
For Peer Review

A Single-Tier Virtual Queuing Memory Controller

Architecture for Heterogeneous MPSoCs

Journal: Transactions on Design Automation of Electronic Systems

Manuscript ID TODAES-2016-P-1351

Manuscript Type: Paper

Date Submitted by the Author: 11-Aug-2016

Complete List of Authors: Song, Yang; University of California San Diego, Electrical and Computer
Engineering
Samadi, Kambiz; Qualcomm Research
Lin, Bill; University of California, San Diego, Electrical and Computer
Engineering

Computing Classification

Systems :
Heterogeneous (hybrid) systems

Transactions on Design Automation of Electronic Systems

For Peer Review

A

A Single-Tier Virtual Queuing Memory Controller Architecture for
Heterogeneous MPSoCs

YANG SONG, University of California San Diego
KAMBIZ SAMADI, Qualcomm Research
BILL LIN, University of California San Diego

Heterogeneous MPSoCs typically integrate diverse cores, including application CPUs, GPUs, and HD coders.
These cores commonly share an off-chip memory to save cost and energy, but their memory accesses often
interfere with each other, leading to undesirable consequences like a slowdown of application performance
or a failure to sustain real-time performance. The memory controller plays a central role in meeting the QoS
needs of real-time cores while maximizing the CPU performance. Previous QoS-aware memory controllers
are based on a classic two-tier queuing architecture that buffers memory transactions at the first tier, fol-
lowed by a second tier that buffers translated DRAM commands. In these designs, QoS-aware policies are
used to schedule competing transactions at the first stage, but the translated DRAM commands are serviced
in FIFO order at the second stage. Unfortunately, once the scheduled transactions have been forwarded to
the command stage, newly arriving transactions that may be more critical cannot be serviced ahead of those
translated commands that are already queued at the second stage. To address this, we propose a scalable
memory controller architecture based on Single-Tier Virtual Queuing (STVQ) that maintains a single-tier of
request queues and employs an efficacious scheduler that considers both QoS requirements and DRAM bank
states. In comparison with previous QoS-aware memory controllers, the proposed STVQ memory controller
reduces CPU slowdown by up to 13.9% while satisfying all frame rate requirements. We propose further
optimizations that can significantly increase row-buffer hits by up to 66.2% and reduce memory latency by
up to 19.8%.

CCS Concepts: rComputer systems organization→ Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: memory controller, heterogeneous systems, QoS memory scheduling

ACM Reference Format:
Yang Song, Kambiz Samadi, and Bill Lin, 2016. A Single-Tier Virtual Queuing Memory Controller Architec-
ture for Heterogeneous MPSoCs. ACM Trans. Des. Autom. Electron. Syst. V, N, Article A (January YYYY),
24 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern heterogeneous MPSoCs [Qualcomm 2015; NVIDIA 2015] have been widely de-
ployed in mobile devices to reduce power while improving system performance. These
MPSoCs typically integrate a diverse collection of cores, including real-time cores like
GPUs, HD video coders, and display engines, as well as general-purpose cores like
CPUs for running applications. To save cost and energy, these cores commonly share
resources, among which, the sharing of the off-chip memory is one of the most challeng-
ing because memory performance often has a direct and substantial impact on system

This work was supported by a Qualcomm Fellow-Mentor-Advisor (FMA) award.
This work was presented in part at the 53rd Annual ACM/IEEE Design Automation Conference (DAC),
Austin, TX, June 2016.
Author’s addresses: Y. Song and B. Lin, Electrical and Computer Engineering Department, University of
California San Diego; K. Samadi, Qualcomm Research.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1084-4309/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 1 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:2 Y. Song et al.

performance. In particular, competing memory requests from different cores interfere
with each other, and these memory interferences can lead to a slowdown of application
performance due to memory stalls or a failure to sustain real-time performance due
to inadequate memory bandwidth. Therefore, an effective memory controller that can
carefully reconcile memory interferences is of utmost importance because it plays a
central role in meeting the QoS needs of real-time cores while maximizing the perfor-
mance of applications running on CPUs.

A typical real-time core such as a GPU consumes much higher bandwidth than a
CPU, because a GPU is capable of executing multiple threads in parallel, which often
leads to a large number of memory requests. On the other hand, a real-time core like a
GPU can switch between different threads to hide memory access latency. In contrast,
the sparse CPU traffic after the last-level cache is typically much more sensitive to
memory stalls. Memory interference happens when the bandwidth-intensive real-time
traffic overwhelms the latency-sensitive CPU traffic. Previous works have analyzed
the heterogeneous memory traffic in details [Power et al. 2013; Ausavarungnirun et al.
2012; Jeong et al. 2012; Lee et al. 2013; Mishra et al. 2013].

A classic memory controller for multi-core platforms comprises a two-tier queuing
system, including a per-source queuing transaction stage and a per-bank queuing com-
mand stage. The two-tier queuing system is a straightforward solution to deliver high
memory throughput. To accommodate heterogeneous traffic, Ausavarungnirun et al.

Source 1 Source 2 Source 3 Source 4

Batch

formation

Command

scheduler

Batch

scheduler

Transaction

stage

Command

stage

DRAM Interface

Bank 1 Bank 2 Bank 3 Bank 4

Fig. 1. The architecture of a two-tier staged memory scheduler.

[Ausavarungnirun et al. 2012] were the first to propose the staged memory scheduler
(SMS) in the context of integrated CPU-GPU systems (Fig. 1). The proposed SMS ar-
chitecture also follows the two-tier queuing system approach. In SMS, transactions for
the same row-buffer in DRAM are formed into batches to increase row-buffer hits. Due
to the lower spatial locality, CPU traffic generates shorter batches. By adopting the
Shortest Job First (SJF) policy with certain probability, the scheduler prevents CPU
traffic from being overwhelmed by the vast GPU traffic. However, the command stage
still uses conventional FIFOs, which degrades the QoS improvement from the transac-
tion stage. In particular, once scheduled transactions have been translated into com-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 2 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:3

mands and forwarded to the second stage, newly arriving memory transactions that
may be more critical from a QoS perspective cannot be serviced ahead of those trans-
lated commands that are already queued at the second stage. As a concurrent work,
Jeong et al. [Jeong et al. 2012] proposed a real-time QoS-aware scheduling algorithm
for the transactions stage, but it also neglects the queuing effects at the command
stage.

In both of these prior works [Ausavarungnirun et al. 2012; Jeong et al. 2012], the
proposed memory scheduling policies aim to minimize the CPU traffic latency while
ensuring the required bandwidths of the real-time cores are satisfied. Effectively, mem-
ory scheduling can be depicted as the optimization problem in (1), where Lcpu refers
to the latency to CPU traffic and Rreal−time represents the required bandwidths of
real-time cores, and FPS (Frame Per Second) is the target frame rate. The CPU can
be replaced by any other non-real-time cores and the real-time cores may include the
graphic GPU, the HD video coder, and the display since all of them may share the same
off-chip memory. A good memory controller minimizes the queuing delay of CPU traffic
while providing sufficient memory bandwidth to real-time cores.

min Lcpu

subject to Rrealtime ≥ FPS ∗ framesize.
(1)

The drawback of previous works using two-tier queuing systems lies in the unaware-
ness of queuing delays in the command stage which can be much higher than that in
the transaction stage. Performance improvement by the transaction scheduler may
not be preserved after the command stage. This problem with two-tier queuing is il-
lustrated in Fig. 2. The figure depicts a common scenario in which the GPU transaction
queue has transactions to send but the CPU has no transactions available. As there
is no CPU transaction waiting, a QoS-aware scheduler in a two-tier queuing system
would send all the GPU transactions queued at the transaction stage to the comm-
mand stage in order to maximize memory throughput. Yet any new incoming CPU
transaction going to the same queue would have to wait at the end of the same com-
mand queue, which could cause potentially substantial latency to the CPU memory
traffic.

CPU GPU CPU GPU
CPU

transaction/

command

GPU

transaction/

command

before GPU transactions

are scheduled

after GPU transactions

are scheduled

Fig. 2. An example of transaction scheduling in a two-tier memory controller leading to queuing delay to
the CPU.

The problem is further illustrated in Fig. 3 where queuing delays in the transac-
tion and command stages of a two-tier system are shown respectively. For comparison,
three scenarios are simulated: one only has a dual-core CPU; another has a dual-core

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 3 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:4 Y. Song et al.

CPU, a graphic GPU, and a display controller, and uses the SJF policy for schedul-
ing; the last one also has a dual-core CPU, a graphic GPU, and a display controller,
but uses the Round-Robin (RR) policy for scheduling. Even though the SJF policy suc-
cessfully reduces the queuing delay of CPU transactions, the queuing delay of CPU
commands remains the same with the result from RR policy, which is much higher
than the command delay without real-time cores. In other words the benefit intro-
duced by the SJF policy in the first stage is counteracted by the FIFO queues in the
second stage. Therefore, we say that a two-tier queuing system is not efficacious in the
sense that a QoS-aware scheduler may not produce the desired result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

time(ms)

de
la

y(
ns

)

Transaction queuing delay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

time(ms)

de
la

y(
ns

)

Command queuing delay

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(RR)

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(RR)

Fig. 3. Queuing delays of CPU traffic in the transaction and command stages of a two-tier memory con-
troller. mcf-art and coc benchmarks used for CPU and GPU. Experiment setup discussed in Section 6.

In this work, we propose a new memory controller architecture with single-tier vir-
tual queuing for multiple heterogeneous cores. The aim of the STVQ controller is to
optimize system performance in (1). The contributions of our work can be summarized
as follows.

— Limitation of Two-Tier Queuing Systems for MPSoCs: We identify the bottle-
neck of two-tier memory schedulers in delivering good system performance for het-
erogeneous systems where the CPU and real-time cores have different requirements
on latency and bandwidth.

— Single-Tier Virtual Queuing (STVQ) memory system: To get rid of command
queuing delays and apply efficacious scheduling policies, we propose the single-
tier virtual queuing memory controller as the solution for heterogeneous memory
scheduling.

— Separable allocation for scalable arbitration: To achieve high scalability, sepa-
rable allocation is used to implement the selection of memory bank and virtual queue
to service, which reduces the complexity of arbitration.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 4 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:5

— Multi-source real-time scheduling: To modulate traffic flows from the CPU and
real-time cores, including the GPU, the HD video coder, and the display, we present
a QoS-aware scheduling policy for heterogeneous memory traffic from multiple real-
time cores.

— Row-buffer hit optimizations: To increase row-buffer hits and reduce average
memory latency, we further extend the scheduling policy to support a batching mech-
anism.

Based on our experimental results with the proposed real-time scheduling algo-
rithm, we show that the proposed STVQ memory controller successfully reduces slow-
down of the CPU caused by the memory interference from real-time cores. Compared
with previously proposed QoS memory controllers, our approach reduces CPU slow-
down by up to 13.9%, with an average reduction of 6.1%, while ensuring that all real-
time cores are able to meet their frame rate targets. With batching applied in the STVQ
controller, we further show that row-buffer hits can be increased by up to 66.2% and on
average by 43%. As the result of these row-hit improvements, the memory latency for
the overall traffic can be reduced by up to 19.8%, with an average reduction of 9.9%,
while only affecting the CPU by a negligible 0.9% degradation in IPC.

The rest of this paper is organized as follows: Section 2 briefly reviews related works.
Section 3 describes our proposed single-tier virtual queuing memory controller archi-
tecture. Section 4 presents our multi-source real-time scheduling algorithm for the
STVQ memory controller. Section 5 discusses the performance of the STVQ controller
on DRAM efficiency and introduces batching as an extension of our scheduling policy.
The experimental results and conclusions follow in Sections 6 and 7, respectively.

