra-low power device to another more computationally powerful pro-
cessor in the system. In addition to transferring control, programmers will also want to transparently transfer their 
data into and out of these processors. The key difficulty is enabling coherence and consistency without resorting to 
traditional high-power mechanisms. 

In situ architectural exploration 
Not only is hardware technology changing rapidly, but the workloads that execute on this hardware are also evolving. 
A few examples include machine learning, augmented reality, big-data analytics, and intelligent personal assistants. 
These applications are end-to-end solutions, consisting of many interacting kernels of computation, and they cannot 
easily or accurately be represented as a single microbenchmark. Optimizing these applications requires changes 
across the entire hardware-software stack from new accelerators and emerging programmable processors to system 
integration and new programming interfaces. However, current architecture evaluation infrastructure is not easily 
adapted to studying end-to-end applications. Instead, I propose in situ simulation to study applications in their native 
execution environment. It is currently possible to use in situ simulation to study CPUs by leveraging ubiquitous vir-
tualization technology. This virtualization can be extended to other accelerators, programmable processors, and 
even to novel devices via fast emulation (e.g., with FPGAs). 

With this infrastructure, everyone in the computer architecture community will be able to investigate previously un-
addressable problems. I believe in reducing the impediments to research, and I believe in releasing more than just 
papers to the community. I have released simulation models [5], the data I have generated and collected [10], and 
all information on how I created the data [11]. By being open with our research, we can push the boundaries of 
knowledge more quickly. 
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