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Chapter 1IntrodutionGames have long been used to model interation between sel�sh adversariesompeting to gain the maximum possible bene�t in a given situation. In thease of multiplayer games, objetives no longer remain neessarily opposingand eah ator aims to do the best he an. The idea of strategies that arebest for everyone is aptured through Equilibria whih have reently beenelegantly extended to multiplayer games and treated in depth. We study theonepts behind di�erent types of equilibria on �nite graph games and tryto solve some related problems that an help in deiding well paying stablestrategies. Later, with the understanding gained from this study, we proposea test of stability of equilibria and try to evolve stable equilibria.This theory is diretly appliable in veri�ation problems where multipleagents have their own goals and must work in a ommon system. Di�erentresults from this �eld have also been used in the past to solve other automatatheoretial problems. The later part of the work is of independent theoretialinterest, as the questions raised are foundational to the study of games.Organization of the reportChapter 2 sets up the preliminaries by introduing the reader to basi on-epts related to (stohasti) graph games & various equilibria and motivatesthe di�erene through an example. Chapter 3 surveys existing results thatare useful for later development. The main developments in this work are di-2



vided into two independent setions. First, hapter 4 deals with two problemsreognized from the literature assoiated with equilibria in stohasti games.The two results in this hapter extend a known results to the stohasti aseand improve an existing proof. Later, hapter 5 delves into the meaning ofequilibrium and uses the familiarity gained with the onept to ask foun-dational questions about stability of strategy pro�les. Towards the end itproposes partial solutions. We sum up the report with a short onlusion inhapter 7.
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Chapter 2PreliminariesWe assume throughout this report that the reader is familiar with basionepts and terminology of automata and language theory. We now de�negames and some basi onepts related to them that will at as a base forthe development through the report.2.1 Graph GamesThe games we study are turn based games of perfet information played ongraphs.De�nition 1 An in�nite (turn-based, qualitative) multiplayer gameis a tuple G = (Π, V, (Vi)i∈Π, E, χ, (Wini)i∈Π) where Π is the set of players,
(Vi)i∈Π is a partition of V into the position sets for eah player, χ : V → Cis a oloring of the positions by some set C, whih is usually assumed to be�nite, and Wini ⊆ Cω is the winning ondition for player i.The struture G on whih these games are played is alled the arena. Aninitialized game begins with a token plaed on an initial vertex v. The gameproeeds by moving the token along graph nodes. The owner of the urrentvertex makes a move by moving the token to the next vertex along an edge.An in�nite sequene of these moves gives us a play. In order to ensure thatevery play is in�nite, it is assumed that the set uE := {v ∈ V : (u, v) ∈ E} ofverties that are the suessors of u is non empty. A play is winning for player4



i if it belongs to Wini. Beginning at vertex v0, a typial play proeeds as
v0, v1, v2, v3, . . . Any pre�x of a play is alled a history of the game. v0, v1, v2and v0, v1, v2, v3 are example histories.�nite graph games and non-terminating Σ-tree games: The gamesthat we disuss in this report are played on �nite graphs, i.e., V is of �niteardinality. Another important lass of graph games that we use in severalproofs are the Σ-tree games. The underlying graphs for these games are nonterminating trees.Zero sum games: Another important restrition to the types of gameswe onsider is laid by requiring that for any feasible play on the graph, oneand only one of the players wins. Suh games are alled zero sum. Thename derives from the lassial origins when two player zero sum games wereonsidered and this ondition implied that the sum of "value" for the twoplayers was always zero.De�nition 2 A strategy σ for player i is a probability distribution V ∗.V →

D(V ) where D(V ) is the spae of probability distributions on the set of ver-ties V. A play is said to be onsistent with the strategy σ if after history h ofthe game, at the position v, σ(h, v) is the probability distribution of the nextmove hosen by the player π who owns the vertex v. Note that D(u) = 0 if
(v, u) /∈ E� A strategy is alled pure if σ is a funtion into V, i.e., if the playerhooses the next node deterministially for eah history.� A strategy is alled �nite memory if it only uses �nite number of pre-vious nodes to determine the move at the urrent node� A strategy is alled stationary if the next move is determined basedonly on the urrent node.� A strategy is alled positional if it is both pure and stationary.De�nition 3 A strategy pro�le is an n-tuple of strategies (σ1, σ2, σ3, . . . σn)suh that eah σi is a strategy for player i. A play is said to be onsistent5