2. RELATED WORK
The First-Ready First Come First Serve (FR-FCFS) [Rixner et al. 2000] has been
widely used for memory scheduling to deliver high memory throughput, but it assigns
more priorities to memory-intensive applications as it prioritizes requests that result
in high row-buffer hits. Application-aware scheduling for CPU-only systems has drawn
more attention in recent years [Kim et al. 2010a,b; Jalle et al. 2014]. ATLAS [Kim
et al. 2010a] prioritizes applications with low memory intensity to improve system
throughput at the expense of applications with high memory intensity. Thread cluster
memory scheduling [Kim et al. 2010b] dynamically clusters applications into low and
high memory-intensity clusters and achieves high system performance and fairness
simultaneously. Dual-criticality memory controller [Jalle et al. 2014] handles memory
contention between real-time and high performance applications by bank separation,
assuming no shared memory between different types of applications. Minimalist Open-
page policy [Kaseridis et al. 2011] adopts a fair DRAM address mapping scheme to
avoid row-buffer locality starvation and to increase bank level parallelism. On basis of
that, the scheduler prioritizes requests with a higher criticality, and then it prioritizes
requests that are hitting an open page. Similarly, parallelism-aware batch scheduling
[Mutlu and Moscibroda 2008] batches requests in time order before prioritizing row-hit
requests within each batch to circumvent starvation.

Staged memory scheduler [Ausavarungnirun et al. 2012] was the first application-
aware scheduler proposed for CPU-GPU systems. A two-tier staged memory archi-
tecture (Fig. 1) is used to decouple the memory scheduling task into three basic steps,
including batch formation, batch scheduling and command scheduler. The batch sched-
uler switches between two policies which are the Shortest Job First (SJF) and Round-
Robin (RR). Due to the distinct characteristics of CPU and GPU memory traffic, SJF
policy gives higher priority to the CPU while RR policy favors the GPU. By adjusting
the probability of SJF policy, the priority of CPU is modulated to balance system per-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 5 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:6 Y. Song et al.

formance and fairness for the CPU-GPU system. However, even though the CPU can
achieve sufficient bandwidth through the batch scheduler, there is no guarantee for
the latency because the queuing delay in the FIFO command scheduler is uncertain.

In [Jeong et al. 2012], a QoS-aware scheduling policy was proposed to dynamically
balance CPU and GPU bandwidth. The proposed policy allocates the minimum band-
width to the graphic GPU to meet the target FPS. To attain that, two notions for GPU’s
frame progress were introduced by (2),

PA =
number of tiles rendered

total number of tiles
,

PE =
elapsed time in current frame

target frame time
.

(2)

Here, PA is the actual progress of GPU workload in the current frame and PE is the
expected progress. Their QoS policy prioritizes the GPU when PA is lagging behind
PE . Progress notions can be extended to include other real-time cores such as an HD
decoder whose progress metric can be expressed as follows:

PA =
number of bytes (or pixels) processed

total number of bytes (or pixels)
. (3)

Nonetheless, this QoS policy focuses on transaction-level scheduling and optimizes
CPU bandwidth instead of CPU latency, a more critical performance metric. This may
cause performance degradation in a memory scheduler with the two-tier queuing sys-
tem.

3. SINGLE-TIER VIRTUAL QUEUING MEMORY SYSTEM
A memory system in a single memory channel consists of the physical memory (DRAM
devices) and a memory controller. As the bridge between processors and memory, the
memory controller deals with demands from processors (bandwidth and latency etc.)
while following DRAM memory-access protocols. The objective of our STVQ memory
controller is to minimize latency of CPU memory traffic while satisfying frame rate
requirements of real-time traffic. Fig. 4 shows an STVQ controller for a DRAM with
N memory banks and K independent traffic flows. Four major components reside in
the STVQ controller, including sing-tier virtual queues (VQ), bank arbiter, transaction
scheduler and per-bank command generators. In this section, we will go through de-
sign details of the proposed single-tier virtual queuing memory system, followed by
a brief overview of DRAM memory-access protocols in preparation for our scheduling
algorithms in the next section.

3.1. Interface for Incoming Traffic Flows
At the input of the memory controller, incoming memory traffic flows from different
sources are separated so that QoS-aware scheduling policies can be applied by the
transaction scheduler. A real-time core can generate more than one independent traf-
fic flows. In a tile-based graphic GPU, a complete frame is divided into a few tiles
which can be rendered in parallel. A typical rendering procedure goes through the
geometry shader, rasterizer and fragment shader etc. until the tile cache is flushed
into the framebuffer in the external memory. The memory traffic generated during the
rendering procedure of current tile, which is mostly input traffic of texture, does not
depend on the flushing traffic of previous tiles. Thus GPU memory traffic can be split
into rendering and flushing traffic flows. Similarly, an HD video decoder generates
reading and writing traffic flows to meet the target frame rate respectively. The gen-
eration of real-time traffic can be shown as ideal pipelines in Fig. 5 where the delays

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 6 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:7

Per-Bank

Virtual Queues

...

Command

Generator

1

Command

Generator

N

DRAM Interface

Bank 1

Progress

Table

Scheduling

Logic

Traffic

Flow K

Input

Buffer

K

Traffic

Flow 1

Input

Buffer

1

... ...

Transaction Scheduler

...

...

B
an

k
 A

rb
it

er

Bank

State

Arbitration

Logic

Bank 2 Bank N

...

STVQ

Controller

Fig. 4. The design of single-tier virtual queuing (STVQ) memory controller.

between consecutive stages are omitted. Each traffic flow is scheduled in parallel in the
STVQ controller. In our experiment, real-time traffic flows are independent from each

Read frame 1 Read frame 3Read frame 2

Write frame 1 Write frame 2 Write frame 3

Render tile 1 Render tile 3Render tile 2

Flush tile 1 Flush tile 2 Flush tile 3

HD reading traffic

HD writing traffic

GPU flushing traffic

GPU rendering traffic

time

time

Fig. 5. The real-time input and output traffic of GPU and HD decoder.

other during memory scheduling while traffic from different CPU cores are combined
together. Although it would allow to apply different scheduling policies to CPU cores
by separating their traffic flows, we currently do not do that because the focus of our
memory scheduling is to reconcile the conflicts between CPU and real-time memory
traffic.

3.2. Single-Tier Virtual Queues
In the first stage of the STVQ memory controller, transactions from the same traffic
flow are stored in the same input buffer. An input buffer contains a series of per-bank

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 7 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:8 Y. Song et al.

virtual queues. Upon arrival, transactions are sorted into virtual queues based on the
destination bank. By using per-bank queues, the STVQ controller is able to schedule
transactions to different banks separately.

Since in every clock cycle, the memory controller can only send one command to the
DRAM and receive one transaction from each traffic flow, multiple reading or writing
does not happen to an input buffer. This allows per-bank virtual queues for the same
traffic flow to share one buffer without raising storage cost. In the implementation, vir-
tual queues can be statically allocated, which requires a simple address table to record
the start address of each virtual queue inside the input buffers. In a conventional
memory controller, the two-tier queuing system guides memory traffic from per-source
buffers to per-bank buffers. In spite of its high scalability, it takes extra effort to unify
the scheduling and queuing policies in two stages. In our case, by consolidating two-
tier queues into single-tier queues, scheduling is more efficient and fewer buffers are
used.

3.3. Separable Allocation
To schedule a transaction to DRAM, the STVQ controller selects among per-flow per-
bank queues, which is an allocation problem where access to the DRAM interface is
granted to one of the virtual queues. Similar to separable allocators in on-chip network
routers [Becker and Dally 2009], we achieve high scalability by performing allocation
with two separable steps: one to choose a memory bank and the other to choose a traffic
flow.

In the first step, the bank arbiter assigns DRAM access to one of the memory banks.
Meanwhile, virtual queues for this bank are activated in all input buffers and contend
for the designated command generator which will convert transactions into DRAM
commands. Note that the command generator may receive requests from multiple traf-
fic flows. Therefore, in the second step, the transaction scheduler arbitrates among
available traffic flows at the command generator. Only then can the chosen virtual
queue send a transaction to the command generator.

By using separable allocation, the STVQ controller solves a simple N :1 or K:1 ar-
bitration problem at a time, where N is the number of banks and K is the number
of traffic flows. For example, if there are 4 traffic flows and 8 memory banks, that re-
quires the STVQ controller to perform an 8:1 arbitration to choose a bank, and then
a 4:1 arbitration to select a traffic flow. The use of separable allocation significantly
reduces the complexity of the arbitration problem.

3.4. Bank Arbiter
In a DRAM device, memory banks operate separately at the same time. For example,
bank 1 can be read while bank 2 is being written. Yet since they share the same inter-
face to the memory controller, only one memory bank can receive DRAM command in
the same clock cycle. Also, the memory bank is not available for more commands until
the current operation has finished. Therefore, the bank arbiter is responsible to find
available memory banks and assign one of them with the permission to access DRAM
interface.

To achieve this, the arbiter records bank states in a state table and tracks the avail-
ability of each memory bank. The arbitration logic selects a winner from available
banks based on a certain arbitration policy. In our experiment, the bank arbitration
policy does not have notable impact on the performance. Hence we adopt the round-
robin policy for simplicity. After arbitration, the bank arbiter sends the bank selection
signal to input buffers which activates the corresponding virtual queue for the winning
bank and forwards the request to the command generator. Meanwhile the command
generator which is designated to the winning bank is also activated.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 8 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:9

3.5. Transaction Scheduler
The transaction scheduler arbitrates among requests from different traffic flows at the
command generator after bank arbitration. The winning queue schedules a transac-
tion to the command generator afterwards. The traffic flow arbitration and transaction
scheduling are performed by the scheduling logic which implements our multi-source
real-time scheduling algorithm (discussed in the next section). As input to the sched-
uler, progress information (2,3) of real-time traffic flows is monitored and recorded by
the progress table.

3.6. Command Generators
After bank arbitration and transaction scheduling, only one transaction arrives at the
command generator which is designated to the selected memory bank. To execute this
memory transaction, the command generator generates commands to operate DRAM
while following the DRAM memory-access protocol [Jacob et al. 2007].

The major task of a command generator is to deal with various timing constraints at
the command level. Thanks to the command generators, the bank arbiter and transac-
tion scheduler are able to perform allocation without dealing with the intricate DRAM
access protocol. Also, per-bank command generators communicate with the bank state
table in the bank arbiter to update the bank availability information. In STVQ a com-
mand generator is implemented as a state machine which is similar to the command
schedulers in prior works [Ausavarungnirun et al. 2012; Rixner et al. 2000; Kim et al.
2010a,b; Jalle et al. 2014].

3.7. DRAM Access Protocol
A single read transaction includes three commands/operations: bank activation, col-
umn read and precharge. During command scheduling, consecutive commands have
to be separated by minimum intervals in time so that they can in turn engage the
different shared resources in the DRAM, such as I/O gating and sense amplifiers. For
example, during a single read operation, tRCD specifies the minimum time interval
between row activation and column read, and tCL is the interval between column read
and data burst on the data bus. In a more common situation where multiple access
operations are performed on an open row in a memory bank, tWTR is the minimum
interval between the end of a write command and the start of a read command.

Furthermore, due to dynamic power concerns, there are constraints on the frequency
of bank activations in the same DRAM device. The constraint tFAW determines a
rolling time window during which no more than four banks can be activated. Another
constraint tRRD specifies the minimum interval between consecutive row activations
in the DRAM device. Finally, refresh commands are needed every several thousand cy-
cles to maintain the stored data in DRAM arrays. More illustrations of DRAM memory-
access protocol can be found in [Jacob et al. 2007].

3.8. Hardware Implementation
3.8.1. Virtual Queues. As explained, virtual queues of the same traffic flow share the

same input buffer. For an STVQ memory system with N memory banks and K traffic
flows, only K buffers are needed. By comparison a two-tier memory system requires
N+K buffers because all the queues in Fig. 1 can be active at the same time. Moreover,
command queues in the two-tier system can take up lots of storage, because every
transaction may generate up to three DRAM commands. By avoiding buffering DRAM
commands, more storage can be saved in the single-tier design. The storage of an input
buffer can be equally allocated to per-bank virtual queues. To record the addresses of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 9 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:10 Y. Song et al.

