
Equilibrium 
on
epts in graph games
B Te
h proje
t report

byPrathmesh PrabhuRoll: 06005002under the guidan
e ofProf. Krishna S

Department of Computer S
ien
e and EngineeringIndian Institute of Te
hnology, BombayNovember 2009



2



Contents
1 Introdu
tion 22 Preliminaries 42.1 Graph Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Sto
hasti
 games . . . . . . . . . . . . . . . . . . . . . . . . . 93 Existing results 123.1 Existen
e of equilibria . . . . . . . . . . . . . . . . . . . . . . 123.2 The problems NE & SPE . . . . . . . . . . . . . . . . . . . . . 144 Results on sto
hasti
 games 164.1 Two player sto
hasti
 zero sum games . . . . . . . . . . . . . . 164.2 Unde
idability of PureNE . . . . . . . . . . . . . . . . . . . . 225 Capturing Equilibria 275.1 Philosophi
al basis . . . . . . . . . . . . . . . . . . . . . . . . 275.2 Treatment of known Equilibria . . . . . . . . . . . . . . . . . . 285.2.1 Su�
ien
y of SPE for stability . . . . . . . . . . . . . . 285.2.2 Ne
essity of SPE for stability . . . . . . . . . . . . . . 305.2.3 Semanti
s of subgame perfe
t equilibria . . . . . . . . . 315.3 Maximal Nash Equilibria . . . . . . . . . . . . . . . . . . . . . 335.3.1 Stri
t-max NE for 2 players . . . . . . . . . . . . . . . 335.3.2 Stri
t-max NE for n players . . . . . . . . . . . . . . . 375.3.3 maxNE for n player games . . . . . . . . . . . . . . . . 40i



5.4 Pro
ess View . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.5 
ollusion equilibrium . . . . . . . . . . . . . . . . . . . . . . . 456 Con
lusion & future dire
tions 46

ii



iii



A
knowledgement
I would like to express my deep sense of gratitude to Prof. Krishna S forher invaluable help and guidan
e during the 
ourse of proje
t. I am highly in-debted to her for 
onstantly en
ouraging me by her enthusiasm for my work.She has been of great help to boost my 
on�den
e in both my a
ademi
 andother endeavors.I also wish her a very enri
hing experien
e with the new journey she hasembarked upon.
Prathmesh PrabhuNovember 2009Indian Institute of Te
hnology, Bombay

1



Chapter 1Introdu
tionGames have long been used to model intera
tion between sel�sh adversaries
ompeting to gain the maximum possible bene�t in a given situation. In the
ase of multiplayer games, obje
tives no longer remain ne
essarily opposingand ea
h a
tor aims to do the best he 
an. The idea of strategies that arebest for everyone is 
aptured through Equilibria whi
h have re
ently beenelegantly extended to multiplayer games and treated in depth. We study the
on
epts behind di�erent types of equilibria on �nite graph games and tryto solve some related problems that 
an help in de
iding well paying stablestrategies. Later, with the understanding gained from this study, we proposea test of stability of equilibria and try to evolve stable equilibria.This theory is dire
tly appli
able in veri�
ation problems where multipleagents have their own goals and must work in a 
ommon system. Di�erentresults from this �eld have also been used in the past to solve other automatatheoreti
al problems. The later part of the work is of independent theoreti
alinterest, as the questions raised are foundational to the study of games.Organization of the reportChapter 2 sets up the preliminaries by introdu
ing the reader to basi
 
on-
epts related to (sto
hasti
) graph games & various equilibria and motivatesthe di�eren
e through an example. Chapter 3 surveys existing results thatare useful for later development. The main developments in this work are di-2



vided into two independent se
tions. First, 
hapter 4 deals with two problemsre
ognized from the literature asso
iated with equilibria in sto
hasti
 games.The two results in this 
hapter extend a known results to the sto
hasti
 
aseand improve an existing proof. Later, 
hapter 5 delves into the meaning ofequilibrium and uses the familiarity gained with the 
on
ept to ask foun-dational questions about stability of strategy pro�les. Towards the end itproposes partial solutions. We sum up the report with a short 
on
lusion in
hapter 7.
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Chapter 2PreliminariesWe assume throughout this report that the reader is familiar with basi

on
epts and terminology of automata and language theory. We now de�negames and some basi
 
on
epts related to them that will a
t as a base forthe development through the report.2.1 Graph GamesThe games we study are turn based games of perfe
t information played ongraphs.De�nition 1 An in�nite (turn-based, qualitative) multiplayer gameis a tuple G = (Π, V, (Vi)i∈Π, E, χ, (Wini)i∈Π) where Π is the set of players,
(Vi)i∈Π is a partition of V into the position sets for ea
h player, χ : V → Cis a 
oloring of the positions by some set C, whi
h is usually assumed to be�nite, and Wini ⊆ Cω is the winning 
ondition for player i.The stru
ture G on whi
h these games are played is 
alled the arena. Aninitialized game begins with a token pla
ed on an initial vertex v. The gamepro
eeds by moving the token along graph nodes. The owner of the 
urrentvertex makes a move by moving the token to the next vertex along an edge.An in�nite sequen
e of these moves gives us a play. In order to ensure thatevery play is in�nite, it is assumed that the set uE := {v ∈ V : (u, v) ∈ E} ofverti
es that are the su

essors of u is non empty. A play is winning for player4



i if it belongs to Wini. Beginning at vertex v0, a typi
al play pro
eeds as
v0, v1, v2, v3, . . . Any pre�x of a play is 
alled a history of the game. v0, v1, v2and v0, v1, v2, v3 are example histories.�nite graph games and non-terminating Σ-tree games: The gamesthat we dis
uss in this report are played on �nite graphs, i.e., V is of �nite
ardinality. Another important 
lass of graph games that we use in severalproofs are the Σ-tree games. The underlying graphs for these games are nonterminating trees.Zero sum games: Another important restri
tion to the types of gameswe 
onsider is laid by requiring that for any feasible play on the graph, oneand only one of the players wins. Su
h games are 
alled zero sum. Thename derives from the 
lassi
al origins when two player zero sum games were
onsidered and this 
ondition implied that the sum of "value" for the twoplayers was always zero.De�nition 2 A strategy σ for player i is a probability distribution V ∗.V →

D(V ) where D(V ) is the spa
e of probability distributions on the set of ver-ti
es V. A play is said to be 
onsistent with the strategy σ if after history h ofthe game, at the position v, σ(h, v) is the probability distribution of the nextmove 
hosen by the player π who owns the vertex v. Note that D(u) = 0 if
(v, u) /∈ E� A strategy is 
alled pure if σ is a fun
tion into V, i.e., if the player
hooses the next node deterministi
ally for ea
h history.� A strategy is 
alled �nite memory if it only uses �nite number of pre-vious nodes to determine the move at the 
urrent node� A strategy is 
alled stationary if the next move is determined basedonly on the 
urrent node.� A strategy is 
alled positional if it is both pure and stationary.De�nition 3 A strategy pro�le is an n-tuple of strategies (σ1, σ2, σ3, . . . σn)su
h that ea
h σi is a strategy for player i. A play is said to be 
onsistent5