with strategy pro�le (σ1, σ2, σ3, . . . σn) if for a given history h and vertex v,
D(u) = σi(h, v) where v ∈ ViWe will use the notation 〈(σi)i∈Π〉 to refer to a strategy pro�le whereplayer i has the strategy σi and 〈(σi)i∈Π\{j}, π〉 to refer to a strategy pro�lewhere eah player exept j has the strategy σi and player j has the strategy
π.The very basi question that one is prompted to ask given a two player zerosum game is whether there exists a strategy for either player that guaranteesa winning play. This idea is aptured by determinay. A game is said to bedetermined if there exists a strategy σ for one of the players suh that thatplayer wins the game for any strategy π of the other player.A �nal distintion must be made here between onurrent and turn basedgames. In a onurrent game, all players make simultaneous moves at eahvertex and the probability distribution for the next vertex is determined byall these ations together. We do not onsider onurrent games in detailhere, but use them brie�y in quoting a known result. On the other hand, inturn based games, only one player makes a move at eah vertex (and thatplayer is said to own that vertex). Heneforth, unless otherwise mentionedwe refer to turn based games as simply games.Multiplayer games have found appliation in modeling systems where mul-tiple agents interat with sel�sh goals. They have been reently applied inthe study of driver veri�ation where many independent omponents are in-volved.The most studied graph games fall under the lass of ω-regular games.
ω-regular games are graph games in whih eah player wins on plays thatform an ω-regular set.Let α be a generi play of the game. Following are well studied speial asesof ω-regular winning sets:1. Buhi: Spei�ed by a set B ⊆ C; α is winning if the set of olorsourring in�nitely often in α, Ω(α) is subset of B, Ω(α) ⊆ B6



2. o-Buhi: Spei�ed by a set o-B⊆ C; α is winning if the set of olorsourring in�nitely often in α, Ω(α) is disjoint from o-B, Ω(α)
⋂ o-B= φ3. Parity: Spei�ed by a priority relation on the olors in C; α is winningif the least olor ourring in Ω(α) is odd4. Rabin: Spei�ed by a family of pair of sets (Ei, Fi), Ei, Fi ⊆ C; α iswinning if ∃(Ei, Fi)(Ω(α)

⋂

Ei 6= φ ∧ Ω(α)
⋂

Fi = φ)5. Streett: Spei�ed by a family of pair of sets (Ei, Fi), Ei, Fi ⊆ C; α iswinning if ∀(Ei, Fi)(Ω(α)
⋂

Ei = φ ∨ Ω(α)
⋂

Fi 6= φ)6. Muller: Spei�ed by a family of sets F, F ⊆ C; α is winning ifΩ(α) = Ffor some F.Given a play α it is possible to �nd out whether or not it is winning foreah of the players by looking at their winning sets and heking the winningondition. A few points to note here are that ω-regular winning onditionsare pre�x independent, hene they do not depend on any �nite history of thegame. Also, Parity sets inlude Buhi sets, Rabin and Streett sets inludeParity sets and are themselves a part of Muller sets. Hene, Muller sets arethe most general form of ω-regular sets.
2.2 EquilibriaA very important onept that aptures the stability of a strategy pro�le isthe onept of equilibrium. Given a pro�le, a player would want to use astrategy that will give her the maximum bene�t. Equilibria try to apturestrategy pro�les where, under ertain assumptions, none of the players wouldwant to hange their strategies.De�nition 4 A strategy pro�le 〈(σi)i∈Π〉 is a Nash Equilibrium if noplayer an unilaterally hange her strategy to some other strategy π and in-7



rease her payo�.payo�j 〈(σi)i∈Π〉 ≥ payo�j 〈(σi)i∈Π\{j}, π〉for all player j strategies πThis means that under lak of ommuniation, every player is doing herbest against the strategy of the remaining players.A stronger equilibrium is de�ned using the onept of Subgames. for a givengame G = (Π, V, (Vi)i∈Π, E, χ, (Wini)i∈Π, v0), a subgame G|h = (Π, V,
(Vi)i∈Π, E, χ, (Wini|h)i∈Π, v0) is de�ned as the game from v suh that v0.h =