N virtual queues in each buffer, N registers are needed. Note that all input buffers can
share the same address table for virtual queues.

3.8.2. Bank Arbiter. The logic of bank arbitration is similar to previous memory sched-
ulers. To implement round-robin policy, the arbiter maintains a register recording the
last serviced memory bank. A small state table is used to track availability of memory
banks. Each bank has a one-bit flag to indicate its availability.

3.8.3. Transaction Scheduler. Since the arbitration for transactions is performed for a
single memory bank each time, one transaction scheduler is enough in our design.
The progress table provides scheduler with progress information of real-time traffic.
If there are K traffic flows, there should be at most K − 1 real-time traffic flows with
the other one from the CPU. Each real-time traffic flow has two types of fractional
progress, i.e. PA and PE (2,3). For each type of progress, two registers are used to store
the denominator and the numerator. Specifically, to compute PE , a register records the
target frame time and the other register keeps track of elapsed time in terms of clock
cycles. To compute PA for an HD decoder, a register records the total number of bytes
to be processed in current frame and the other updates the number of bytes which have
been processed in memory. The computation of PA for a graphic GPU requires the tile
engine in the GPU to output tiling information including the number of tiles rendered
and the total number of tiles in current frame.

3.8.4. Command Generators. A command generator is implemented for each bank as a
state machine performing scheduling based on various timing and power constraints,
which is identical to previous schedulers [Ausavarungnirun et al. 2012; Rixner et al.
2000; Kim et al. 2010a,b; Jalle et al. 2014]. As suggested in [Zhang et al. 2014] we ac-
tually only need four command generators, because no more than four memory banks
can be active at the same time due to the constraint tFAW . Four command generators
are shared by active memory banks. Yet to implement that more arbitration logic is
required to allocate command generators to active memory banks. Thus in our experi-
ment we use per-bank command generators.

3.8.5. Hardware Cost. The hardware parameters of the STVQ memory controller em-
ployed in our experiment are configured as follows. We use an STVQ controller working
at 1GHz, scheduling memory traffic for eight memory banks, and receiving six traffic
flows including two flows from the graphic GPU, two from the HD decoder, one from the
display control and one from CPU cores. Each virtual queue reserves 8 entries in the
input buffer. With 48 virtual queues in total, up to 384 transactions can reside in the
controller, which is not expensive compared with two-tier design [Ausavarungnirun
et al. 2012]. In the progress table, a real-time traffic flow has two entries including PA

and PE , each of which is a fractional number with two integer components. We assume
the lowest admissible frame rate is 23FPS (for movies), which means the maximum
frame time contains no more than 64 millions clock cycles. Thus a 26-bit register is
enough to record the frame time. Two of such registers are used to store a fractional
real-time progress. The hardware storage overhead in the STVQ controller is summa-
rized in Tab.I.

4. MULTI-SOURCE REAL-TIME SCHEDULING
In this section we will discuss our QoS-aware scheduling algorithm for multiple real-
time traffic flows on basis of the proposed STVQ memory controller. As in (1), the
scheduling objective for the STVQ controller is to minimize latency for CPU traffic
while providing real-time traffic required bandwidth. To guarantee real-time traffic ob-
tains sufficient bandwidth, the transaction scheduler monitors frame progresses (2,3)
of each real-time traffic flow. A real-time virtual queue sends transactions to DRAM

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 10 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:11

Table I. Hardware storage in the STVQ controller with six traffic flows (K = 6) and eight DRAM banks (N = 8).

Storage Description Size
Per-bank VQ Buffers transactions from a single flow going to a single bank 8 entries
Input buffer Stores transactions from a single flow N × V Q Size = 64 entries

VQ address table Records each virtual queue’s start address N × log2Buffer Size = 48 bits
Bank state table Tracks the availability of each memory bank N × 1 = 8 bits
Progress table Monitors progresses of real-time traffic flows (K − 1)× 2 = 10 entries
Progress entry Represents a fractional progress 2× log2FrameT imemax = 52 bits

when the actual progress falling behind the expected progress. Meanwhile, the CPU
receives service as often as possible to reduce queuing delay at the corresponding vir-
tual queue.

1

10

(a) strict and inflexible

1

10

(b) flexible but complicated

1

10

(c) flexible and simple

Fig. 6. Priority zone of a single real-time traffic flow.

The priority zone of real-time traffic is shown in Fig. 6 where the horizontal axis
represents the expected progress (PE) of a real-time traffic flow and the vertical axis
is for the actual progress (PA). The shaded zone indicates when the real-time traffic
obtains priority over CPU traffic, namely, when the actual progress is deemed to be
inadequate relative to the expected progress. The expected progress reaches 1 when
current frame comes to the end. After that the real-time traffic obtains absolute prior-
ity. In a strict implementation as in Fig. 6(a), the actual progress (PA) is forced to keep
up with the expected progress (PE) which grows linearly over time. This implementa-
tion does not have enough flexibility. When CPU traffic has transactions available, it
may be more desirable to serve the CPU while postponing real-time traffic when the
current frame will not finish any time soon. Thus in a flexible implementation shown
in Fig. 6(b), real-time traffic has less priority than Fig. 6(a) in the beginning so that the
CPU has more opportunities to be served. Note that this will not cause starvation to
the real-time traffic because CPU traffic cannot constantly interrupt real-time traffic
even with higher priority, thanks to the sparse traffic pattern. In our experiment, we
find it unnecessary to use high order priority functions to achieve good performance.
Instead a linear piecewise function f(PE) (4) is implemented. As shown in Fig. 6(c)
real-time traffic obtains priority when PA < f(PE). The tunable parameters are em-
pirically determined as α = 0.5, β = 0.95, ρ = 0.95.

f(PE) =

αPE PE ∈ [0, ρ)

βPE PE ∈ [ρ, 1)

1 PE ∈ [1,∞)

(4)

The scheduling algorithm used for multiple real-time traffic flows is shown in Al-
gorithm 1. The real-time traffic achieves the absolute priority when it is supposed to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 11 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:12 Y. Song et al.

ALGORITHM 1: Transaction Scheduling for the CPU and Multiple Real-time Traffic Flows

Input: P i
E , P i

A, ratioi = P i
A

P i
E

for each real-time queue i = 1, ..., n.

1: find the queue u with the lowest ratio, i.e. ratiou = min{ratioi|i = 1, ..., n}
2: find the queue v with the highest expected progress, i.e. P v

E = max{P i
E |i = 1, ..., n}

3: if ratiou ≥ 1 then
4: serve CPU transaction queue.
5: else if P v

E > ρ and ratiov < β then
6: serve real-time transaction queue v.
7: else if CPU transaction available and ratiou > α then
8: serve CPU transaction queue.
9: else
10: serve CPU and real-time queue u in round-robin manner.
11: end if

finish the current frame soon (PE > ρ), but its actual progress has not caught up yet
(PA < βPE) (Line 6). The CPU obtains priority when it has requests available while
the real-time traffic is not too far behind its expected progress, i.e. PA > αPE (Line 8),
or PA is leading PE for all real-time traffic (Line 4). Otherwise, the real-time and CPU
traffic share equal priority (Line 10). Note that this algorithm allows real-time traffic
to be late for a few cycles which is not noticeable for a graphic application whose frame
period is on millisecond level.

5. MEMORY PERFORMANCE OPTIMIZATION
The heterogeneous memory scheduling problem in (1) is focused on the performance of
CPU and real-time cores, but in practice the performance and efficiency of the DRAM
memory system can also be a concern. Since a mobile device has limited battery life, the
DRAM memory, as a major power consumer, needs to provide as much data transfer as
possible within certain time and power limits. In this section, we will discuss DRAM
efficiency and further explore batching techniques in the STVQ memory controller.

5.1. DRAM Efficiency
DRAM efficiency [Jacob et al. 2007] is defined as

DRAM efficiency =
data transfer time

active time
(5)

where the data transfer time refers to the cycles when a DRAM device transfers data
on the bus, and the active time is the total runtime of the DRAM device which can be
either transferring data or processing DRAM commands.

DRAM efficiency is usually lower than 100% because it takes a DRAM memory bank
extra cycles to prepare for data transfer, such as activating row-buffer (tRCD) and
precharging (tRP). Yet, theoretically 100% efficiency is achievable through perfect ad-
dress mapping to enable high bank-level parallelism, which hides the latency of data
transfer preparation. This way, there is always a memory bank ready for data trans-
fer while others being occupied. However, address mapping is beyond the context of
memory controller design.

A memory controller can achieve a high DRAM efficiency by reconciling memory
interference among traffic flows so that more data is transferred in the same amount
of time. Compared with other schedulers, the STVQ memory controller helps improve
DRAM efficiency by allowing more CPU transactions to be processed, while providing
the required bandwidth to real-time cores.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 12 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:13

5.2. Row-Buffer Hits and Batching
In [Ausavarungnirun et al. 2012], consecutive entries in the same transaction queue
and to the same row-buffer are batched together and scheduled to DRAM memory in
succession. These transactions read or write columns in the same row-buffer once the
row is activated. By allowing multiple row-buffer hits after one activation and saving
the time which would otherwise be used to precharge and re-activate the same row,
batching reduces the average memory access latency and also the dynamic power.

With higher spatial locality, real-time traffic flows can form into larger batches than
CPU traffic. Thus real-time cores gain more benefits from batching than the CPU. The
downside of batch formation is that when a real-time transaction batch is being sched-
uled, it cannot be interrupted even if a CPU transaction with a higher priority becomes
available. That will cause extra queuing delay to CPU traffic in the transaction queue
and thus deteriorate the CPU IPC.

In the STVQ controller, open page policy is adopted for the row-buffer management.
A row-buffer is activated until the next transaction is scheduled to a different row in
the same bank. This way consecutive transactions to the same row naturally result in
multiple row-buffer hits even without explicit batch formation. A potential concern is
that, without batch formation a real-time traffic may often be interrupted by the traffic
with a higher priority and thus suffer from low row-buffer hits. This, however, does not
happen in practice. On one hand, sparse CPU traffic can hardly cause interference to
real-time traffic. On the other hand, the priority interchange between real-time traffic
flows should not be frequent, as a result of the limited granularity of progress no-
tions. For example, a graphic GPU updates the progress notions in (2) each time after
a tile has finished processing (about 1us). Only after that can the GPU traffic flows
update their priorities. Since a column access operation takes around 10ns, multiple
row-buffer hits can easily happen between the priority updates.

Moreover, the STVQ controller can still be equipped with batching mechanism to
further increase row-buffer hits if the degradation on CPU memory latency can be
accepted to some extent. The scheduling policy in Algorithm 1 can be simply modified
to include batch formation (shown in Algorithm 2). To be specific, we need a register for
each memory bank to record the index of the active row-buffer and a counter to record
the number of transactions in current batch. When a transaction is picked up by the
transaction scheduler, the batch formation is performed to find other transactions in
the same batch by comparing the destination row index. Up to Nmax transactions can
be included in a single batch. After batching, the number of transactions in current
batch is stored and decremented every time when a transaction is issued from the
batch. Transaction scheduling is performed again only after current batch has been
finished.

Note that for heterogeneous memory scheduling, batching is not meant to improve
DRAM efficiency. In a heterogeneous system, most memory traffic comes from real-
time cores whose average memory latency can be reduced greatly by batching. How-
ever, the lower memory latency for real-time traffic does not lead to more transactions
to be scheduled. This is because the number of real-time transactions scheduled in
each frame period depends on the frame size. Lower memory latency means the frame
can be finished sooner, but a real-time core still has to wait for the frame period to end
before starting a new frame. As a result, the DRAM efficiency (5) remains the same for
real-time traffic.