with strategy pro�le (σ1, σ2, σ3, . . . σn) if for a given history h and vertex v,
D(u) = σi(h, v) where v ∈ ViWe will use the notation 〈(σi)i∈Π〉 to refer to a strategy pro�le whereplayer i has the strategy σi and 〈(σi)i∈Π\{j}, π〉 to refer to a strategy pro�lewhere ea
h player ex
ept j has the strategy σi and player j has the strategy
π.The very basi
 question that one is prompted to ask given a two player zerosum game is whether there exists a strategy for either player that guaranteesa winning play. This idea is 
aptured by determina
y. A game is said to bedetermined if there exists a strategy σ for one of the players su
h that thatplayer wins the game for any strategy π of the other player.A �nal distin
tion must be made here between 
on
urrent and turn basedgames. In a 
on
urrent game, all players make simultaneous moves at ea
hvertex and the probability distribution for the next vertex is determined byall these a
tions together. We do not 
onsider 
on
urrent games in detailhere, but use them brie�y in quoting a known result. On the other hand, inturn based games, only one player makes a move at ea
h vertex (and thatplayer is said to own that vertex). Hen
eforth, unless otherwise mentionedwe refer to turn based games as simply games.Multiplayer games have found appli
ation in modeling systems where mul-tiple agents intera
t with sel�sh goals. They have been re
ently applied inthe study of driver veri�
ation where many independent 
omponents are in-volved.The most studied graph games fall under the 
lass of ω-regular games.
ω-regular games are graph games in whi
h ea
h player wins on plays thatform an ω-regular set.Let α be a generi
 play of the game. Following are well studied spe
ial 
asesof ω-regular winning sets:1. Bu
hi: Spe
i�ed by a set B ⊆ C; α is winning if the set of 
olorso

urring in�nitely often in α, Ω(α) is subset of B, Ω(α) ⊆ B6



2. 
o-Bu
hi: Spe
i�ed by a set 
o-B⊆ C; α is winning if the set of 
olorso

urring in�nitely often in α, Ω(α) is disjoint from 
o-B, Ω(α)
⋂ 
o-B= φ3. Parity: Spe
i�ed by a priority relation on the 
olors in C; α is winningif the least 
olor o

urring in Ω(α) is odd4. Rabin: Spe
i�ed by a family of pair of sets (Ei, Fi), Ei, Fi ⊆ C; α iswinning if ∃(Ei, Fi)(Ω(α)

⋂

Ei 6= φ ∧ Ω(α)
⋂

Fi = φ)5. Streett: Spe
i�ed by a family of pair of sets (Ei, Fi), Ei, Fi ⊆ C; α iswinning if ∀(Ei, Fi)(Ω(α)
⋂

Ei = φ ∨ Ω(α)
⋂

Fi 6= φ)6. Muller: Spe
i�ed by a family of sets F, F ⊆ C; α is winning ifΩ(α) = Ffor some F.Given a play α it is possible to �nd out whether or not it is winning forea
h of the players by looking at their winning sets and 
he
king the winning
ondition. A few points to note here are that ω-regular winning 
onditionsare pre�x independent, hen
e they do not depend on any �nite history of thegame. Also, Parity sets in
lude Bu
hi sets, Rabin and Streett sets in
ludeParity sets and are themselves a part of Muller sets. Hen
e, Muller sets arethe most general form of ω-regular sets.
2.2 EquilibriaA very important 
on
ept that 
aptures the stability of a strategy pro�le isthe 
on
ept of equilibrium. Given a pro�le, a player would want to use astrategy that will give her the maximum bene�t. Equilibria try to 
apturestrategy pro�les where, under 
ertain assumptions, none of the players wouldwant to 
hange their strategies.De�nition 4 A strategy pro�le 〈(σi)i∈Π〉 is a Nash Equilibrium if noplayer 
an unilaterally 
hange her strategy to some other strategy π and in-7




rease her payo�.payo�j 〈(σi)i∈Π〉 ≥ payo�j 〈(σi)i∈Π\{j}, π〉for all player j strategies πThis means that under la
k of 
ommuni
ation, every player is doing herbest against the strategy of the remaining players.A stronger equilibrium is de�ned using the 
on
ept of Subgames. for a givengame G = (Π, V, (Vi)i∈Π, E, χ, (Wini)i∈Π, v0), a subgame G|h = (Π, V,
(Vi)i∈Π, E, χ, (Wini|h)i∈Π, v0) is de�ned as the game from v su
h that v0.h =

v and α ∈ Wini|h ≡ h.α ∈ Wini. In e�e
t, a subgame is a game 
ontinuingafter an initial history h of the game. For any strategy σ of G, a naturalrestri
tion σ|h is given by σ|h(x, v) = σ(h.x, v), i.e., the player plays as if thegame had a
tually begun at v0.De�nition 5 A strategy pro�le 〈(σi)i∈Π〉 is a Subgame Perfe
t Equilib-rium if for every feasible history h of the game, the pro�le 〈(σi)i∈Π〉|h is aNash Equilibrium in the game G|hA subgame perfe
t equilibrium tries to 
apture situations where by takinga non optimal 
hoi
e in the 
ourse of the game, a player 
an indu
e anotherplayer to 
hange her strategy as well, leading to an in
reased payo� for the�rst player in the end. Note that every Subgame Perfe
t Equilibrium is aNash EquilibriumDe�nition 6 A strategy pro�le σ is 
alled Se
ure if for all players i 6= jand for ea
h strategy σ′ of j it is the 
ase that
〈(σi)i∈Π〉 /∈ Winj ∨ 〈(σi)i∈Π\{j}, σ

′〉 ∈ Winj

⇒ 〈(σi)i∈Π〉 /∈ Wini ∨ 〈(σi)i∈Π\{j}, σ
′〉 ∈ Wini8



A strategy pro�le is se
ure if none of the players 
an de
rease some otherplayer's payo� without de
reasing their own payo�. A Se
ure Equilibriumis a Nash Equilibrium that is also Se
ure.Subgame Perfe
t Equilibrium and Se
ure Equilibrium are two di�erentextensions of the notion of Nash Equilibrium2.3 Sto
hasti
 gamesDe�nition 7 A two player sto
hasti
 game is a tuple G = (Π, V1,V2,V0,E, χ, p, Win1, Win2) where Π is a dire
ted graph with vertex set V =

V1
⋃

V2
⋃

V0, χ : V → C is a 
oloring of the position by some set C, whi
h isusually assumed to be �nite,p : V0 → D(V ) is a fun
tion from verti
es V0 toD(V) and Win1 ⊆ Cω and Win2 ⊆ Cω are the winning 
onditions for player1 and 2 respe
tively.Here player 0 is nature. Nature 
hooses one of the su

essor nodes fromits vertex probabilisti
ally, as given by p. These games are often 
alled 21
2games be
ause nature plays with a �xed stationary strategy. n1

2
games 
anbe similarly de�ned with n players and the n+1th player being nature.De�nition 8 The value of a game for a player i is the maximum payo� she
an guarantee against any strategies played by her opponents. An n1

2
gameis said to be determined if there exist strategies su
h that ea
h player 
ana
hieve payo� equal to the value for that player.An example to explain equilibriaExample 1 Let us see a 21

2
player game that 
learly explains and distin-guishes these equilibria.Consider the game shown in �gure 2.1. The 
ir
les are player nodes owned bythe player indi
ated. The diamonds are sto
hasti
 verti
es with ea
h outgoingedge marked with probability of that edge being taken. The squares are end9



