
 Jason Lowe-Power - 1 - Research Statement

Research Statement Jason Lowe-Power
University of Wisconsin -Madison

Computer systems are at a crossroads. Instead of counting on low-level device improvements from the semiconduc-
tor industry, processors are increasingly heterogeneous, using specialized accelerators to increase performance.
Simultaneously, big-data is enabling new applications that consume terabytes of data in real-time, and the Internet
of things is enabling developers to reach millions of devices. Computer architecture research is going to play a vital
role in continuing the information revolution by bridging the gap between emerging applications and the underlying
physical technology.

The increasing hardware heterogeneity driven by the slowdown of Moore’s Law puts significant burdens on the
application programmers. With current interfaces, developers must manually manage all aspects of accelerator com-
putation. For instance, programmers must explicitly move data from CPU to GPU memory, even if the physical
memory is shared because each device has a logically separate address space. My work increases the logical inte-
gration of physically integrated on-chip accelerators by providing conventional CPU properties to accelerators spe-
cifically on-die GPUs which are found on most products from AMD, Intel, and mobile systems. This logical integration
simplifies programming heterogeneous devices. Through interdisciplinary collaborations, I have leveraged the per-
formance improvements from this logical integration which was enabled by my previous research. I show that using
integrated GPUs for analytic database workloads can increase performance and decrease energy consumption. I
am excited to explore new research problems exposed by the evolving microprocessor industry from novel proces-
sors like always-on sensors to new applications that will consume processor cycles.

Current Research
Programmable accelerators
Until about 10 years ago, energy efficiency, and therefore performance, doubled every few years through a combi-
nation of Moore’s Law and Dennard scaling. However, this trend is waning; for instance, Intel no longer reduces the
transistor size every 2 years, shifting to an every 3–4 year cadence. In response, the microprocessor industry has
increased the heterogeneity of systems. A single chip now has CPUs, GPUs, image processors, and video accelerators
with many other accelerators proposed for the future. Unfortunately, although these heterogeneous components
are physically on the same silicon die, most are not logically integrated. For instance, GPUs have been shown to
provide significant performance improvement for some workloads. However, developers must use cumbersome
programming models to interface with these accelerators which leads to suboptimal performance, wasting up to
95% of the execution time for some workloads. My work logically integrates the memory systems of CPUs and GPUs
in two ways: coherent data access and a consistent address space. Additionally, I developed a mechanism to ensure
safety in the presence of logically integrated third-party accelerators.

Coherent data access and a consistent address space simplify the programmer’s interface to tightly-integrated

accelerators. Parallel hardware has been ubiquitous for at least the last 15 years, and while programming parallel
machines is still difficult, it is simplified by two important properties: coherent data access so when developers ac-
cess a memory location it will hold the most up-to-date data and a consistent address space so programmers can
use the same data structures on any processor in the system. The cache coherence hardware and the virtual memory
management unit provide these properties on current CPU systems. Without coherent data access and a consistent
address space, programmers manually transform and move data between the CPU and other accelerators. My work
is the first to bring these semantics to on-die integrated GPUs, easing programmers’ use of this pervasive hardware.

I found the main impediment to providing a shared virtual address space and cache coherence between the inte-
grated GPU and the CPU is the immense bandwidth demand of the GPU. GPUs have more compute resources and
can issue many more memory requests, producing an order of magnitude more bandwidth than typical CPU work-
loads. Thus, applying CPU techniques to heterogeneous systems results in poor performance for GPU applications.

For instance, when applying the traditional CPU coherence mechanisms to CPU-GPU coherence, I found the central-
ized shared hardware directory is the bottleneck. My insight in Heterogeneous System Coherence (HSC) [1] is to
leverage the spatial locality inherent in accelerator programs and decouple coherence permission from memory
access. HSC eliminates 94% of directory accesses, improving performance by 2× compared to traditional CPU tech-
niques and paving the way for the GPU to be a first-class participant in the cache coherence protocol.

 Jason Lowe-Power - 2 - Research Statement

Similarly, conventional CPU address translation mechanisms applied directly to the GPU result in a 4× performance
degradation due to queuing delays at the centralized address translation hardware. In Supporting x86-64 Address
Translation for 100s of GPU Lanes [2] I show how to gain the performance back by parallelizing address translation
and judiciously using CPU-centric memory management unit optimizations. These techniques logically unify the
physically integrated GPU and pave the way for programmers to use the integrated GPU as just another CPU core.