6. EVALUATION
The primary responsibility of a heterogeneous scheduler is two-fold: allocating re-
quired bandwidth to real-time cores and keeping the slowdown of the CPU as low as

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 13 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:14 Y. Song et al.

ALGORITHM 2: Transaction Scheduling with Batch Formation
Input: the transaction queue currently being served, qcur; the number of transactions left in

current batch, Ncur; the maximum number of transactions allowed in a batch, Nmax

1: if Ncur == 0 then
2: use Algorithm 1 to find a new queue, qnew

3: assign Ncur(≤ Nmax) with the number of neighbor transactions in qnew going to the same
row-buffer

4: serve qnew

5: qcur = qnew, Ncur −−
6: else
7: serve qcur
8: Ncur −−
9: end if

Table II. Simulation Parameters.

CPU Parameter Description
Clock speed 1GHz

L1 cache 32KB private 4-way
L2 cache 1MB shared 16-way

GPU Parameter Description
Unified shader cores 8

Clock speed 800MHz
DRAM Parameter Description

Volume 4GB
I/O bus clock 666.67MHz
CL-tRCD-tRP 10-10-10

tWTR-tRTP-tWR 5-5-10
tRRD-tFAW 4-20

Channels-Ranks-Banks 1-1-8

possible. In this section, the proposed STVQ memory controller will be first tested on
bandwidth allocation, CPU slowdown reduction and DRAM efficiency without batching
techniques, in comparison with previous schedulers for heterogeneous memory traffic.
Further we will explore batching mechanism in the STVQ controller. The power and
area analysis of the STVQ memory controller follows in the end.

6.1. Methodology
Our simulation methodology for the STVQ memory controller is based on DRAMSim2
[Wang et al. 2005], on top of which a heterogeneous system is simulated by a trace-
based simulator, including a dual-core CPU, a graphic GPU, an HD decoder, and a
display controller. The DRAM model is configured according to the DDR3 SDRAM-
1333 specification. The simulation parameters are listed in Table II. The realtime cores
can either include the GPU and display controller, or the HD decoder and display
controller, since on a mobile device the display is usually engaged by either the GPU
or HD decoder.

For the test traces, we have four CPU applications from SPEC 2000/2006 bench-
marks with different memory intensities, including art, mcf, hmmer and sphinx3. The
GPU traces are extracted from the instrumented softpipe driver in the open-source
OpenGL library Gallium3D [Graphics 2010; Arnau et al. 2013b,a]. Four representative
mobile games are selected from different genres. The memory trace for HD decoder is
generated from a commercial MP4 parser. More benchmark descriptions can be found
in Table III.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 14 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:15

Table III. Benchmark Descriptions.

GPU benchmark Description FPS
coc strategy game 50
fruit action game 60
minecraft sandbox game 60
transformer shooting game 60
Video benchmark Description FPS
interstellar,
knight

4k ultra HD movie trailer 24

CPU benchmark Description Bandwidth
art image recognition 1.06 GB/s
mcf combinatorial optimization 0.94 GB/s
hmmer biosequence analysis 0.18 GB/s
sphinx3 speech to text program 0.005 GB/s

6.2. Comparison of Memory Schedulers without Batching
6.2.1. Bandwidth Allocation. To begin with, we test our memory controller with the CPU,

GPU and display control. For the dual-core CPU we use mcf and art benchmarks and
coc for the GPU. The bandwidth allocation for the CPU and GPU during one frame
period (20 ms) by the STVQ memory controller with the proposed scheduling policy is
shown in Fig. 7 (blue curve with circular markers). For comparison two other schemes
are implemented: one only has CPU cores generating memory requests (green curves
with diamond markers); the other applies SJF scheduling (in favor of CPU) in a two-
tier memory controller (red curves with cross markers).

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

time(ms)

ba
nd

w
id

th
(G

B/
s)

CPU Bandwidth

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

time(ms)

ba
nd

w
id

th
(G

B/
s)

GPU Bandwidth

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(STVQ)

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(STVQ)

delay
by SJF

SJF finishes
all GPU trans.

STVQ spreads out
GPU trans.

Fig. 7. Bandwidth allocation for CPU and GPU.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 15 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:16 Y. Song et al.

With no concerns for command queuing delay, the two-tier memory controller with
SJF scheduling allows the GPU to quickly finish all the transactions in current frame
time and consume most of the bandwidth in the first 3ms. At the same time applica-
tions on CPU cores hardly make any progress, leading to a delay lasting almost 3 ms
which can be clearly observed between the red and green curves in the CPU bandwidth
diagram. On the other hand, the STVQ memory controller keeps GPU bandwidth low
and steady most of the time to alleviate memory contention against the CPU. In the
GPU bandwidth diagram, spikes appear near the end of the frame period when the
actual progress of GPU traffic is behind the expected progress and the GPU receives
more priority in order to finish current frame in time. The CPU bandwidth diagram
shows that the results of the CPU-only system and heterogeneous system with STVQ
stay close to each otherbecause the STVQ memory controller does not cause much la-
tency to CPU traffic. For clarity, the bandwidth of the display is not shown in Fig. 7
since it is very similar to the GPU’s.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

time(ms)

ba
nd

w
id

th
(G

B/
s)

CPU Bandwidth

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

time(ms)

ba
nd

w
id

th
(G

B/
s)

HD Bandwidth

Only CPU
CPU+HD+Display(SJF)
CPU+HD+Display(STVQ)

Only CPU
CPU+HD+Display(SJF)
CPU+HD+Display(STVQ)

delay
by SJF

SJF finishes
all HD trans.

STVQ spreads out
HD trans.

Fig. 8. Bandwidth allocation for CPU and HD decoder.

Further we test the STVQ memory controller with the CPU, the HD decoder and
the display control. Benchmarks mcf and art are applied on CPU cores again, while
the 4k HD movie clip knight is used to generate memory traces for the HD decoder.
The bandwidth allocation by the STVQ controller during one frame period (42 ms) is
shown in Fig. 8. Similar to the previous example, the two-tier scheduler using SJF
policy gives more bandwidth to realtime cores in the beginning. As 4k movie has more
pixels in each frame than GPU applications (1280 × 720 pixels), it takes the DRAM

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 16 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:17

more time to finish serving the HD decoder in Fig. 8 compared with Fig. 7. The de-
lay caused to CPU applications can be observed by comparing CPU bandwidth with
that of the CPU-only scenario. The STVQ controller leads to a much smaller delay for
CPU traffic. Moreover, the STVQ controller evenly distributes bandwidth consump-
tion of the HD decoder over the whole frame. Note that the bandwidth curve of the
HD decoder in Fig. 8 is much smoother than that of GPU in Fig. 7. This is because the
fine-grained pixel-based progress notion of HD decoder (3) facilitates more accurate
realtime scheduling than the tile-based GPU progress (2).

6.2.2. IPC Slowdown. Due to memory conflicts, the CPU endures lower IPC when shar-
ing memory with realtime cores, namely, less CPU instructions are executed during the
same amount of time. A good memory scheduler reduces IPC slowdown by decreasing
memory latency for the CPU. To test the STVQ controller on IPC slowdown reduction,
same comparison scenarios are used again including the CPU-only system and the
heterogeneous system with a two-tier scheduler using SJF policy.

0 5 10 15 20
0

1

2

3

4

5

6
x 106

time(ms)

nu
m

be
r o

f i
ns

tru
ct

io
ns

Committed CPU instructions

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(STVQ)

Less
delay

More
instructions

(a) interference from GPU and display control

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12
x 106

time(ms)

nu
m

be
r o

f i
ns

tru
ct

io
ns

Committed CPU instructions

Only CPU
CPU+HD+Display(SJF)
CPU+HD+Display(STVQ)

Less
delay

More
instructions

(b) interference from HD decoder and display control

Fig. 9. Committed CPU instructions during one frame period with memory interference from realtime
cores.

Fig. 9 shows the committed CPU instructions during one frame period. Two combi-
nations of realtime cores are simulated: Fig. 9(a) shows the CPU under interference
from the GPU and display control memory traffic; Fig. 9(b) shows the CPU affected
by the HD decoder and display control. Same to the last section, benchmarks mcf-art,
coc and knight are applied to the CPU, GPU and HD decoder. As expected, the CPU-
only system executes the most instructions over the same period compared with other
scenarios. Meanwhile the STVQ memory controller commits more instructions than
the two-tier memory controller. Note that the horizontal distance between two curves
shows the time difference after finishing the same number of instructions, which in-
dicates the delay of CPU traffic caused by memory interference. As can be seen, the
STVQ memory controller results in less delay than the two-tier scheduler. In both
cases, the two-tier scheduler leads to huge delays to the CPU in the beginning. In con-
trast, the STVQ controller has the CPU traffic delay increase gradually over time by
alleviating more memory conflicts.

As an important metric of system performance, the slowdown rate is calculated as
the ratio of the baseline IPC, when CPU has exclusive access to memory, to the IPC

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 17 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:18 Y. Song et al.

when CPU shares memory with realtime cores. Lower slowdown rate is more desirable
as the memory controller targets at minimizing memory latency for CPU. Besides the
proposed STVQ memory controller, we have three other scheduling policies on the two-
tier memory scheduler as in Fig. 1, including RR policy, SJF policy and an extended
version of the QoS policy in [Jeong et al. 2012] to include multiple realtime cores which
are served in round-robin manner when the CPU has low priority.

1

1.05

1.1

1.15

1.2

1.25

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

coc fruit minecraft transformer

RR SJF QoS STVQ

1

1.05

1.1

1.15

1.2

1.25

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

ar
t-

ar
t

m
cf

-a
rt

m
cf

-m
cf

ar
t-

hm
m

er

m
cf

-s
ph

in
x

transformer interstellar knight mean

RR SJF QoS STVQ

Fig. 10. IPC slowdown rate summary.

The summary of slowdown rates of all scenarios in 50 ms is shown in Fig. 10. As ex-
pected the RR has the worst performance because realtime traffic has far more trans-
actions than the CPU and RR policy prefers the bandwidth-intense realtime traffic.
Meanwhile SJF and QoS have similar results, because the latency of CPU traffic re-
duced in the transaction stage is counteracted by the much bigger queuing delay in the
command stage. The STVQ memory controller achieves the best performance except
for art-art and knight. In that case the slowdown rate by STVQ is a bit higher than SJF
and QoS. This happens when adverse address mapping leads to plenty of bank conflicts
between realtime and CPU traffic. Instead of letting bank conflicts happen all at once,
the STVQ memory controller spreads out the conflicts over time, which in total may
cause more latency to CPU traffic than the spared queuing delay. However, adverse

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 18 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:19

address mapping takes place rarely in our experiment even with random address allo-
cation. With careful mapping between virtual, physical and DRAM addresses, severe
bank conflicts can be avoided. Compared with the best performances of other sched-
ulers, the STVQ memory controller lowers the slowdown rate by 6.1% on average. The
highest reduction of slowdown rate by STVQ is 13.9% (mcf-mcf and knight).

Table IV. Performance summary of STVQ memory controller.