Figure 2.1: A two player game with di�erent equilibriaverti
es and are labeled with the players that win on rea
hing that vertex.Consider the following stationary positional strategy pro�les:P1: σ1(1) = 2, σ2(2) = 5, σ2(3) = 6P2: σ1(1) = 3, σ2(2) = 5, σ2(3) = 7P3: σ1(1) = 3, σ2(2) = 5, σ2(3) = 6P4: σ1(1) = 2, σ2(2) = 4, σ2(3) = 7We 
an make the following observations.� P1 is not a Nash Equilibrium be
ause player 1 
an in
rease her payo�by moving to node 3 instead of 2.� P2, P3 and P4 are all Nash Equilibria.� P2 is not a se
ure equilibrium sin
e player 2 
an move from node 3 tonode 6 without de
reasing her own payo�, while de
reasing player 1spayo�. P3, the pro�le thus obtained is a se
ure equilibrium.� P2 is not a subgame perfe
t equilibrium either. Sin
e the pro�le is nota Nash Equilibrium after the history 1 → 2. P4, on the other hand is10



an SPE. Note here that P2 failed to be an SPE be
ause player 1 
ould
hange her strategy so that she 
ould indu
e player 2 to 
hange hers,and the �nal pro�le was better for both. We will dwell more on thisinterpretation of SPE later in the report.
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Chapter 3Existing results
3.1 Existen
e of equilibriaThe following results are 
lassi
al results for 2 player game determina
y.Later results build on these old results.Theorem 1 [4℄ Two player games with Borel winning 
onditions are deter-mined.Theorem 2 [5℄ Two player games with ω-regular winning 
onditions arepositionally determined.Using the positional determina
y of 2 player games, Chaterjee et al showedthat any multiplayer game with Borel winning 
onditions has a Nash Equi-librium. For n1

2
player games, the following is a parallel result.Theorem 3 [1℄ There exists a Nash Equilibrium with pure strategy pro�lein every turn-based sto
hasti
 game with parity payo� 
onditions.The existing proof for this result uses a mu
h stronger result about dis
ounted
on
urrent games. In treating other games for similar results, we hope to usealternative proof te
hniques than the one used here.We state and prove the following two results about SPEs for two player andn player games originally from [2℄. 12



Theorem 4 [2℄ Let (G,v0) be an initialized two player game su
h that everysubgame is determined. Then there exists a strategy pro�le (σ1,σ2) that is asubgame perfe
t equilibrium.Proof. Sin
e we are 
on
erned only with the existen
e of a subgame per-fe
t equilibrium and not the 
omplexity of �nding one, we 
an 
onsider anyplay on the graph to played on an equivalent Σ-tree generated by unrollingthe graph on ea
h node starting from the initialization vertex v0. Sin
e wealready know that every subgame is determined, given a history h, eitherplayer 1 or 2 has a winning strategy from this position. Also, from theorem 2we need to 
onsider only positional strategies on the Σ-tree. Let the optimalstrategy after history h for player i be denoted by σh
i .If we allow both players to play their best strategies from every vertex inthe Σ-tree, then either of the player must win. The problem in this simplisti
approa
h is that in any play of the game, players might swit
h strategies todi�erent σh

i in�nitely many times. Thus no strategy is played for an in�nitesu�x of the play, and hen
e no player is really playing her winning strategy.For a history h, de�ne a partition h1, h2 of h to be a good partition forplayer i if� h = h1 � h2� σh1

i |h2
is winning in (G|h,v0)� h1 is the minimal possible su
h h1Now, de�ne the strategy for ea
h player as follows:

σi(hv) = σh1

i (h2v) where h1 � h2 is good partition of h.if no good partition exists, set σi(hv) = σh
i (v)Now 
onsider any play after an initial history h. Let the strategy 
hosenas above be σh1

i . We 
laim that if v1, v2, v3, v4 . . . , vk be the subsequentverti
es followed in the play a

ording to this strategy, σh1

i is at least onepermissible partition at vk, sin
e it is winning for player i from h1 � h213



against all strategies of player ī and vk is a state rea
hed in a

ordan
e withthis strategy and hen
e must still be winning. Se
ondly, assume that a betterpartition exists for h, v1, v2, v3, v4 . . . , vk; sin
e in the new partition h′1 ≤h1, this pro
ess must rea
h a �xed point. And hen
e on no path 
an therebe an in�nite number of swit
hes in the strategy. So the above problem issolved. And σi as de�ned gives the required strategy pro�le.Theorem 5 [2℄ n player sto
hasti
 games with parity winning 
onditionshave an SPE.3.2 The problems NE & SPEDe�ne the problem NE as follows:De�nition 9 Given a multiplayer game, determine if there exists a NashEquilibrium with payo� ve
tor between x̄ and ȳ.We say that the payo� ve
tor p̄ is between x̄ and ȳ when for ea
h player i,xi ≤ pi ≤ yi.We dis
uss this problem in 
ontext of sto
hasti
 games. Sin
e it is too di�
ultto talk about NE in general, the following restri
tions of the problem aretreated independently.� PosNE: all players use positional strategies� StatNE: all players use stationary strategies� FinNE: all players use �nite memory strategies� PureNE:all players use pure strategies� QualNE: the ve
tors x̄ and ȳ 
onsist only of 0s and 1s.It 
an be shown that these problems are indeed independent, i.e., there aregames with one type of NE in a given range but not the other.
14



De�nition 10 Simple Sto
hasti
 Multiplayer Games(SSMG) are sto
has-ti
 multiplayer games with payo� rea
hability obje
tives on terminal nodes.The only �nal verti
es are terminal verti
es where the game keeps loopingforever and some players win while others lose.The motivation for using this restri
tive type of games is that it is a subsetof Bu
hi games and hen
e all ω-regular games. All the unde
idability andhardness results for SSMG 
arry over to higher form of winning.The following results summarize the 
urrent knowledge about NE in sto
has-ti
 gamesTheorem 6 [6℄ [7℄ PosNE is NP-
omplete for all ω-regular obje
tives as wellas SSMGs.Theorem 7 [6℄ [7℄ StatNE is in P-spa
e for all ω-regular obje
tives as wellas SSMGs.Theorem 8 [6℄ PureNE and FinNE are unde
idable for games with at least9 players and 13 players respe
tively.A similar problem 
an be de�ned for SPE as followsDe�nition 11 Given a multiplayer game, determine if there exists a Sub-game Perfe
t Equilibrium with payo� ve
tor between x̄ and ȳNothing in known about SPE in sto
hasti
 games.
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Chapter 4Results on sto
hasti
 gamesThe �rst result is on the existen
e of subgame perfe
t equilibria in 21
2
playerzero sum sto
hasti
 games.4.1 Two player sto
hasti
 zero sum gamesSin
e we are 
on
erned only with the existen
e of equilibria and not the
omplexity of their 
omputation, we argue about properties of Σ-tree gamesobtained from unraveling the game graph at every node from the start node.Lemma 1 For a game (G, v0), let S he the set of all rea
hable histories hand let σ̄0 = 〈(σi)i∈{1,2}〉 be a strategy pro�le optimal to both players. Then,either val(σ̄0|h) = val(G|h) or h is not rea
hable in the strategy pro�le σ̄0Proof. Let h be rea
hable with strategy pro�le σ̄0. And assume that 
ondi-tion one does not hold. Hen
e,