v and α ∈ Wini|h ≡ h.α ∈ Wini. In e�et, a subgame is a game ontinuingafter an initial history h of the game. For any strategy σ of G, a naturalrestrition σ|h is given by σ|h(x, v) = σ(h.x, v), i.e., the player plays as if thegame had atually begun at v0.De�nition 5 A strategy pro�le 〈(σi)i∈Π〉 is a Subgame Perfet Equilib-rium if for every feasible history h of the game, the pro�le 〈(σi)i∈Π〉|h is aNash Equilibrium in the game G|hA subgame perfet equilibrium tries to apture situations where by takinga non optimal hoie in the ourse of the game, a player an indue anotherplayer to hange her strategy as well, leading to an inreased payo� for the�rst player in the end. Note that every Subgame Perfet Equilibrium is aNash EquilibriumDe�nition 6 A strategy pro�le σ is alled Seure if for all players i 6= jand for eah strategy σ′ of j it is the ase that
〈(σi)i∈Π〉 /∈ Winj ∨ 〈(σi)i∈Π\{j}, σ

′〉 ∈ Winj

⇒ 〈(σi)i∈Π〉 /∈ Wini ∨ 〈(σi)i∈Π\{j}, σ
′〉 ∈ Wini8



A strategy pro�le is seure if none of the players an derease some otherplayer's payo� without dereasing their own payo�. A Seure Equilibriumis a Nash Equilibrium that is also Seure.Subgame Perfet Equilibrium and Seure Equilibrium are two di�erentextensions of the notion of Nash Equilibrium2.3 Stohasti gamesDe�nition 7 A two player stohasti game is a tuple G = (Π, V1,V2,V0,E, χ, p, Win1, Win2) where Π is a direted graph with vertex set V =

V1
⋃

V2
⋃

V0, χ : V → C is a oloring of the position by some set C, whih isusually assumed to be �nite,p : V0 → D(V ) is a funtion from verties V0 toD(V) and Win1 ⊆ Cω and Win2 ⊆ Cω are the winning onditions for player1 and 2 respetively.Here player 0 is nature. Nature hooses one of the suessor nodes fromits vertex probabilistially, as given by p. These games are often alled 21
2games beause nature plays with a �xed stationary strategy. n1

2
games anbe similarly de�ned with n players and the n+1th player being nature.De�nition 8 The value of a game for a player i is the maximum payo� shean guarantee against any strategies played by her opponents. An n1

2
gameis said to be determined if there exist strategies suh that eah player anahieve payo� equal to the value for that player.An example to explain equilibriaExample 1 Let us see a 21

2
player game that learly explains and distin-guishes these equilibria.Consider the game shown in �gure 2.1. The irles are player nodes owned bythe player indiated. The diamonds are stohasti verties with eah outgoingedge marked with probability of that edge being taken. The squares are end9



Figure 2.1: A two player game with di�erent equilibriaverties and are labeled with the players that win on reahing that vertex.Consider the following stationary positional strategy pro�les:P1: σ1(1) = 2, σ2(2) = 5, σ2(3) = 6P2: σ1(1) = 3, σ2(2) = 5, σ2(3) = 7P3: σ1(1) = 3, σ2(2) = 5, σ2(3) = 6P4: σ1(1) = 2, σ2(2) = 4, σ2(3) = 7We an make the following observations.� P1 is not a Nash Equilibrium beause player 1 an inrease her payo�by moving to node 3 instead of 2.� P2, P3 and P4 are all Nash Equilibria.� P2 is not a seure equilibrium sine player 2 an move from node 3 tonode 6 without dereasing her own payo�, while dereasing player 1spayo�. P3, the pro�le thus obtained is a seure equilibrium.� P2 is not a subgame perfet equilibrium either. Sine the pro�le is nota Nash Equilibrium after the history 1 → 2. P4, on the other hand is10



an SPE. Note here that P2 failed to be an SPE beause player 1 ouldhange her strategy so that she ould indue player 2 to hange hers,and the �nal pro�le was better for both. We will dwell more on thisinterpretation of SPE later in the report.
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Chapter 3Existing results
3.1 Existene of equilibriaThe following results are lassial results for 2 player game determinay.Later results build on these old results.Theorem 1 [4℄ Two player games with Borel winning onditions are deter-mined.Theorem 2 [5℄ Two player games with ω-regular winning onditions arepositionally determined.Using the positional determinay of 2 player games, Chaterjee et al showedthat any multiplayer game with Borel winning onditions has a Nash Equi-librium. For n1