Realtime CPU Prev. IPC STVQ IPC Frame time
benchmark benchmark slowdown slowdown slack (µs)

coc
art-art 114.4% 105.0% 0.0
mcf-art 113.3% 108.6% 0.2
mcf-mcf 111.8% 106.1% 0.2

art-hmmer 108.4% 102.0% 0.0
mcf-sphinx 103.3% 101.2% 0.2

fruit
art-art 112.7% 101.8% 0.6
mcf-art 111.6% 107.8% 0.3
mcf-mcf 109.9% 104.9% 0.2

art-hmmer 106.3% 101.7% 0.4
mcf-sphinx 102.8% 101.2% 0.3

minecraft
art-art 113.2% 102.8% 0.1
mcf-art 112.0% 108.0% 0.6
mcf-mcf 110.3% 105.3% 0.4

art-hmmer 106.7% 101.8% 0.0
mcf-sphinx 102.8% 101.2% 0.2

transformer
art-art 117.7% 112.1% 0.3
mcf-art 118.6% 111.3% 0.1
mcf-mcf 118.9% 110.3% 0.1

art-hmmer 112.0% 104.1% 0.0
mcf-sphinx 104.6% 102.2% 0.1

interstellar
art-art 116.0% 115.9% 18.1
mcf-art 118.5% 108.2% 12.0
mcf-mcf 119.3% 105.6% 18.1

art-hmmer 108.4% 101.4% 5.9
mcf-sphinx 104.0% 101.1% 5.9

knight
art-art 116.2% 116.5% 6.6
mcf-art 118.5% 108.3% 13.4
mcf-mcf 119.4% 105.5% 26.8

art-hmmer 108.3% 101.4% 6.5
mcf-sphinx 104.0% 101.1% 6.5

Frame time slacks (:= 1
FPStarget

− 1
FPSactual

) by the STVQ controller are shown in
Tab.IV. All slacks are non-negative, which means realtime cores meet their target
frame rates in all scenarios. Note that the HD decoder have much more slacks left
than the GPU. This is because the pixel-based fine-grained progress notion of the HD
decoder facilitates the scheduling job, meanwhile the tile-based progress provided by
GPU tile engine is much less accurate. Besides the unpredictable GPU bandwidth
makes the QoS-aware scheduling more difficult.
Furthermore, if the frame period is allowed to be late for a few microseconds, which is
unnoticeable for human eyes, even lower IPC slowdown rates can be achieved by the
STVQ controller.

6.2.3. DRAM Efficiency. As discussed in Section 5, higher DRAM efficiency can be
achieved by scheduling more transactions in the same amount of time. Fig. 11 shows
the summary of normalized DRAM efficiencies for different test cases. Every DRAM
efficiency is normalized through being divided by the efficiency achieved by the STVQ
controller on the same test case. As can be seen, the STVQ controller leads to the
highest DRAM efficiency in most cases.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 19 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:20 Y. Song et al.

0.85

0.9

0.95

1

1.05

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

m
cf

-m
cf

m
cf

-a
rt

ar
t-

ar
t

coc fruit minecraft transformer interstellar knight mean

RR SJF QoS STVQ

Fig. 11. Summary of normalized DRAM efficiencies during one frame period.

6.3. Batching in the STVQ Memory Controller
In this section, different batching policies will be tested on the STVQ memory con-
troller. According to Section 5.2, batching mechanism helps reduce the average mem-
ory latency, especially for traffic flows with high spatial locality. This is achieved by
having more row-buffer hits for each row activation. Fig. 12 shows the average num-
bers of row-buffer hits by real-time traffic flows during one frame period. For each test
case, the numbers of row-buffer hits after each row activation are collected under dif-
ferent batching policies. For each batching policy, the average number of row-buffer
hits during one frame period is calculated. For comparison, three batching policies are
tested: ”no batching” refers to the case using the original scheduling policy in Algo-
rithm 1 without batch formation, and ”batching” means batch formation is adopted
in the STVQ controller (Algorithm 2). Two configurations of batching are used: one
can have up to 4 transactions in a single batch (Nmax = 4) and the other can have 8
transactions at most (Nmax = 8). Note that the row-buffer hits by CPU traffic are not
shown, because batching hardly has an impact on CPU traffic which shows low spatial
locality.

Based on Fig. 12, without batch formation the STVQ memory controller achieves
reasonable numbers of row-buffer hits which are 4.63 on average across all test cases.
In the best case (mcf-mcf and fruit), there are 5.72 row-buffer hits per activation. By
applying batching, more row-buffer hits are achieved. When the maximum batch size
is set to 4, the average number of row-buffer hits rises to 5.94. When the batch size
limit is adjusted to 8, the number continues to grow until 6.62 which is 43% higher
than that when batching is not applied. In the case of art-art and transformer, the
row-buffer hits rise by 66.2% when batching is applied with Nmax = 8.

With more row-buffer hits achieved through batching, real-time traffic observes
shorter memory latency. Whereas CPU traffic may suffer from longer memory latency.
First, due to the low spatial locality and the sparse traffic pattern, CPU traffic forms
into small batches. That means batching cannot reduce much memory latency for the
CPU. Second, since real-time traffic can form into large batches easily, CPU traffic
often has to wait in the transaction queues until real-time batches have been finished.

Fig. 13 shows the memory latencies collected from both CPU and real-time traffic,
with different batching policies. To normalize the latencies, we divide them by the
latencies when no batching is applied. Since real-time transactions compose most of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 20 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:21

0

1

2

3

4

5

6

7

8

mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art

coc fruit minecraft transformer mean

no batching batching (Nmax = 4) batching (Nmax = 8)

Fig. 12. Average row-buffer hits by realtime traffic during one frame period using the STVQ memory con-
troller with batching.

0.8

0.85

0.9

0.95

1

1.05

mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art

coc fruit minecraft transformer mean

no batching batching (Nmax = 4) batching (Nmax = 8)

Fig. 13. Normalized memory latencies for all traffic using the STVQ memory controller with batching.

the memory traffic, more often than not, the reduction on the latency for real-time
traffic compensates the increased latency of CPU traffic. Therefore, in most cases, the
overall memory latency is decreased. In Fig. 13, the average latency of all test cases
sees the reduction of 7.5% when the maximum batch size is set to 4, and 9.9% when
the size is set to 8. In the best case (mcf-art and minecraft), the latency decreases by
19.8% when the size limit is 8.

The CPU IPC under different batching policies are shown in Fig. 14. To be nor-
malized, the IPC numbers are divided by the ones when batching is not applied. Since
CPU traffic suffers from more memory latency, IPC is lower than 100% in all test cases
when batching is applied. However, the IPC degradations are not severe because the
IPC is only lowered by a negligible 0.9% on average. Even in the worst-case (mcf-mcf
and transformer), the IPC is only lowered by 2.3% when the batch size limit is set to
8. But with this small degradation on CPU IPC, batching reduces the memory latency
for the overall traffic by up to 19.8% and on average by 9.9%.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 21 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:22 Y. Song et al.

0.8

0.85

0.9

0.95

1

1.05

mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art

coc fruit minecraft transformer mean

no batching batching (Nmax = 4) batching (Nmax = 8)

Fig. 14. Normalized CPU IPC using the STVQ memory controller with batching.

6.4. Power and Area
Table V presents the power and area of STVQ in comparison with the two-tier staged
memory scheduler [Ausavarungnirun et al. 2012], which has the lowest overhead
among previous schedulers. We implemented both memory controllers at the gate level
using the TSMC GP 65 nm technology node library. The results are normalized to the
results of the two-tier staged memory scheduler. The two memory controllers use input
buffers of the same size, as shown in Table I.

As shown in Table V, the STVQ controller saves 8% leakage and 28% area overhead.
The savings of the STVQ controller mainly come from the removal of the command
queues, whereas adding virtual queues does not increase buffer cost since per-bank
queues share the same physical memory. The STVQ memory controller achieves more
efficient scheduling with less buffer overhead and high scalability.

Table V. Power and area compared with the
staged memory scheduler.

Memory controller SMS STVQ
Leakage(normalized) 1 0.92

Area(normalized) 1 0.72

7. CONCLUSIONS
In this work, we show that the existing approaches for heterogeneous MPSoCs memory
scheduling based on two-tier queuing architectures have the disadvantage of large
queuing delays in the FIFO command stage, which may counteract the benefits of QoS-
aware scheduling at the transaction stage. To enable efficacious scheduling, we propose
a novel memory architecture with a single-tier virtual queuing system. In addition
to our STVQ memory controller, we present a QoS-aware scheduling policy for the
CPU and multiple real-time cores. According to our experiments, the STVQ memory
controller achieves a lower IPC slowdown rate compared with previous heterogeneous
memory schedulers. For the benchmarks evaluated, the reduction in IPC slowdown
rate is by up 13.9%, with an average reduction of 6.1%. This reduction is achieved
with no frame drops or negative frame slacks for the real-time cores. We also show
that the STVQ controller obtains higher DRAM efficiency than previous schedulers. To
improve row-buffer hits, we further extend our scheduling policy to support batching.
Based on the experimental results, batching increases row-buffer hits by up to 66.2%

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 22 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A Single-Tier Virtual Queuing Memory Controller Architecture A:23

and on average by 43%, which reduces the memory latency for CPU and real-time
traffic by up to 19.8% and on average by 9.9%, while the CPU only sees a negligible
0.9% degradation in IPC.

REFERENCES

Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2013a. Parallel Frame
Rendering: Trading Responsiveness for Energy on a Mobile GPU. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques (PACT ’13).
IEEE, 83–92.

Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2013b. TEAPOT: A
Toolset for Evaluating Performance, Power and Image Quality on Mobile Graphics Systems.
In Proceedings of the 27th International ACM Conference on International Conference on Su-
percomputing (ICS ’13). ACM, 37–46.

Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian, Gabriel H. Loh, and
Onur Mutlu. 2012. Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems. In Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA ’12). IEEE, 416–427.

Daniel U. Becker and William J. Dally. 2009. Allocator Implementations for Network-on-chip
Routers. In Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis (SC ’09). ACM, 52:1–52:12.

Tungsten Graphics. 2010. Gallium3D. Retrieved Dec. 2014 from http://en.wikipedia.org/wiki/
Gallium3D/.

Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco J.
Cazorla. 2014. A Dual-Criticality Memory Controller (DCmc): Proposal and Evaluation of
a Space Case Study. In Proceedings of the Real-Time Systems Symposium (RTSS’14). IEEE,
207–217.

Min Kyu Jeong, Mattan Erez, Chander Sudanthi, and Nigel Paver. 2012. A QoS-aware Mem-
ory Controller for Dynamically Balancing GPU and CPU Bandwidth Use in an MPSoC. In
Proceedings of the 49th Annual Design Automation Conference (DAC ’12). ACM, 850–855.

Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Minimalist Open-page: A
DRAM Page-mode Scheduling Policy for the Many-core Era. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’44). ACM, 24–35.

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010a. ATLAS: A scalable
and high-performance scheduling algorithm for multiple memory controllers. In Proceedings
of the 16th International Symposium on High Performance Computer Architecture (HPCA ’10).
IEEE, 1–12.

Yoongu Kim, M. Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010b. Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior. In Proceedings of the
43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’00). IEEE,
65–76.

Jaekyu Lee, Si Li, Hyesoon Kim, and Sudhakar Yalamanchili. 2013. Design Space Exploration of
On-chip Ring Interconnection for a CPU-GPU Heterogeneous Architecture. J. Parallel Distrib.
Comput. 73, 12 (Dec. 2013), 1525–1538. DOI:http://dx.doi.org/10.1016/j.jpdc.2013.07.014

Asit K. Mishra, Onur Mutlu, and Chita R. Das. 2013. A Heterogeneous Multiple Network-
on-chip Design: An Application-aware Approach. In Proceedings of the 50th Annual Design
Automation Conference (DAC ’13). ACM, 36:1–36:10.

Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE Computer Society, 63–
74.

NVIDIA. 2015. Tegra X1. Retrieved Nov. 2015 from http://www.nvidia.com/object/
tegra-x1-processor.html.

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann, Mark D. Hill,
Steven K. Reinhardt, and David A. Wood. 2013. Heterogeneous System Coherence for In-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 23 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:24 Y. Song et al.

tegrated CPU-GPU Systems. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, 457–467.

Qualcomm. 2015. Snapdragon 820. Retrieved Nov. 2015 from https://www.qualcomm.com/
products/snapdragon/processors/820.

Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens. 2000. Mem-
ory Access Scheduling. In Proceedings of the 27th Annual International Symposium on Com-
puter Architecture (ISCA ’00). ACM, 128–138.

David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes, Aamer Jaleel, and Bruce
Jacob. 2005. DRAMSim: A memory-system simulator. In SIGARCH Computer Architecture
News. 100–107.