∃ history y su
h that val(σ̄0|y) < val(G|y)Then, in the game G|y, ∃ a strategy σy
1 for player 1 (against player 2) thatgives him a higher value, viz, val(G|y).Consider the strategy pro�le,

〈( σ1 for all histories whose pre�x is not y, σy
1 for su�xes of y), σ2〉then, player 1 has e�e
tively in
reased his payo� to more than his valueagainst an "optimal" strategy of player 2.This is a 
ontradi
tion. 16



Hen
e one of the two assumptions above must be wrong.Next, we show with a proof similar to theorem 4 that a subgame perfe
tequilibrium exists for 21
2
player games.Theorem 9 21

2
player zero sum games are subgame perfe
t determined.Proof. For a given history h, de�ne a partition h1, h2 of h to be good forplayer i if� h = h1 � h2� h2 ∈ S

σ̄
h1
i

in the game G|h1� h1 is the minimal possible su
h h1Now de�ne the strategy for ea
h player as follows:
σ(hv) = σh1(h2v) if a good partition h1, h2 exists,
σ(hv) = σh(v) otherwise.It remains to prove that this strategy pro�le is optimal for all histories h.Consider the game at history h. Let the strategy 
hosen as above be σh1.We are assured that this strategy gives the optimal value to player 1 fromlemma 1. Now 
onsider any path 
onsistent with the pro�le σh1 from h. Witha reasoning similar to theorem 4 we 
an show that only a �nite number ofswit
hes in strategy o

ur on any path, And hen
e, the players obtain theiroptimal value from history h.This proves the result.The next result is an e�ort towards redu
ing the gap in results asso
iatedwith de
idability of PureNE (theorem 8) We show with a proof te
hniquevery similar to the original suggested in [6℄ that PureNE is unde
idable evenwith 5 players. The question of 2 player PureNE has proved elusive so far.

17



Figure 4.1: The I-gadget

Figure 4.2: The S-gadget: Player 0 
hooses the next I-gadget18



Figure 4.3: Terminal gadget for in
rementing 
ounter 1

Figure 4.4: Terminal gadget for de
rementing 
ounter 119



Figure 4.5: Terminal gadget for 
ounter 1 in other 
ases

Figure 4.6: Terminal gadget for in
rementing 
ounter 220



Figure 4.7: Terminal gadget for de
rementing 
ounter 2

Figure 4.8: Terminal gadget for 
ounter 2 in other 
ases21



4.2 Unde
idability of PureNEIn order to prove the unde
idability of PureNE, we redu
e the halting prob-lem of two 
ounter ma
hine running on a program to a game su
h that thegame has a Nash Equilibrium where a 
ertain player wins i� the ma
hinehalts on the given program.De�nition 12 A two 
ounter ma
hine 
onsists of two 
ounters that 
anbe in
remented, de
remented and 
he
ked for zero/non-zero value. It takesas input the program text and beginning at the top of the program, follows theinstru
tions manipulating the 
ounters as dire
ted. The ma
hine stops whenit en
ounters the instru
tion "halt".One possible instru
tion set for the ma
hine is:� "in
(j); goto k;"� "zero(j)? goto k :de
(j); goto l;"� "halt"where k and l are positions in the program text, and j is either 1 or 2, refersto the two 
ounters.With this set of instru
tions, it is known that the halting problem is unde-
idable.Lemma 2 Given a program running on a 
ounter ma
hine as de�ned above,it is unde
idable to determine whether the ma
hine halts on exe
uting thegiven program.In order to show our problem to be unde
idable, we must en
ode a generi
program for the 
ounter ma
hine as a game. The game G is played by 5 play-ers, player 0, A1, B1, A0 and B0. There exists a Nash Equilibrium su
h thatplayer 0 wins i� the 
ounter ma
hine does not halt on the program en
odedby this game. Throughout this proof, At refers to either of A1 or A0 and t̄= (1 − t). We use the gadgets given in �gures 4.1 through 4.8 to synthesize22



the game for a given program. For every line i of program, there is a gadgetS1
i,γ (�gure 4.2) where γ ∈ {in
(j), de
(j), zero(j), init } for j ∈ {0,1}; thereare the end gadgets Ct

1,γ and Ct
2,γ asso
iated with every S-gadget; and �nallyat the end of every S-gadget is an I-gadget, Iti,γ (�gure 4.1). Beginning withS1

0,init. the gadgets naturally get 
onne
ted in a network.Following a program exe
ution: Ea
h St
i,γ represents a program in-stru
tion being exe
uted on the ma
hine. To ensure that program exe
utionis simulated faithfully, we must ensure that player zero makes the 
orre
t
hoi
es at all the I-gadgets, i.e, he 
hooses that edge whi
h will get exe
utedduring the run. We do this by remembering the 
ounter values at all timesduring the run and using them to for
e player zero to make 
orre
t moves.En
oding the 
ounter value: We will en
ode the 
ounter values of thetwo 
ounters at ea
h gadget in the Ct

1,γ and Ct
2,γ respe
tively. The 
ountervalue at any point during program exe
ution is exa
tly the same as the max-imum number of times player zero plays the marked edge in the C-gadgets.Maintaining the 
orre
t 
ounter values: So the problem redu
esto ensuring that the number of times player zero 
hooses the marked edge,
all it 
j

n on the nth step for 
ounter j, is equal to the 
urrent value of the
ounters. We a
hieve this by ensuring the lo
al relationships between 
1
n &
1

n+1 and 
2
n & 
2

n+1 respe
tively.Theorem 10 Let σ̄ be a strategy pro�le su
h that player zero almost surelywins. Then σ̄ is a Nash Equilibrium if and only if
cj
n =











































cj
n + 1 ifγn+1 = inc(j)

cj
n − 1 ifγn+1 = dec(j)

cj
n = 0 ifγn+1 = zero(j)

cj
n otherwise









































for j = 1 & 2 23



Proof. Towards this, we prove the following lemma:Lemma 3 The pro�le σ̄ is a NE i� an, the probability of winning for playerAt at a node owned by At is equal to 2
3
.Proof. ⇒ assume that σ̄ is a Nash Equilibrium, then

an ≥
2

3sin
e otherwise, player At would 
hose to leave the game at that point andin
rease her payo� and player 0 looses. Similarly, if bn is the probability ofwinning at a node owned by Bt,
bn ≥

1

3Also, at every vertex su
h at player 0 wins, exa
tly one of At and Bt win.
an + bn = 1

an ≤
2

3

an =
2

3

⇐ assume that an = 2
3
, then from reasoning similar to above, bn = 1

3
.Hen
e, neither At nor Bt 
an improve their payo�. Player zero already winsalmost surely. Hen
e σ̄ is a Nash Equilibrium.Next, we show how these probabilities an are maintained lo
ally.Lemma 4 an = 2

3
i� pn, the probability of winning for At in this and thenext 
omponent, is 1
2
.Proof. ⇒ let an = 2

3
. Note that

an = pn +
1

4
× an+224



also
an = an+2 =

2

3it follows:
pn =

1

2

⇐ if pn = 1
2
then we have,

an =
1

2
+

1

4
× an+2It is easy to see that the only value of a0 and a1 su
h that 0 ≤ an ≤ 1 for alln is when a0 = a1 = 2

3
. But that means that an = 2

3
for all n.It remains to prove that pn is 1

2
i� the 
ondition in the theorem is satis-�ed. Towards this we state the following lemma:Lemma 5 if