2
player games, the following is a parallel result.Theorem 3 [1℄ There exists a Nash Equilibrium with pure strategy pro�lein every turn-based stohasti game with parity payo� onditions.The existing proof for this result uses a muh stronger result about disountedonurrent games. In treating other games for similar results, we hope to usealternative proof tehniques than the one used here.We state and prove the following two results about SPEs for two player andn player games originally from [2℄. 12



Theorem 4 [2℄ Let (G,v0) be an initialized two player game suh that everysubgame is determined. Then there exists a strategy pro�le (σ1,σ2) that is asubgame perfet equilibrium.Proof. Sine we are onerned only with the existene of a subgame per-fet equilibrium and not the omplexity of �nding one, we an onsider anyplay on the graph to played on an equivalent Σ-tree generated by unrollingthe graph on eah node starting from the initialization vertex v0. Sine wealready know that every subgame is determined, given a history h, eitherplayer 1 or 2 has a winning strategy from this position. Also, from theorem 2we need to onsider only positional strategies on the Σ-tree. Let the optimalstrategy after history h for player i be denoted by σh
i .If we allow both players to play their best strategies from every vertex inthe Σ-tree, then either of the player must win. The problem in this simplistiapproah is that in any play of the game, players might swith strategies todi�erent σh

i in�nitely many times. Thus no strategy is played for an in�nitesu�x of the play, and hene no player is really playing her winning strategy.For a history h, de�ne a partition h1, h2 of h to be a good partition forplayer i if� h = h1 � h2� σh1

i |h2
is winning in (G|h,v0)� h1 is the minimal possible suh h1Now, de�ne the strategy for eah player as follows:

σi(hv) = σh1

i (h2v) where h1 � h2 is good partition of h.if no good partition exists, set σi(hv) = σh
i (v)Now onsider any play after an initial history h. Let the strategy hosenas above be σh1

i . We laim that if v1, v2, v3, v4 . . . , vk be the subsequentverties followed in the play aording to this strategy, σh1

i is at least onepermissible partition at vk, sine it is winning for player i from h1 � h213



against all strategies of player ī and vk is a state reahed in aordane withthis strategy and hene must still be winning. Seondly, assume that a betterpartition exists for h, v1, v2, v3, v4 . . . , vk; sine in the new partition h′1 ≤h1, this proess must reah a �xed point. And hene on no path an therebe an in�nite number of swithes in the strategy. So the above problem issolved. And σi as de�ned gives the required strategy pro�le.Theorem 5 [2℄ n player stohasti games with parity winning onditionshave an SPE.3.2 The problems NE & SPEDe�ne the problem NE as follows:De�nition 9 Given a multiplayer game, determine if there exists a NashEquilibrium with payo� vetor between x̄ and ȳ.We say that the payo� vetor p̄ is between x̄ and ȳ when for eah player i,xi ≤ pi ≤ yi.We disuss this problem in ontext of stohasti games. Sine it is too di�ultto talk about NE in general, the following restritions of the problem aretreated independently.� PosNE: all players use positional strategies� StatNE: all players use stationary strategies� FinNE: all players use �nite memory strategies� PureNE:all players use pure strategies� QualNE: the vetors x̄ and ȳ onsist only of 0s and 1s.It an be shown that these problems are indeed independent, i.e., there aregames with one type of NE in a given range but not the other.
14