Tao Zhang, Cong Xu, Ke Chen, Guangyu Sun, and Yuan Xie. 2014. 3D-SWIFT: A High-
performance 3D-stacked Wide IO DRAM. In Proceedings of the 24th Edition of the Great Lakes
Symposium on VLSI (GLSVLSI ’14). ACM, 51–56.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 24 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING, 0407 LA JOLLA, CALIFORNIA 92093-0407

Dear Editor:

Please find attached our following submission to ACM TODAES:

A Single-Tier Virtual Queuing Memory Controller Architecture for Heterogeneous MPSoCs (authors:
Yang Song, Kambiz Samadi, and Bill Lin)

This submission is an extension of our 2016 DAC paper entitled “Single-tier virtual queuing: an
efficacious memory controller architecture for MPSoCs with multiple realtime cores”. In particular, we
significantly extended our work in the following ways:

 We added a new section on memory performance optimization where we discussed new aspects of
memory system design, including DRAM efficiency and row-buffer hits optimization. We further
extended our scheduling policy to enable batching in the STVQ controller to increase row-buffer
hits.

 We provided additional analysis on the test cases for bandwidth allocation by the STVQ controller,
as well as the IPC slowdown results.

 We added new experimental results that compare the STVQ controller with previous schedulers
with respect to DRAM efficiency, and we showed that the STVQ controller achieves better DRAM
efficiency than others.

 We added new experimental results that evaluated the STVQ memory controller with different set-
ups on batching, and we showed that the improvements by batching on row-buffer hits and the
average memory latency. We concluded that with a negligible degradation on the CPU’s IPC,
batching reduces the average memory latency by 9.9% on average and 19.8% in the best case.

 We expanded the related work and STVQ memory system sections to provide more background
and design details of the STVQ memory controller.

 Finally, we re-wrote several explanations to provide more intuition and we updated different places
throughout the paper.

Thank you very for considering our submission.

Sincerely,

Yang Song, Ph.D. candidate
Electrical and Computer Engineering
University of California, San Diego
La Jolla, CA 92093 -0407
E-mail: y6song@eng.ucsd.edu

SANTA BARBARA • SANTA CRUZ BERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

Page 25 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Single-Tier Virtual Queuing:
An Efficacious Memory Controller Architecture

for MPSoCs with Multiple Realtime Cores

Yang Song†, Kambiz Samadi‡, Bill Lin†
†Electrical and Computer Engineering Department, University of California at San Diego

‡Qualcomm Research, San Diego, CA
y6song@ucsd.edu

ABSTRACT
In heterogeneous MPSoCs, memory interference between
the CPU and realtime cores is a critical impediment to
system performance. Previous memory schedulers adopt
the classic two-tier queuing system, but unfortunately the
use of two-tier queuing deteriorates the QoS of scheduling
policies. In this paper, we propose the Single-Tier Vir-
tual Queuing (STVQ) memory controller for efficacious QoS-
aware scheduling. The STVQ memory controller maintains
single-tier transaction queues and employs separable allo-
cation for transaction scheduling with high scalability. A
multi-source realtime scheduling algorithm is further pre-
sented. The STVQ controller achieves up to 13.9% less CPU
IPC slowdown than previous schedulers with no frame rate
penalty on realtime cores.

1. INTRODUCTION
Heterogeneous MPSoCs have been widely deployed for

mobile devices to reduce power while improving system per-
formance. One challenge of integrating heterogeneous cores
is to reconcile memory interference among different cores
which may have distinct memory traffic patterns. Conven-
tional approaches allocate address space statically or assign
different virtual address spaces to heterogeneous cores. Yet
the design of memory controllers has not been well explored
when heterogeneous cores share the same address space.

A typical realtime core such as a graphic GPU consumes
much higher bandwidth than a CPU, because a graphic GPU
is capable of executing multiple threads in parallel, which of-
ten leads to a large number of memory requests; on the other
hand, a realtime core can switch between different threads
to hide memory access latency. In contrast, the sparse CPU
traffic through the last level cache is much more sensitive
to memory stalls. Memory interference happens when the
bandwidth-intensive realtime traffic overwhelms the latency-
sensitive CPU traffic. Previous works have analyzed hetero-
geneous memory traffic in details [1, 2, 3, 4, 5].

A classic memory controller for multi-core platforms com-
prises a two-tier queuing system, including a per-source queu-
ing transaction stage and a per-bank queuing command stage.
The two-tier queuing system is a straightforward solution
to deliver high memory throughput. Ausavarungnirun et
al. [2] were the first to propose the staged memory sched-
uler (SMS) in the context of integrated CPU-GPU systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898093

Source 1 Source 2 Source 3 Source 4

Batch
formation

Command
scheduler

Batch
scheduler

Transaction
stage

Command
stage

DRAM Interface

Bank 1 Bank 2 Bank 3 Bank 4

Figure 1: Architecture of a two-tier staged memory
scheduler.

(Fig. 1). The proposed SMS architecture follows the two-
tier queuing system approach. In SMS, transactions for the
same row-buffer in DRAM are formed into batches to in-
crease row-buffer hits. Due to the lower spatial locality, CPU
traffic generates shorter batches. By adopting the Shortest
Job First (SJF) policy with certain probability, the sched-
uler prevents CPU traffic from being overwhelmed by the
vast GPU traffic. However, the command stage still uses
conventional FIFOs, which degrades the QoS improvements
from the transaction stage. As a concurrent work, Jeong et
al. [3] proposed a realtime QoS-aware scheduling algorithm
for the transactions stage, but it also neglects the queuing
effects at the command stage.
Effectively, heterogeneous memory scheduling can be de-

picted as the optimization problem in (1), where Lcpu refers
to the latency of CPU traffic, Rrealtime represents the re-
quired bandwidths of realtime cores, and FPS (Frames Per
Second) is the target frame rate. The CPU can be replaced
by any other non-realtime cores. The realtime cores may
include a graphic GPU, an HD video decoder, and a display
controller, all of which can share the same address space.

min Lcpu

subject to Rrealtime ≥ FPS ∗ framesize.
(1)

The drawback of previous works using two-tier queuing
systems lies in the unawareness of the queuing delay in the
command stage which can be much higher than that in the
transaction stage. Performance improvement by the trans-
action scheduler may not be preserved after the command
stage. This problem with two-tier queuing is illustrated in
Fig. 2. The figure depicts a common scenario in which the
GPU transaction queue has transactions to send but the
CPU has no transactions available. As there is no CPU
transaction waiting, a QoS-aware scheduler in a two-tier
queuing system would send all the GPU transactions queued
at the transaction stage to the commmand stage in order to
maximize memory throughput. Yet any new incoming CPU
transaction going to the same queue would have to wait at

Page 26 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

the end of the same command queue, which could cause po-
tentially substantial latency to the CPU memory traffic.

CPU GPU CPU GPU
CPU

transaction/
command

GPU
transaction/
command

before GPU transactions
are scheduled

after GPU transactions
are scheduled

Figure 2: Example of transaction scheduling in a two-tier
memory controller causing queuing delay to the CPU.

The problem is further illustrated in Fig. 3 where queuing
delays in the transaction and command stages of a two-tier
system are shown respectively. For comparison, three sce-
narios are simulated: one only has a dual-core CPU; another
has a dual-core CPU, a graphic GPU, and a display con-
troller, and uses SJF policy for scheduling; the last one also
has a dual-core CPU, a graphic GPU, and a display con-
troller, but uses the Round-Robin (RR) policy for schedul-
ing. Even though SJF policy successfully reduces the queu-
ing delay of CPU transactions, the queuing delay of CPU
commands remains the same with the result from RR pol-
icy, which is much higher than the command delay without
realtime cores. In other words the benefit introduced by SJF
policy in the first stage is counteracted by the FIFO queues
in the second stage. Therefore, we say that a two-tier queu-
ing system is not efficacious in the sense that a QoS-aware
scheduler may not produce the desired result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

time(ms)

de
lay

(n
s)

Transaction queuing delay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

time(ms)

de
lay

(n
s)

Command queuing delay

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(RR)

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(RR)

Figure 3: Queuing delays of CPU traffic in the trans-
action and command stages of a two-tier memory con-
troller. Benchmarks mcf-art and coc used for CPU and
GPU. Experiment setup discussed in Section 5.

In this work, we propose a new memory controller archi-
tecture with single-tier virtual queuing for multiple heteroge-
neous cores. The aim of the STVQ controller is to optimize
system performance in (1). The contributions of our work
can be summarized as follows.

• Limitation of two-tier queuing systems for MP-
SoCs. We identify the bottleneck of two-tier memory
schedulers in delivering good system performance for het-
erogeneous systems where the CPU and realtime cores
have different requirements on latency and bandwidth.

• Single-Tier Virtual Queuing (STVQ) memory sys-
tem. To get rid of the command queuing delay and apply
efficacious transaction scheduling, we propose the single-
tier virtual queuing memory controller for heterogeneous
memory scheduling.

• Separable allocation for scalable arbitration. To
achieve high scalability, separable allocation is used to im-
plement the selection of memory bank and virtual queue
to service, which reduces the complexity of arbitration.

• Multi-source realtime scheduling. To modulate traf-
fic flows from the CPU and realtime cores including a
graphic GPU, an HD video decoder, and a display con-
troller, we present a QoS-aware scheduling policy for het-
erogeneous memory traffic from multiple sources.

Our evaluation shows that our proposed STVQ memory
controller, together with our proposed realtime scheduling
algorithm, can achieve significantly less CPU slowdown un-
der memory interferences from realtime cores. Compared
with previously proposed QoS memory controllers, up to
13.9% less IPC slowdown is achieved with 6.1% on average,
while realtime cores are able to meet their target frame rates.
The rest of this paper is organized as follows: Section 2

briefly reviews related works. Section 3 describes our pro-
posed single-tier virtual queuing memory controller architec-
ture. Section 4 presents our multi-source realtime scheduling
algorithm for the STVQ memory controller. The experimen-
tal results and conclusions follow in Sections 5 and 6.

2. RELATED WORK
The First-Ready First Come First Serve (FR-FCFS) pol-

icy [6] has been widely used for memory scheduling to deliver
high memory throughput, but it assigns more priorities to
memory-intensive applications as it prioritizes requests that
result in high row-buffer hits. Application-aware scheduling
for CPU-only systems has drawn more attention in recent
years [7, 8, 9]. ATLAS [7] prioritizes applications with low
memory intensity to improve system throughput at the ex-
pense of applications with high memory intensity. Thread
cluster memory scheduling [8] dynamically clusters appli-
cations into low and high memory-intensity clusters and
achieves high system performance and fairness simultane-
ously. Dual-criticality memory controller [9] handles mem-
ory contention between realtime and high performance ap-
plications by bank separation, assuming no shared memory
between different types of applications.
Staged memory scheduler [2] was the first application-

aware scheduler proposed for CPU-GPU systems. A two-
tier staged memory architecture (Fig. 1) is used to decouple
the memory scheduling task into three basic steps, including
batch formation, batch scheduling and command scheduling.
The batch scheduler switches between two policies which are
the Shortest-Job-First (SJF) and Round-Robin (RR). Due
to the distinct characteristics of CPU and GPU memory
traffic, the SJF policy gives higher priority to the CPU while
the RR policy favors the GPU. By adjusting the probabil-
ity of the SJF policy, the priority of the CPU is modulated
to balance performance and fairness for the CPU-GPU sys-
tem. However, as discussed in Section 1, even though the
CPU can achieve sufficient bandwidth through the batch
scheduler, there is no guarantee for the latency because the
queuing delay in the FIFO command scheduler is uncertain.
In [3] a QoS-aware scheduling policy was proposed to dy-

namically balance CPU and GPU bandwidth. The proposed
policy allocates the minimum bandwidth to the graphic GPU
to meet the target FPS. To achieve that, two notions for
GPU’s frame progress were introduced by (2),

PA =
number of tiles rendered

total number of tiles
,

PE =
elapsed time in current frame

target frame time
.