(

1

2

)c1n

−
(

1

2

)c1
n+1

+
(

1

3

)c2n

−
(

1

3

)c2
n+1

= 0then
c1
n = c1

n+1

∧

c2
n = c2

n+1given cj
t are all non negative.Also note the following expressions derived from the arrangement of gad-gets: If prob(n)(C) denotes the probability of winning of player At in thegadget C on the nth gadget, and prob(n+1)(C) the 
orresponding value forthe n+1th gadget then we have the following:

pn =
1

4
·
(

1

2

)c1n+3

+
1

4
· prob(n, C2,γ) +

1

2
· (

1

4
· prob(n, C1,γ) +

1

4
· prob(n, C2,γ))We 
an also derive the values of prob(n, C) from the game graph as:prob(n,C):

prob(n, Cn
1,γ) = 1 −

(

1

2

)c1n+325



prob(n, Cn
2,γ) = 1 −

(

1

3

)c2n+3prob(n+1,C):
prob(n + 1, Cn

1,inc(1)) =
(

1

2

)c1
n+1

+1

prob(n + 1, Cn
2,inc(2)) =

(

1

3

)c2
n+1

+2

· 2and so on. Hen
e, the above equation redu
es to the form
(

1

2

)c1n

−
(

1

2

)c1
n+1

+
(

1

3

)c2n

−
(

1

3

)c21
n+1

= 0and using lemma 5, we get the required result.
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Chapter 5Capturing Equilibria
5.1 Philosophi
al basisEquilibria were introdu
ed to 
apture inherent stability in strategy pro�les.Nash equilibrium 
apture this stability quite well in the 
ase of two playerzero-sum games. If (σ1, σ2) is a strategy pro�le, then player 1 is employingthe best possible strategy against player 2's strategy, and vi
e-versa. Indeed,player 1 
hanging to a strategy σ′

1 
an not in
rease her payo� but may giveplayer 2 a 
han
e to 
hange his strategy to σ′
2 in
reasing his payo� against

σ′
1. Sin
e this is a zero sum game, this means that player 1's payo� redu
esthrough this series of strategy 
hanges. Employing a similar reasoning, nei-ther players 
hooses to deviate from (σ1, σ2). Hen
e, this strategy pro�le isstable, in the sense that both players sti
k to this pro�le on
e de
ided.In the 
ase of non zero-sum games, It is possible that player 1 
hooses σ′

1 over
σ1. From the assumption that (σ1, σ2) is a nash equilbrium, val1(σ

′
1, σ2) ≤

val1(σ1, σ2). As before, let player 2 now 
hoose σ′
2 in
reasing his payo�against σ′

1. In this 
ase though, it is possible to have val1(σ
′
1, σ

′
2) ≥ val1(σ1, σ2).Thus, although (σ1, σ2) is a nash equilibrium, two rational players playingthe game would not sti
k to the strategies but move on to the strategies

(σ′
1, σ

′
2). Put down somewhat boldly, nash equilibria in this 
ase are nottruly equilibrium states. Hen
e, we see that in the non zero setting, it ispossible to have in a sense non stable nash equilibria. A detailed dis
ussion27



of the stability of equilibria leads us to enquire into the pro
ess of determi-nation of equilibria, and the pre
ise meaning of moving-on / staying with astrategy. In the se
tion on pro
esses, we look at this pro
ess and �nally tryto abstra
t away on
e again to 
aptures some of the insights gained. Below,we state a litmus test for equilibria that stems from similar thoughts, whi
hwe use to show the inadequa
y of known 
on
epts.Con
ept 1 Litmus test: We say that an equilibrium pro�le (σ1, σ2) failsthe litmus test if the following sequen
e of a
tions is possible. player 1 
hangesher strategy to σ′
1, and then player 2 
hanges his pro�le to σ′

2. In the end,we �nd val1(σ
′
1, σ

′
2) > val1(σ1, σ2) and val2(σ

′
1, σ

′
2) > val2(σ1, σ2)In the sequel, we say an equilibrium is stable if it passes the litmus test.5.2 Treatment of known EquilibriaIn this se
tion, we show how subgame perfe
t equilibria fail in 
apturingstability with respe
t to the litmus test. We later tou
h upon the essentialdi�eren
e between these 
on
epts and se
ure equilibria.We 
laim that subgame perfe
t equilibria are neither su�
ient nor ne
essary
onditions for a nash equilibrium pro�le to pass the litmus test.5.2.1 Su�
ien
y of SPE for stabilityFollowing is a 
ounter example of a subgame perfe
t equilibrium that failsthe litmus test.Consider the game graph in �gure 5.2.1 with V1 = {1, 3, 4, 6, 7, 8, 9, 10}and V2= {2, 5}. Let the initial node be {1} and the Bu
hi winning sets F1= F2 = {7, 10}.We 
laim that there exists a subgame perfe
t equilibrium su
h that bothplayers lose, and it is possible for one player to indu
e a 
hange to a betterequilibrium. Here is a strategy pro�le for the game:

σ1(1) = 3, σ2(2) = 4, σ1(3) = 2, σ1(4) = 1,
σ2(5) = 6, σ1(6) = 2, σ1(7) = 6, σ1(8) = 1,28



σ1(9) = 8, σ1(10) = 8This is a pure pro�le. In the diagram, 
hosen edges are shown in bold.
(σ1, σ2) is a subgame perfe
t equilibrium, sin
e after any �nite history of thegame, the strategy pro�le for
es the game ba
k to node 1 or 2 and no player
an unilaterally for
e visits to 7 or 10 in�nitely often. Hen
e, both playerslose.�gure 5.2.1

1 34
7 6

8 910

5 2
player 1player 2

But (σ1, σ2) fails the litmus test. If player 1 
hanges his strategy at node 1to σ1(1) = 5, then player 2 
an 
hange her strategy at node 5 to σ2(5) = 7.Then, the new strategy pro�le is a nash equilibrium where both players win.Note that, the �rst 
hange (σ1(1) = 5) does not make sense in the nashsense sin
e it does not in
rease the payo� for player 1. On the other hand,the se
ond 
hange (σ2(5) = 7) by player 2 is a 
ompletely sel�sh move,in
reasing her payo� from 0 to 1. In this pro
ess she ends up in
reasingplayer 1's payo� from 0 to 1 as well. This is exa
tly the instability we areinterested in 
apturing. 29



5.2.2 Ne
essity of SPE for stabilityIt is easy to see that there exist games where nash equilibria that are notsubgame perfe
t equilibria do pass the litmus test. For example, take thegame in �gure 5.2.2�gure 5.2.2
12 43 5 6

This is a game with Bu
hi winning 
onditions with,V1 = {1, 3, 5, 6} V2 = {2, 4}F1 = {3} F2 = {3, 6}Then the strategy pro�le
σ1(1) = 2, σ2(2) = 3, σ1(3) = 3,
σ2(4) = 5, σ1(5) = 5, σ1(6) = 6is not a subgame perfe
t equilibrium as the strategies restri
ted to the initialhistory 1→4 is not a nash equilibrium. But it passes the litmus test sin
eboth players win in the 
urrent pro�le and hen
e no strategy swit
h 
an bepro�table to any player.Hen
e we see that subgame perfe
t is neither ne
essary nor su�
ient forstability de�ned with respe
t to our litmus test.30