Providing safety for heterogeneous systems allows system designers the freedom to integrate third-party ac-

celerators into their own products. Logically integrating accelerators provides enormous benefits; however, many
emerging accelerators are not implemented in-house; for example, Apple used Imagination Technologies’ GPUs in
the iPhone6 system-on-a-chip. Logically integrated accelerators may be given unfettered access to the memory sys-
tem to enable high performance. However, bugs or malicious third-party hardware can allow attackers to break the
confidentiality and integrity of system memory even if the application on the accelerator has never accessed it.
Border Control [3] sandboxes the processes running on accelerators. In my design, every memory access can be
checked when crossing the border from the trusted to untrusted domain with low overhead by decoupling permis-
sion checking from address translation. Each access is checked against a small permission table, built on-the-fly from
the operating system page table permissions.

Simulation infrastructure for heterogeneous systems is required to investigate these emerging technologies.

I am one of the original creators and lead developers of infrastructure to simulate this emerging heterogeneous
hardware, the open source project gem5-gpu [4]. gem5-gpu is built with the leading research simulators (gem5 and
GPGPU-Sim), and it was quickly released to the public so others could use and improve it [5]. gem5-gpu is the main
infrastructure in many published papers both within and external to the University of Wisconsin.

Emerging technology for big-data workloads
The logical integration of GPUs with the rest of the system opens the door to using the GPU for new applications.
Previous work has shown GPUs can provide up to 100× performance improvement, but these results are limited to
small working sets (e.g., less than 8 GB). My previous research enables the GPU to access the hundreds of gigabytes
of system memory and significantly reduces the overheads of conventional GPU programming expanding the scope
of applications that can leverage this accelerator. I have specifically applied these techniques to analytic databases.

Analytic queries are growing in complexity, and their response time requirements are shrinking. Service providers
want to analyze terabytes of data in milliseconds to provide their users with pertinent information (e.g., serving ads,
suggesting purchases, and search results). To provide low latency, much of the data is stored in memory, not on disk.
Previous research had shown the significant potential of discrete GPUs; however, due to data movement costs, this
potential had not been realized. I collaborated with database experts to develop new algorithms to take advantage
of tight physically and logically integrated GPUs enabled by my previous research, and I showed how to elide data
copy and transformation operations. My new scan and aggregate algorithms [6] are 3× faster than traditional GPU
algorithms and use 30% less energy than a CPU-only system. I additionally showed integrating 3D die-stacked DRAM
into analytic database appliances coupled with my new algorithms can improve performance by 15× [7]. Further, I
conducted a limit study showing these 3D die-stacked systems provide the best power-performance tradeoff when
the latency of big-data analytic workloads is paramount (2–5× less power for a 10 ms SLA) [8].

While integrating high-bandwidth 3D die-stacked memory (HBM) can provide significant performance improve-
ments by mitigating the off-chip bandwidth bottleneck, its capacity is limited. Therefore, systems with 3D die-
stacked memory will likely additionally have conventional off-chip RAM. In a heterogeneous memory system, using
HBM as a DRAM cache of off-chip RAM provides transparency to programmers. However, I found that treating HBM
as a cache wastes its bandwidth because of access amplification. Access amplification measures the non-demand
accesses that check and update cache metadata. I found there are on average two accesses per DRAM cache request.
My adaptive victim DRAM cache [9] design avoids access amplification by adaptively shifting between a write-
through and a write-back caching policy by reading metadata only while reading data and writing metadata only
while writing data. My design performs robustly better than a current DRAM cache design under a wide range of
memory access patterns including high miss rates and high write traffic.

Future research directions
My work on integrated GPUs reveals the promise of architectural support for usability of analytic queries as dis-
cussed above, which is one example new technology. However, programmer support for many emerging technolo-
gies such as other on-die accelerators, heterogeneous memory technologies (e.g., non-volatile memory and high-

 Jason Lowe-Power - 3 - Research Statement

bandwidth memory), and other heterogenous components like sensors is in its infancy. My future research will ex-
pand on my previous work and focus on simplifying programmers’ interaction with other new hardware by providing
architectural support for conventional programming models like cache coherence and a consistent address space.

I plan to continue searching for emerging technology that can be adapted to increase the efficiency of diverse appli-
cations, and I intend to investigate architectural innovations to improve the efficiency of these applications. There
are many workloads not covered by traditional architecture benchmarks. Collaborating across disciplines with work-
load experts and increasing the performance and energy efficiency of these emerging workloads is an important
research direction to overcome the slowing of Moore’s Law.

Extending programmability to more accelerators
My previous work focused on making integrated GPUs a first-class system component because they are ubiquitous
and popular accelerators. However, there are many other kinds of processors on-chip each with unique memory
access patterns. Two examples of accelerators that are becoming ubiquitous and popular are image processors and
low-power sensors. These devices provide a stark contrast to the high-performance GPUs I have previously studied,
and will require novel techniques to solve the problems of coherent and consistent data access.