(2)

Here, PA is the actual progress of GPU workload in the
current frame and PE is the expected progress. Their QoS
policy prioritizes the GPU when PA is lagging behind PE .
Progress notions can be extended to include other realtime
cores such as an HD decoder whose progress metric can be
expressed as follows:

PA =
number of bytes (or pixels) processed

total number of bytes (or pixels)
. (3)

Page 27 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Nonetheless, this QoS policy focuses on transaction-level
scheduling and optimizes CPU bandwidth instead of CPU
latency, a more critical performance metric. This may cause
performance degradation in a memory scheduler with the
two-tier queuing system.

3. SINGLE-TIER VIRTUAL QUEUING
MEMORY SYSTEM

A memory system in a single memory channel comprises
the physical memory (DRAM devices) and a memory con-
troller. As the bridge between the processors and memory,
the memory controller deals with demands from processors
(bandwidth, latency, etc.) while following DRAM-access
protocols. The objective of our STVQ memory controller is
to minimize latency of CPU memory traffic while satisfying
frame rate requirements of realtime traffic. Fig. 4 shows an
STVQ controller for a DRAM with N memory banks and K
independent traffic flows. Four major components reside in
the STVQ controller: single-tier virtual queues (VQ), a bank
arbiter, a transaction scheduler and per-bank command gen-
erators. In this section, we will go through the design details
of the proposed single-tier virtual queuing memory system.

Per-Bank
Virtual Queues

...

Command
Generator

1

Command
Generator

N

DRAM Interface

Bank 1

Progress
Table

Scheduling
Logic

Traffic
Flow K

Input
Buffer
K

Traffic
Flow 1

Input
Buffer
1

Transaction Scheduler

...

B
an
k
A
rb
ite
r

Bank
State

Arbitration
Logic

Bank 2 Bank N

...

STVQ
Controller

...

...

...

Figure 4: Architecture of the single-tier virtual queuing
(STVQ) memory controller.

3.1 Interface for Incoming Traffic Flows
At the input of the memory controller, incoming memory

traffic flows from different sources are separated so that QoS-
aware scheduling policies can be applied by the transaction
scheduler. A realtime core can generate more than one in-
dependent traffic flows. In a tile-based graphic GPU, a com-
plete frame is divided into a few tiles which can be rendered
in parallel. A typical rendering procedure goes through the
geometry shader, rasterizer and fragment shader etc. until
the tile cache is flushed into the framebuffer in the external
memory. The memory traffic generated during the render-
ing procedure of current tile, which is mostly input traffic of
texture, does not depend on the flushing traffic of previous
tiles. Thus GPU memory traffic can be split into rendering
and flushing traffic flows. Similarly, an HD video decoder
generates reading and writing traffic flows to meet the tar-
get frame rate respectively.

3.2 Single-Tier Virtual Queues
In the first stage of the STVQ memory controller, transac-

tions from the same traffic flow are stored in the same input
buffer. An input buffer contains a series of per-bank virtual
queues. Upon arrival, transactions are sorted into virtual
queues based on the destination bank. By using per-bank

queues, the STVQ controller is able to schedule transactions
to different banks separately.
Since in every clock cycle, the memory controller can only

send one command to the DRAM and receive one transac-
tion from each traffic flow, multiple reading or writing does
not happen to an input buffer. This allows per-bank virtual
queues for the same traffic flow to share one buffer without
raising storage cost. In the implementation, virtual queues
can be statically allocated, which requires a simple address
table to record the start address of each virtual queue inside
the input buffers.

3.3 Separable Allocation
To schedule a transaction to DRAM, the STVQ controller

selects among per-flow per-bank queues, which is an alloca-
tion problem where access to the DRAM interface is granted
to one of the virtual queues. Similar to separable allocators
in on-chip network routers [10], we achieve high scalability
by performing allocation with two separable steps: one to
choose a memory bank and the other to choose a traffic flow.
In the first step, the bank arbiter assigns DRAM access

to one of the memory banks. Meanwhile, virtual queues
for this bank are activated in all input buffers and contend
for the designated command generator which will convert
transactions into DRAM commands. Note that the com-
mand generator may receive requests from multiple traffic
flows. Therefore, in the second step, the transaction sched-
uler arbitrates among available traffic flows at the command
generator. Only then can the chosen virtual queue send a
transaction to the command generator.
By using separable allocation, the STVQ controller solves

a simple N :1 or K:1 arbitration problem at a time, where N
is the number of banks and K is the number of traffic flows.
For example, if there are 4 traffic flows and 8 memory banks,
that requires the STVQ controller to perform an 8:1 arbi-
tration to choose a bank, and then a 4:1 arbitration to select
a traffic flow. The use of separable allocation significantly
reduces the complexity of the arbitration problem.

3.4 Bank Arbiter
In a DRAM device, memory banks operate separately at

the same time. For example, bank 1 can be read while bank
2 is being written. Yet since they share the same interface
to the memory controller, only one memory bank can re-
ceive DRAM command in the same clock cycle. Also, the
memory bank is not available for more commands until the
current operation has finished. Therefore, the bank arbiter
is responsible to find available memory banks and assign one
of them with the permission to access DRAM interface.
To achieve this, the arbiter records bank states in a state

table and tracks the availability of each memory bank. The
arbitration logic selects a winner from available banks based
on a certain arbitration policy. In our experiment, the bank
arbitration policy does not have notable impact on the per-
formance. Hence we adopt the round-robin policy for sim-
plicity. After arbitration, the bank arbiter sends the bank
selection signal to input buffers which activates the corre-
sponding virtual queue for the winning bank and forwards
the request to the command generator. Meanwhile the com-
mand generator which is designated to the winning bank is
also activated.

3.5 Transaction Scheduler
The transaction scheduler arbitrates among requests from

different traffic flows at the command generator after bank
arbitration. The winning queue schedules a transaction to
the command generator afterwards. The traffic flow arbi-
tration and transaction scheduling are performed by the
scheduling logic which implements our multi-source realtime
scheduling algorithm (discussed in the next section). As in-
put to the scheduler, progress information (2,3) of realtime
traffic flows is monitored and recorded by the progress table.

Page 28 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 1: Hardware storage in the STVQ controller with six traffic flows (K = 6) and eight DRAM banks (N = 8).

Storage Description Size

Per-bank VQ Buffers transactions from a single flow going to a single bank 8 entries
Input buffer Stores transactions from a single flow N × V Q Size = 64 entries

VQ address table Records each virtual queue’s start address N × log2Buffer Size = 48 bits
Bank state table Tracks the availability of each memory bank N × 1 = 8 bits
Progress table Monitors progresses of realtime traffic flows (K − 1) × 2 = 10 entries
Progress entry Represents a fractional progress 2 × log2FrameTimemax = 52 bits

3.6 Command Generators
After bank arbitration and transaction scheduling, only

one transaction arrives at the command generator which
is designated to the selected memory bank. To execute
this memory transaction, the command generator generates
commands to operate DRAM while following the DRAM
memory-access protocol [11]. During command scheduling,
consecutive commands have to be separated by minimum
time intervals so that they in turn engage the shared re-
source in DRAM such as I/O gating and sense amplifiers.
The major task of a command generator is to deal with var-
ious timing constraints at the command level. Thanks to
the command generators, the bank arbiter and transaction
scheduler are able to perform allocation without dealing with
the intricate DRAM access protocol. Also, per-bank com-
mand generators communicate with the bank state table in
the bank arbiter to update the bank availability informa-
tion. In STVQ a command generator is implemented as a
state machine which is similar to the command schedulers
in prior works [2, 6, 7, 8, 9].

3.7 Hardware Implementation
Virtual Queues: As explained, virtual queues for the

same traffic flow share the same input buffer. For an STVQ
memory system with N memory banks and K traffic flows,
only K buffers are needed. By comparison a two-tier mem-
ory system requires N +K buffers because all the queues in
Fig. 1 can be active at the same time. Moreover, command
queues in the two-tier system can take up lots of storage,
because every transaction may generate up to three DRAM
commands. By avoiding buffering DRAM commands, stor-
age is spared in the single-tier design.

The storage of an input buffer can be equally allocated
to per-bank virtual queues. To record the addresses of N
virtual queues in each buffer, N registers are needed. Note
that all input buffers can share the same address table for
virtual queues.

Bank Arbiter: The logic of bank arbitration is similar
to previous memory schedulers. To implement the round-
robin policy, the arbiter maintains a register recording the
last serviced memory bank. A small state table is used to
track availability of memory banks. Each bank has a one-bit
flag to indicate its availability.

Transaction Scheduler: The progress table provides
the scheduling logic with progress information of realtime
traffic. If there are K traffic flows, there should be at most
K − 1 realtime traffic flows with the other one from the
CPU. Each realtime traffic flow has two types of fractional
progress, i.e. PA and PE (2,3). For each type of progress,
two registers are used to store the denominator and the nu-
merator. Specifically, to compute PE , a register records the
target frame time and the other register keeps track of the
elapsed time in terms of clock cycles. The computation of
PA for a graphic GPU requires the tile engine in the GPU
to output tiling information, including the number of tiles
rendered and the total number of tiles in current frame.

Hardware Cost: The hardware parameters of the STVQ
memory controller employed in our experiment are config-
ured as follows. We use an STVQ controller working at
1GHz, scheduling memory traffic for 8 memory banks, and
receiving 6 traffic flows including two flows (rendering and
flushing) from the graphic GPU, two (reading and writing)
from the HD decoder, one (reading) from the display con-

troller, and one from the CPU cores. Each virtual queue re-
serves 8 entries in the input buffer. With 48 virtual queues
in total, up to 384 transactions can reside in the controller,
which is not expensive compared with the two-tier design
[2]. In the progress table, a realtime traffic flow has two
entries including PA and PE , each of which is a fractional
number with two integer components. We assume the lowest
admissible frame rate is 23FPS (for movies), which means
the maximum frame time contains no more than 64 million
clock cycles. Thus a 26-bit register is enough to record the
frame time. Two of such registers are used to store a frac-
tional realtime progress. The storage requirements for the
STVQ memory controller are summarized in Table 1.

4. MULTI-SOURCE REALTIME
SCHEDULING

The scheduling objective of the STVQ controller is to min-
imize latency for CPU traffic while providing realtime traffic
required bandwidth. A realtime virtual queue sends trans-
actions to DRAM when the actual progress falling behind
the expected progress. Meanwhile, the CPU receives service
as often as possible to reduce queuing delay at the corre-
sponding virtual queue.

Algorithm 1: Transaction Scheduling for CPU and Multi-
ple Realtime Traffic Flows

Input: P i
E , P i

A, ratioi =
P i
A

P i
E

for each realtime queue

i = 1, ..., n.
1: Find the queue u with the lowest ratio, i.e.

ratiou = min{ratioi|i = 1, ..., n}
2: Find the queue v with the highest expected progress, i.e.

P v
E = max{P i

E |i = 1, ..., n}
3: if ratiou ≥ 1 then
4: serve CPU transaction queue.
5: else if P v

E > ρ and ratiov < β then
6: serve realtime transaction queue v.
7: else if CPU transaction available and ratiou > α then
8: serve CPU transaction queue.
9: else
10: serve CPU and realtime queue u in round-robin manner.
11: end if

1

10

(a) strict

1

10

(b) flexible

1

10

(c) simple

Figure 5: Priority zone of a single realtime traffic flow.

The priority zone of realtime traffic is shown in Fig. 5
where the horizontal axis represents the expected progress
(PE) of a realtime traffic flow and the vertical axis is for the
actual progress (PA). The shaded zone indicates when the
realtime traffic obtains priority over CPU traffic, namely,
when the actual progress is deemed to be inadequate rela-
tive to the expected progress. The expected progress reaches
1 when current frame comes to the end. After that the re-
altime traffic obtains absolute priority. In a strict imple-
mentation as in Fig. 5(a), PA is forced to keep up with PE

Page 29 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 3: Benchmark descriptions.