5.2.3 Semanti
s of subgame perfe
t equilibriaThe above dis
ussion for
es us to question what subgame perfe
t equilibriaa
tually 
apture. Following are the fa
ts we know about SPE:� It is a nash equilibrium� Even for unrea
hable game states, a player has to play in a way thatwould ensure the best payo� against other players' moves from thatstate.� In the words of the authors of subgame perfe
t equilibrium for graphgames - "respe
ts the possibility of other player 
hanging her strategy"[2℄As the next example shows, the last point above is not entirely true.�gure 5.2.3
1

3
2

3
b ged a
 f h

player 1 player 2
The above game is a two player non zero sum Muller game where the nodesare labeled with 
olors 1 thru 3. The winning sets are F1 = {{1, 2}, {3}31



} and F2 = {{1, 2}, {2, 3}}. The pure strategy pro�le (σ1, σ2) where the
hosen edges are {a, b, d, h} is a subgame perfe
t equilibrium with payo�{1, 1}. But if player 2 
hanges her strategy so that the a
tive edges be
ome{b, e, g, h}, then the new payo� ve
tor is {0, 1}. Player 1 is now for
ed to
hange his strategy to ensure the best payo�.�gure 5.2.4
12 3a b

1,1 0,1 1,1 0,1
 d e f
player 1player 2

Indeed to �respe
t the possibility of other player 
hanging her strategy� seemsa very strong statement. This would require that for player 1, σ1 is the beststrategy against any strategy of player 2. The example in �gure 5.2.4 showsthat this not always possible, whi
h is to be expe
ted.There does not exist σ1 su
h that val1(σ
′
1, σ2) is optimal for the following twoplayer two strategies.

σ1
2 = d, e, best σ1 = b

σ2
2 = c, f , best σ1 = aNot knowing what player 2's strategy is redu
es this game to an imperfe
tinformation game.We 
an still say that subgame perfe
t equilibrium guarantees safety againsta possible deviation from strategy by the opponent for a �nite history of thegame. As noted in the �rst example above, if the other player deviates fromthe de
lared strategy on an in�nite number of terms in a play, the play mightbe
ome non optimal for the �rst player.32



Relation to se
ure equilibriaWe must here note an important di�eren
e between se
ure equilibria and thestability properties we are interested in. Se
ure equilibria ensure that player2 
an not de
rease player 1's payo� without in
urring a 
ost herself, whi
his an added 
onstraint put on the game stru
ture and does not stem fromthe basi
 sel�sh game play. Sin
e the games are non zero sum, there is noinherent advantage in redu
ing the opponent's payo�. On the other hand,the instability in our sense means that rational players would not 
onsiderthe equilibrium advantageous from purely sel�sh motives, as it is possible toexploit this instability to in
rease one's payo�.5.3 Maximal Nash EquilibriaWe take a detour from the philosophi
al dis
ourse on stability to dis
usssome results 
on
erning maximal equilibria. We de�ne two spe
ial types ofnash equilibria, stri
-max NE and max NE and try to answer some pertinentquestions. The importan
e of these 
on
epts be
omes 
learer in the followingse
tions.5.3.1 Stri
t-max NE for 2 playersWe �rst de�ne stri
t max NE for two players and look at some asso
iatedresults before generalizing it to n players.De�nition 13 (σ1, σ2) ∈ stri
t-max NE i�
∼ ∃(π1, π2) ∈ NE ◦



















val1(π1, π2) > val1(σ1, σ2)

∧val2(π1, π2) > val2(σ1, σ2)

















Stri
tmax NE, then, is a nash equilibrium su
h that no other nash equilibriumgives both players better payo�s. Following result shows the existen
e ofstri
t max NE. 33



Lemma 6 Every 2 player non zero sum game with Borel winning 
onditionshas a stri
t max NE.Proof.We use the following related lemma in proving the above lemma:Lemma 7 For 2 player non zero sum games
∀σ ∈ mixed ◦ {{σ ∈ NE ∧ val(σ) = {x1, x2}} =⇒

∃σ′ ∈ pure ◦ {σ′ ∈ NE ∧ val(σ′) = {y1, y2} ∧ (y1 ≥ x1) ∧ (y2 ≥ x2)}}With lemma 7 in pla
e the result follows:� For every n player non zero sum Borel game there exists a pure nashequilibrium pro�le σ.� From lemma 7 for any nash equilibriumwith fra
tional payo�s, ∃σ′ ∈NEsu
h that the payo�s are stri
tly greater than earlier and are integral.� If there exists σ′′ with payo�s greater than σ′, then the above step maybe repeated� Sin
e there are only �nitely many integral payo�s, this repetition 
annot happen inde�nitely.Hen
e we must arrive at a nash equilibrium pro�le su
h that a pro�le withlarger payo�s does not exist. This is the required stri
t-max NE pro�le.�gure 5.3.1
34



n
a 
 dbSupport

Proof of lemma 7Let G = (V1, V2, E, F) be a game. We obtain game G′ be unrolling thegame along the edges. Then, we know that every strategy in G 
an mappedto a positional strategy in G′ and vi
e-versa. Let σ′ be the nash equilibriumpro�le obtained for G′. Then, starting at the root re
ursively apply thefollowing transformation to σ′ (�g 5.3.1):Let a, b ∈ support(n), i.e.,if σi|a∈Vi
(n)(a) > 0 and

σi|b∈Vi
(n)(b) > 0Then indeed,if σi|a∈Vi
(n)(a) = σi|b∈Vi

(n)(b), sin
e σ′ is a nash equilibrium.Otherwise, player i 
ould have in
reased his payo� by 
hoosing the node withhigher value deterministi
ally.Without loss of generality, let
val1−i(a) ≥ val1−i(b)i.e. the other player has highest payo� if player i 
hooses node a.Then modify σ′ as follows:1. Deterministi
ally 
hose `a' at n2. Repeat this step for `a' keeping σ′ un
hanged for the other subtrees.Now, if the subsequent 
hanges in σ′ in the subtree under `a' does not de
reasethe payo�s for both players then the payo�s at n have also not de
reased for35



either player.Also, the new strategy pro�le is a nash equilibrium.We know,
σ′ ∈ NEhen
e
(vali(a) = vali(b)) > (vali(c) = vali(d))and also, vali(a) has not de
reased through our transformation.

=⇒ player i 
an not in
rease payo� 
hanging strategy at nFinally, starting at the root, a single play is deterministi
ally followed, sin
eat ea
h node the 
hoi
e made is deterministi
.
=⇒ payo�s are natural numbers.This proves Lemma 7.Remark: The above proof of lemma 6 fails for n players be
ause lemma7 does not hold for n players as the following 
ounterexample shows:�gure 5.3.2 1

[1,1,0℄ [1,0,1℄
x 1 - x

Shown in �gure 5.3.2 is a 3 player game with node 1 where player 1 make amove and two terminal nodes. Here, player 1 wins no matter what strategyhe employees. Now he may 
hose the edges with probabilities x and 1-x,for any x between 0 and 1. Every su
h strategy is a stri
tmax NE, sin
ethe payo�s of player 2 and 3 add up to 1 and in
reasing 2's payo� de
reases3's and vi
e versa. Hen
e, for the strategy with x=0.5, there is no �better�strategy pro�le with natural payo�s, as required by lemma 7.36



Another pertinent question is whether stri
tmax NE for 2 players is unique.We answer this query in the negative with the example shown in �gure 5.3.3.�gure 5.3.3
1