Image processors which transform the digital information collected by the image sensor are ubiquitous in mobile

processors. They are increasingly programmable, which gives camera designers the flexibility to quickly implement
new algorithms to increase image quality or enable new applications. However, the interface to these processors is
currently rigid, and only the camera’s designers modify the software stack. Simplifying the interface to the image
processor opens the path for any developer to innovate. For instance, analyzing the sensor data at different stages
of transformation instead of only after all transformations have been applied could increase the efficiency for many
computer vision applications such as autonomous driving, augmented reality, and image compression. These inno-
vations can be hastened by logically integrating the image processor with the rest of the system.

However, unlike CPUs and GPUs, image processors do not process data from memory, but from the image sensor.
The memory access pattern from a programmable image processor will be unique. For instance, image processors
may provide accelerated edge or motion detection that an application on the CPU or another accelerator consumes.
To ease programming and increase flexibility, it is important this data is in a coherent and consistent address space.

Always-on sensors are another emerging pervasive accelerator. Currently, these sensors and their processors are

used for simple applications like step counting and activity detection. However, opening these systems to all devel-
opers could significantly increase their usefulness. A compelling question for low-power sensors is how to efficiently
transfer the control from the “always-on” ultra-low power device to another more computationally powerful pro-
cessor in the system. In addition to transferring control, programmers will also want to transparently transfer their
data into and out of these processors. The key difficulty is enabling coherence and consistency without resorting to
traditional high-power mechanisms.

In situ architectural exploration
Not only is hardware technology changing rapidly, but the workloads that execute on this hardware are also evolving.
A few examples include machine learning, augmented reality, big-data analytics, and intelligent personal assistants.
These applications are end-to-end solutions, consisting of many interacting kernels of computation, and they cannot
easily or accurately be represented as a single microbenchmark. Optimizing these applications requires changes
across the entire hardware-software stack from new accelerators and emerging programmable processors to system
integration and new programming interfaces. However, current architecture evaluation infrastructure is not easily
adapted to studying end-to-end applications. Instead, I propose in situ simulation to study applications in their native
execution environment. It is currently possible to use in situ simulation to study CPUs by leveraging ubiquitous vir-
tualization technology. This virtualization can be extended to other accelerators, programmable processors, and
even to novel devices via fast emulation (e.g., with FPGAs).

With this infrastructure, everyone in the computer architecture community will be able to investigate previously un-
addressable problems. I believe in reducing the impediments to research, and I believe in releasing more than just
papers to the community. I have released simulation models [5], the data I have generated and collected [10], and
all information on how I created the data [11]. By being open with our research, we can push the boundaries of
knowledge more quickly.

 Jason Lowe-Power - 4 - Research Statement

[1] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann, Mark D. Hill, Steven K. Reinhardt, David A. Wood. “Hetero-
geneous System Coherence for Integrated CPU-GPU Systems.” The 46th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 46. Dec 2013.

[2] Jason Power, Mark D. Hill, David A. Wood. “Supporting x86-64 Address Translation for 100s of GPU Lanes.” The 20th IEEE International Sym-
posium On High Performance Computer Architecture, HPCA 20. Feb 2014.

[3] Lena E. Olson, Jason Power, Mark D. Hill, David A. Wood. “Border Control: Sandboxing Accelerators.” The 48th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 48. Dec 2015.

[4] Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill, David A. Wood. “gem5-gpu: A Heterogeneous CPU-GPU Simulator.” Computer Archi-
tecture Letters vol. 14, no. 1. Jan-Jun 2015.

[5] https://gem5-gpu.cs.wisc.edu/
[6] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, David A. Wood.” Toward GPUs being mainstream in analytic processing: An initial argu-

ment using simple scan-aggregate queries.” Proceedings of the Eleventh International Workshop on Data Management on New Hardware,
DaMoN '15. Jun 2015.

[7] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, David A. Wood. “Implications of Emerging 3D GPU Architecture on the Scan Primitive.”
SIGMOD Record. Volume 44, Issue 1. Mar 2015.

[8] Jason Lowe-Power, Mark D. Hill, David A. Wood. “When to use 3D Die-Stacked Memory for Bandwidth-Constrained Big-Data Workloads.”
The Seventh Workshop on Big Data Benchmarks, Performance Optimization, and Emerging Hardware (BPOE 7) at ASPLOS. Apr 2016.

[9] Jason Lowe-Power, Mark D. Hill, David A. Wood. “Adaptive Victim Cache: Reducing Access Amplification in a DRAM Cache.” Under review.
[10] https://research.cs.wisc.edu/multifacet/gpummu-hpca14/
[11] https://research.cs.wisc.edu/multifacet/bpoe16_3d_bandwidth_model/