GPU benchmark Description FPS
coc strategy game 50
fruit action game 60
minecraft sandbox game 60
transformer shooting game 60
Video benchmark Description FPS
interstellar, knight 4k ultra HD movie trailer 24
CPU benchmark Description Bandwidth
art image recognition 1.06 GB/s
mcf combinatorial optimization 0.94 GB/s
hmmer biosequence analysis 0.18 GB/s
sphinx3 speech to text program 0.005 GB/s

Table 2: Simulation parameters.

CPU Parameter Description
Clock speed 1GHz
L1 cache 32KB private 4-way
L2 cache 1MB shared 16-way

GPU Parameter Description
Unified shader cores 8

Clock speed 800MHz
DRAM Parameter Description

Volume 4GB
I/O bus clock 666.67MHz

CL-tRCD-tRP (cycles) 10-10-10
tWTR-tRTP-tWR (cycles) 5-5-10

tRRD-tFAW (cycles) 4-20
Channels-Ranks-Banks 1-1-8

which grows linearly over time. This implementation does
not have enough flexibility. When CPU traffic has transac-
tions available, it may be more desirable to serve the CPU
while postponing realtime traffic when the current frame
will not finish any time soon. Thus in a flexible implemen-
tation shown in Fig. 5(b), realtime traffic has less priority
than Fig. 5(a) in the beginning so that the CPU has more
opportunities to be served. In our experiment, we find it
unnecessary to use high order priority functions to achieve
good performance. Instead a linear piecewise function f(PE)
(4) is implemented. As shown in Fig. 5(c) realtime traffic
obtains priority when PA < f(PE). The tunable parameters
are empirically determined as α = 0.5, β = 0.95, ρ = 0.95.

f(PE) =

⎧⎨
⎩
αPE PE ∈ [0, ρ)

βPE PE ∈ [ρ, 1)

1 PE ∈ [1,∞)

(4)

The scheduling algorithm used for multiple realtime traffic
flows is shown in Algorithm 1. The realtime traffic achieves
the absolute priority when it is supposed to finish the current
frame soon (PE > ρ), but its actual progress has not caught
up yet (PA < βPE) (Line 6). The CPU obtains priority
when it has requests available while the realtime traffic is
not too far behind its expected progress, i.e. PA > αPE

(Line 8), or PA is leading PE for all realtime traffic (Line 4).
Otherwise, the realtime and CPU traffic share equal priority
(Line 10). Note that this algorithm allows realtime traffic to
be late for a few cycles which is not noticeable for a graphic
application whose frame period is the order of milliseconds.

5. EVALUATION
5.1 Methodology

Our simulation methodology for the STVQ memory con-
troller is based on DRAMSim2 [12], on top of which a het-
erogeneous system is simulated by a trace-based simulator,
including a dual-core CPU, a graphic GPU, an HD decoder,
and a display controller. The DRAM model is configured
according to the DDR3 SDRAM-1333 specification. The
simulation parameters are listed in Table 2. The realtime
cores can either include the GPU and display controller, or
the HD decoder and display controller, since on a mobile
device the display is usually engaged by either the GPU or
HD decoder.

For the test traces, we have four CPU applications from
SPEC 2000/2006 benchmarks with different memory inten-

sities, including art, mcf, hmmer and sphinx3. The GPU
traces are extracted from the instrumented softpipe driver
in the open-source OpenGL library Gallium3D [13]. Four
representative mobile games are selected from different gen-
res. The memory trace for HD decoder is generated from a
commercial MP4 parser. More benchmark descriptions can
be found in Table 3.

5.2 Bandwidth Allocation
To begin with, we test the STVQ controller with the CPU,

GPU and display controller. Benchmarks mcf and art are
used for the CPU and coc for the GPU. The bandwidth al-
location for the CPU and GPU during one frame period (20
ms) by the STVQ controller is shown in Fig. 6. For compar-
ison two other scenarios are simulated: one only has CPU
cores; the other applies SJF for heterogeneous scheduling (in
favor of CPU) in a two-tier memory controller.
With no concerns for command queuing delay, the two-tier

controller with SJF scheduling allows the GPU to quickly
finish all the GPU transactions of current frame and con-
sume most bandwidth in the first 3 ms. At the same time
applications on CPU cores hardly make any progress, lead-
ing to a delay lasting almost 3 ms. On the other hand,
the STVQ controller keeps GPU bandwidth low and steady
most of the time to alleviate memory contention against the
CPU. In the GPU bandwidth diagram, spikes appear near
the end of the frame period when the actual progress of GPU
traffic is behind the expected progress and the GPU receives
more priority in order to finish current frame in time. The
CPU bandwidth diagram shows that the results of the CPU-
only system and heterogeneous system with STVQ stay close
to each other because the STVQ controller does not cause
much latency to CPU traffic. For clarity, the bandwidth of
the display is not shown in Fig. 6 since it is very similar to
the GPU’s.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

time(ms)

ba
nd

w
id

th
(G

B/
s)

CPU Bandwidth

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

time(ms)

ba
nd

w
id

th
(G

B/
s)

GPU Bandwidth

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(STVQ)

Only CPU
CPU+GPU+Display(SJF)
CPU+GPU+Display(STVQ)

delay
by SJF

SJF finishes
all GPU trans.

STVQ spreads out
GPU trans.

Figure 6: Bandwidth allocation for CPU and GPU.

5.3 IPC Slowdown
Due to memory conflicts, the CPU endures lower IPC

when sharing memory with realtime cores, namely, less CPU
instructions are executed during the same amount of time. A
good memory scheduler reduces IPC slowdown by decreasing
memory latency for the CPU. To test STVQ on IPC slow-
down reduction, same comparison scenarios are used again
including the CPU-only system and the heterogeneous sys-
tem with a two-tier scheduler using SJF policy.
Fig. 8 shows the committed CPU instructions over time

under memory interference from the HD decoder and dis-
play controller. Benchmarks mcf-mcf and interstellar are
applied to the CPU and HD decoder. As expected the
CPU-only system executes the most instructions over the
same period compared with other scenarios. Meanwhile the

Page 30 of 31Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1

1.05

1.1

1.15

1.2

1.25

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

ar
t-a

rt

m
cf
-a
rt

m
cf
-m

cf

ar
t-h

m
m
er

m
cf
-s
ph

in
x

coc fruit minecra transformer interstellar knight mean

RR SJF QoS STVQ

Figure 7: IPC slowdown rate summary (the lower the better).

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 106

time(ms)

nu
m

be
r o

f i
ns

tru
ct

io
ns

Committed CPU instructions

Only CPU
CPU+HD+Display(SJF)
CPU+HD+Display(STVQ)

Less
delay

More
instructions

Figure 8: Committed CPU instructions under memory
interference from realtime cores.

STVQ controller commits more instructions than the two-
tier memory controller. Note that the horizontal distance
between two curves shows the time difference after finishing
the same number of instructions, which indicates the delay
of CPU traffic. The STVQ controller results in much less
delay than SJF scheduler.

The IPC slowdown rate is calculated as the ratio of the
baseline IPC, when the CPU has exclusive access to mem-
ory, to the IPC when the CPU shares memory with real-
time cores. Besides the proposed STVQ controller, two-tier
memory controller is tested with three scheduling policies
including RR policy, SJF policy and an extended version of
the QoS policy in [3]. The summary of slowdown rates of
all scenarios is in Fig. 7. As expected RR has the worst
performance as it prefers bandwidth-intense realtime traffic.
Meanwhile SJF and QoS have similar results, because the
latency of CPU traffic reduced in the transaction stage is
counteracted by the much bigger queuing delay in the com-
mand stage. The STVQ controller achieves the best perfor-
mance except for art-art and knight. Compared with the
lowest slowdown by other schedulers, STVQ further reduces
slowdown rate by up to 13.9% (mcf-mcf and knight) and by
6.1% on average.

Table 4: Summary of frame time slacks (μs).

art mcf mcf art mcf
-art -art -mcf -hmmer -sphinx

coc 0.0 0.2 0.2 0.0 0.2
fruit 0.6 0.3 0.2 0.4 0.3
minecraft 0.1 0.6 0.4 0.0 0.2
transformer 0.3 0.1 0.1 0.0 0.1
interstellar 18.1 12.0 18.1 5.9 5.9
knight 6.6 13.4 26.8 6.5 6.5

Frame time slacks (:= 1
FPStarget

− 1
FPSactual

) by the STVQ

controller are shown in Table 4. All slacks are non-negative,
which means the realtime cores meet their target FPS in all
test cases.

5.4 Power and Area
The STVQ controller is implemented at the gate level us-

ing the TSMC GP 65nm technology node library. Table 5
presents the power and area in comparison with the two-tier
SMS controller [2], which has the lowest overhead among
previous schedulers. The two controllers use input buffers
of the same size, as shown in Table 1. As shown, the STVQ
controller saves 8% leakage and 28% area overhead. The
savings of STVQ mainly come from the removal of the com-
mand queues. STVQ achieves more efficient scheduling with
less overhead.

Table 5: Power and area compared with the SMS.

Memory controller SMS STVQ
Leakage(normalized) 1 0.92
Area(normalized) 1 0.72

6. CONCLUSIONS
In this work, we show that the existing approaches for

heterogeneous memory scheduling using two-tier architec-
ture have the disadvantage of large queuing delay in the
FIFO command stage. To enable efficacious scheduling, we
propose the single-tier virtual queuing memory architecture.
In addition, a QoS-aware scheduling policy for the CPU and
multiple realtime cores is presented. The STVQ memory
controller achieves lower IPC slowdown rate compared with
previous heterogeneous memory schedulers. The reduction
of IPC slowdown rate is 6.1% on average and up to 13.9%
for the benchmarks. Meanwhile no negative frame slacks are
observed in experiment. Finally, the STVQ controller has
less hardware overhead than two-tier controllers.
Acknowledgment: We are grateful for the Qualcomm

FMA fellowship award.

7. REFERENCES
[1] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.

Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous system
coherence for integrated CPU-GPU systems. In ACM/IEEE
MICRO, 2013.

[2] R. Ausavarungnirun, K. Chang, L. Subramanian, G. H. Loh,
and O. Mutlu. Staged memory scheduling: Achieving high
performance and scalability in heterogeneous systems. In ACM
ISCA, 2012.

[3] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. A QoS-aware
memory controller for dynamically balancing GPU and CPU
bandwidth use in an MPSoC. In ACM/IEEE DAC, 2012.

[4] J. Lee, S. Li, H. Kim, and S. Yalamanchili. Design space
exploration of on-chip ring interconnection for a CPU-GPU
heterogeneous architecture. J. Parallel Distrib. Comput.,
73(12):1525–1538, Dec. 2013.

[5] A. K. Mishra, O. Mutlu, and C. R. Das. A heterogeneous
multiple network-on-chip design: An application-aware
approach. In ACM/IEEE DAC, 2013.

[6] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In ACM ISCA, 2000.

[7] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A
scalable and high-performance scheduling algorithm for
multiple memory controllers. In IEEE HPCA, 2010.

[8] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In ACM/IEEE MICRO, 2010.

[9] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and
F.J. Cazorla. A dual-criticality memory controller (DCmc):
Proposal and evaluation of a space case study. In IEEE RTSS,
2014.

[10] D.U. Becker and W.J. Dally. Allocator implementations for
network-on-chip routers. In ACM/IEEE SC, 2009.

[11] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache,
DRAM, Disk. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007.

[12] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMSim: A memory-system simulator. In
SIGARCH Computer Architecture News, 2005.

[13] Gallium3D. http://en.wikipedia.org/wiki/Gallium3D/.

Page 31 of 31 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