[1,1℄ [1,0℄
x 1 - x

Here again, player 1 plays at node 1 and may 
hose to play the edges withany probability, every x gives a stri
tmaxNE.Lemma 8 There need not exist a unique stri
tmax NE pro�le for 2 playernon zero sum games, and as a 
orollary for n player games.5.3.2 Stri
t-max NE for n playersWe now extend the de�nition to n players:De�nition 14 σ ∈ stri
t-max NE i�
∼ ∃ π ∈ NE ◦ (∀ i vali(π) > vali(σ))The following lemma is the parallel of existen
e result in 2 player 
ase.Lemma 9 Every n player non zero sum game with Borel winning 
onditionshas a stri
t max NE.Proof:Sket
h: Note that it is enough to show that there exists a nash equilibriumwhere at least one player has the payo� 1, sin
e no other equilibrium 
anthen have stri
tly greater payo� for this player. We use the existen
e ofsubgame perfe
t equilibrium to get an initial pure nash equilibrium, andthen if ne
essary, push the payo� of at least one player to 1.37



Let G = (V,Π, O, E, F) be the game with Π set of players and O theownership fun
tion from V to Π played on the unrolled game tree.As usual, G|h denotes the game play restri
ted to history h, and σ|h(x) givesthe next move in the game G|h after an extend history h.x.The existen
e proof for subgame perfe
t equilibrium in Borel games gives usa pure strategy pro�le σ0 su
h that
∀ h ∈ V* ( σ0|h is NE)if vali(σ0) = 1 for some i

σ0 is stri
tmaxNE, as noted aboveelse
∀i vali(σ0) = 1, sin
e ∀i vali(σ0) = 1 or 0Now, let V ω denote the set of in�nite plays.if ∀(ρ ∈ V ω) ∀i vali(σ0)(ρ) = 0There is no winning run for any player

⇒ ∀σ ∀i vali(σ) = 0
σ is stri
tmax NE.else
∃ρ0 ∈ V ω vali(σ) = 1 for some i.Hen
e, there is a run ρ where some player, say j, wins. But this run is not
ompatible with the strategy pro�le (σ).if ∀ h ∈ V* vali(σ) = 0 ∀iif h ≤ ρ0

π(h) = ρ(len(h) + 1)else
π(h) = σ0(h)
laim: π ∈ NElet ∼(h ≤ ρ0)
⇒ ∀x ∼(h.x ≤ ρ0)
⇒ ∀x π(h.x) = σ0(h.x) 38



⇒ π|h(x) = σ0|h(x)

σ0|h is NE ⇒ π|h is NE for ∼(h ≤ ρ0)else (h ≤ ρ0)then, ∀x+ ∈ extension(x),
∼ (x+ ≤ ρ0 ⇒ vali(x

+) = 0 as above ∧ π(x) = x+ ⇒ X+ ≤ ρ0

⇒ π(x) ≥ π(x)The only remaining 
ase is when there indeed is some history h su
h that
vali(σ0|h) 6= 0 for some i.
∃h (σ0|h) 6= 0 for some i.let x ∈ V* be su
h that ∀v ≤ x vali(y) = 0 for all i.We will push this winning value up the history x.We know σ0 is a subgame perfe
t equillibrium. De�ne:
π : ∀s ≤ x, let x = s.n.s′

π(s) = nelse
π(s) = σ0(s)then, π is a subgame perfe
t equilibrium.

∀h, ∼ (h ≤ x) ⇒ π(s) = σ0(s)hen
e, π|h is NE
∀h s.t. h = x.n.s,let π|h.n ∈ NE, O(n)=jsin
e, valj(σ0|h) = 0

∀n′ ∈ siblings(h) ∧ n 6= n′

valj(π|h.n′ = valj(σ|h.n′) = 0 ∧ π|h.n′ ∈ NEHen
e, valj(π|h) = valj(π|h.n) ≥ valj(π|h.n′)

⇒ π|h is NE.Hen
e, π is SPE with val(π) 6= 0.As a 
orollary,we get an alternate proof for the two player 
ase. We havealready seen that stri
tmax NE is not ne
essarily unique.39



5.3.3 maxNE for n player gamesA related de�nition is that of maxNE whi
h relaxes the 
onstraint that allthe players get a better payo� to simply that no player gets a lower payo�.As it turns out, existen
e in the two player 
ase is provable with a proof onlines of stri
tmax NE, but the n player proof breaks down.De�nition 15 σ ∈ max NE i�
∼ ∃ π ∈ NE ◦ (∀i vali(π) ≥ vali(σ) ∧ ∃i vali(π) > vali(σ))Lemma 10 Every 2 player non zero sum game with Borel winning 
ondi-tions has a max NE.Proof: The existen
e proof for 2 player stri
t max NE goes through.
�gure 5.3.4 12 3 54[0,1℄

[1,0℄
[0,0℄ player 0player 1

To the question whether max NE is unique, we again answer with a negative,albeit with a slightly more 
omplex 
ounter example of a Bu
hi game withindi
ated payo�s (�g 5.3.4):maxNE1: σ1(1) = 3, σ2(3) = 4, rest loopsmaxNE2: σ1(1) = 2, σ2(3) = 5, rest loops
40



Lemma 11 There need not exist a unique max NE pro�le for 2 player nonzero sum games, and as a 
orollary for n player games.The question of existen
e of maxNE pro�les in n player games remains open.The earlier proof for stri
tmaxNE does not work be
ause pushing the payo�of any one player to 1 is not enough to ensure that no other equilibria existwhere some other player gets a better payo�. Nor 
ould we dire
tly extendthe proof.
5.4 Pro
ess ViewIn order to understand the reason behind instability in equilibria we haveto look at how a group of players a
tually rea
h an equilibrium pro�le. Inthe world of one shot 
omplete information games, all players de
ide theirstrategies for all histories of the game before the game starts, and thesestrategies are publi
 knowledge. Hen
e, a player de
ides his strategy hav-ing 
omplete knowledge of what other players' strategies are, and in e�e
t,knowing 
ompletely how the game will pro
eed (probabilisti
ally, in 
ase ofmixed strategies) having de
ided his own strategy. Clearly, a strategy pro�le
an be said to be stable if no player would like to 
hange to some other strat-egy given the strategy pro�le, assuming that players are rational beings withsel�sh motives. We have seen that all the known equilibria fail the litmustest and hen
e are not stable.But, how are strategies de
ided?We look at a few models of strategy de
isions. Sin
e all players must knowthe strategies of all other players while de
iding their own, we may 
onsidera model where a 
omplete nash equilibrium strategy pro�le is �announ
ed�and the players 
hoose to either ex
ept it or reje
t it. A pro�le is a

eptedif all the player a

ept it and reje
ted otherwise. We 
all a pro�le stable, ifthere is no other nash equilibrium whi
h the players will a

ept repla
ing the
urrent one. The pertinent question now is, when do players a

ept a newstrategy pro�le? 41



� Case 1: Player i a

epts the pro�le σ′ over σ i� vali(σ
′) > vali(σ)i.e., the player are lazy, and will only a

ept a 
hange in status quo whenit in
reases their payo�. This is pre
isely the 
ase of stri
tmax NE. We�nd that stri
tmax NE is the weakest kind of equilibrium that satis�esour meaning of stability. Other notions are extension of stri
tmax NE.� Case 2: Player i a

epts the pro�le σ′ over σ i� vali(σ
′) ≥ vali(σ)i.e., the player are a
quies
ing, and will a

ept any 
hange in the pro�leas long as it does not de
rease their payo�. This is the 
ase of maxNE. It 
an easily be seen that maxNE ⇒ stri
tmaxNE.The above s
enario with parallel announ
ement of equilibrium strategies isa very arti�
ial setting be
ause, �rst, in a real world example there is noindependent authority announ
ing strategies, and se
ond, the announ
edpro�les have to be nash equillibria, so the problem is assumed to be alreadyhalf solved, before we begin. A more natural setting is the following: Allplayers take turns in a 
ir
le. In his turn, a player may either 
hoose to not
hange her strategy or announ
e a new strategy. The pro�le is said to bestable when all players have announ
ed no 
hange in one round. This is amu
h more natural setting and we 
an also des
ribe nash equillibria in thissetting.Fun
tion 
hara
terization of pro
essIf in the afore mentioned setting we assume that a player 
hooses to shift toa new strategy if it gives her a better payo� than the 
urrent pro�le, thenwe obtain a pre
ise 
hara
terization of nash equilibrium.For two players, 
onsider that, a player does not 
hange her strategy if shegets the best possible payo� with the 
urrent pro�le, or

∀σ′vali(σ) ≥ vali(σ
′)
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Now 
onsider the fun
tion F : {(V*→D(V)) × (V*→ D(V)) × {0, 1}} −→{(V*→D(V)) × (V* →D(V)) × {0, 1}}
F (π0, π1, i) =







{π′
0, π1, 1 − i} if vali(π

′
i, π1−i) > vali(πi, π1−i)

{π0, π1, 1 − i} otherwise





This fun
tion 
aptures the pro
ess of 
hoosing a new strategy in response tothe 
urrent pro�le by the players. Now, as mentioned, a stable pro�le in ourpro
ess is obtained when two 
ontinuous appli
ations of F lead ba
k to thesame pro�le. It 
an be shown that a pro�le is stable wrt this F i� it is a nashequilibrium. The proof is straightforward and we omit it here.Let us now try to 
apture the �litmus test� through this fun
tion formalism.De�ne F as:
F (π0,π1, i) =

{π′
0, π1, 1 − i} if

{vali(π
′
i, π1−i) > vali(πi, π1−i)}∨

∃π′
1−i

















vali(π
′
i, π

′
1−i) > vali(πi, π1−i)∧

val1−i(π
′
i, π

′
1−i) > val1−i(π

′
i, π1−i)∧

∀π′′
i {val1−i(π

′
i, π

′′
1−i) ≥ val1−i(π

′
i, π

′
1−i) →

vali(π
′
i, π

′′
1−i) ≥ vali(π

′
i, π

′
1−i)}

















{π0, π1, 1 − i} otherwiseThe ��x point� of F then as dis
ussed above for nash equilibrium here 
ap-tures the litmus test approximately. The last 
ondition of safety has beenput in to ensure that player (1-i) does play in a way that helps i. Sin
e thisfun
tion looks two steps into the future to de
ide on the best strategy, it 
anbe 
alled a ply-2 lookup. We 
an show that stri
tmaxNE and maxNE aresubsumed by this formulation. In parti
ular, we show how maxNE ensureply-2 stability.Lemma 12 maxNE −→ ply-2 stability and stri
tmaxNE −→ ply-2 stabilityProof: 43



let (π0, π1) be maxNE ⇒

∀π′
i vali(π

′
i, π1−i) ≤ vali(πi, π1−i) · · ·(1)

∧ ∀π′
1−i vali(πi, π

′
1−i) ≤ vali(πi, π1−i) · · ·(2)

∧ ∀π′
i ∀π′

1−i[ (vali(π
′
i, π

′
1−i)≤ vali(πi, π1−i) ∨ val1−i(π

′
i, π

′
1−i) < val1−i(πi, π1−i))

∧ · · ·(3)(vali(π
′
i, π

′
1−i) < vali(πi, π1−i) ∨ val1−i(π

′
i, π

′
1−i) ≤ val1−i(πi, π1−i))℄From this follows:

∀π′
i π′

1−i

vali(π
′
i, π1−i) ≤ vali(πi, π1−i) from (1)and

vali(π
′
i, π

′
1−i) ≤ vali(πi, π1−i) from (3)whi
h is enough to prove that F(π0, π1, 0) = {π0, π1, 1}. Similarly for F(π0,

π1, 1).A similar proof works for stri
tmaxNE.Issues:Note that we said above that we 
onsider stri
tmaxNE to be the weakestequilibrium that 
aptures stability, but ply-2 stability is implied by stri
t-maxNE. This is the 
ase be
ause ply-2 stability does not in fa
t 
apturestability 
ompletely. The safety 
ondition explained above has been put inarti�
ially and it is not 
lear if it is the best way to 
apture 
ertainty thatplayer 1-i does ends up helping player i while playing sel�shly. But the pre-liminary results like 
apturing nash equilibrium and the 
lear emulation ofthe pro
ess of strategy determination motivate the study of these fun
tionsand their ��xed points� in detail. We do not delve deeper into these mattersin this report.
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5.5 
ollusion equilibriumWe end this report with an abstra
tion from the pro
ess view explained inthe last se
tion to introdu
e a new equilibrium 
on
ept that builds on theinsights gained from elementary 
on
epts like stri
tmaxNE and maxNE.De�nition 16 A strategy pro�le σ in a game (V, O, Π, F ) is a 
ollusionequilibrium if no subset π ∈ Π 
an 
hange their strategies in a way thatin
reases the payo� of every π ∈ π i.e.,
∀π ∈ Π ∀σ′ = (σ′

{i|πi∈π},σ{i,otherwise})

∃{i|πi ∈ π}{vali(σ
′) ≤ vali(σ)}We note is 
ollusion equilibrium =⇒ stri
tmaxNEThis de�nition is a pro
ess independent de�nition like nash equilibrium, al-though more 
omplex. We hold the hope that results on existen
e of 
ollusionequilibrium 
an be found parallel to those known for nash equilibrium. An-other open problem is that of pla
ing 
ollusion equilibrium squarely in thepro
ess framework dis
ussed in this report. We express our inability to treatthem here for the la
k of proper mathemati
al ma
hinery.
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Chapter 6Con
lusion & future dire
tionsFollowing 
laims 
an be made at the end of this report:� The unde
idability result for pure-NE for SSMG was improved, thenumber of players required brought down to 5.� Some advan
ement was made towards proving the existen
e of subgameperfe
t equilibria in sto
hasti
 games. We 
ould prove the result for 2player games, but the n player game remains open. We believe thatthe di�
ulty here lies in addressing the in�nite tree zero sum sto
hasti
game problem.� It was felt the nash equilibrium and the other known equilibria do not
apture the notion of rational stability of strategy pro�le adequately.This 
onvi
tion was motivated through dis
riminating examples and anattempt was made towards trying to delve into the pro
ess of equilib-rium rea
hability pro
ess, to gain insights into this foundational ques-tion. The problem still remains open.Some important areas where we are left mid-stream by this work:� Closing the unde
idability gap for n1
2
games.� Following up the pro
ess 
hara
terization in greater detail and tryingto formulate the stability problem as a �xed point 
omputaion.� A 
omplete treatment of 
ollusion equilibrium.46
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