De�nition 10 Simple Stohasti Multiplayer Games(SSMG) are stohas-ti multiplayer games with payo� reahability objetives on terminal nodes.The only �nal verties are terminal verties where the game keeps loopingforever and some players win while others lose.The motivation for using this restritive type of games is that it is a subsetof Buhi games and hene all ω-regular games. All the undeidability andhardness results for SSMG arry over to higher form of winning.The following results summarize the urrent knowledge about NE in stohas-ti gamesTheorem 6 [6℄ [7℄ PosNE is NP-omplete for all ω-regular objetives as wellas SSMGs.Theorem 7 [6℄ [7℄ StatNE is in P-spae for all ω-regular objetives as wellas SSMGs.Theorem 8 [6℄ PureNE and FinNE are undeidable for games with at least9 players and 13 players respetively.A similar problem an be de�ned for SPE as followsDe�nition 11 Given a multiplayer game, determine if there exists a Sub-game Perfet Equilibrium with payo� vetor between x̄ and ȳNothing in known about SPE in stohasti games.
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Chapter 4Results on stohasti gamesThe �rst result is on the existene of subgame perfet equilibria in 21
2
playerzero sum stohasti games.4.1 Two player stohasti zero sum gamesSine we are onerned only with the existene of equilibria and not theomplexity of their omputation, we argue about properties of Σ-tree gamesobtained from unraveling the game graph at every node from the start node.Lemma 1 For a game (G, v0), let S he the set of all reahable histories hand let σ̄0 = 〈(σi)i∈{1,2}〉 be a strategy pro�le optimal to both players. Then,either val(σ̄0|h) = val(G|h) or h is not reahable in the strategy pro�le σ̄0Proof. Let h be reahable with strategy pro�le σ̄0. And assume that ondi-tion one does not hold. Hene,

∃ history y suh that val(σ̄0|y) < val(G|y)Then, in the game G|y, ∃ a strategy σy
1 for player 1 (against player 2) thatgives him a higher value, viz, val(G|y).Consider the strategy pro�le,

〈( σ1 for all histories whose pre�x is not y, σy
1 for su�xes of y), σ2〉then, player 1 has e�etively inreased his payo� to more than his valueagainst an "optimal" strategy of player 2.This is a ontradition. 16



Hene one of the two assumptions above must be wrong.Next, we show with a proof similar to theorem 4 that a subgame perfetequilibrium exists for 21
2
player games.Theorem 9 21

2
player zero sum games are subgame perfet determined.Proof. For a given history h, de�ne a partition h1, h2 of h to be good forplayer i if� h = h1 � h2� h2 ∈ S

σ̄
h1
i

in the game G|h1� h1 is the minimal possible suh h1Now de�ne the strategy for eah player as follows:
σ(hv) = σh1(h2v) if a good partition h1, h2 exists,
σ(hv) = σh(v) otherwise.It remains to prove that this strategy pro�le is optimal for all histories h.Consider the game at history h. Let the strategy hosen as above be σh1.We are assured that this strategy gives the optimal value to player 1 fromlemma 1. Now onsider any path onsistent with the pro�le σh1 from h. Witha reasoning similar to theorem 4 we an show that only a �nite number ofswithes in strategy our on any path, And hene, the players obtain theiroptimal value from history h.This proves the result.The next result is an e�ort towards reduing the gap in results assoiatedwith deidability of PureNE (theorem 8) We show with a proof tehniquevery similar to the original suggested in [6℄ that PureNE is undeidable evenwith 5 players. The question of 2 player PureNE has proved elusive so far.
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Figure 4.1: The I-gadget

Figure 4.2: The S-gadget: Player 0 hooses the next I-gadget18



Figure 4.3: Terminal gadget for inrementing ounter 1

Figure 4.4: Terminal gadget for derementing ounter 119



Figure 4.5: Terminal gadget for ounter 1 in other ases

Figure 4.6: Terminal gadget for inrementing ounter 220



Figure 4.7: Terminal gadget for derementing ounter 2

Figure 4.8: Terminal gadget for ounter 2 in other ases21



4.2 Undeidability of PureNEIn order to prove the undeidability of PureNE, we redue the halting prob-lem of two ounter mahine running on a program to a game suh that thegame has a Nash Equilibrium where a ertain player wins i� the mahinehalts on the given program.De�nition 12 A two ounter mahine onsists of two ounters that anbe inremented, deremented and heked for zero/non-zero value. It takesas input the program text and beginning at the top of the program, follows theinstrutions manipulating the ounters as direted. The mahine stops whenit enounters the instrution "halt".One possible instrution set for the mahine is:� "in(j); goto k;"� "zero(j)? goto k :de(j); goto l;"� "halt"where k and l are positions in the program text, and j is either 1 or 2, refersto the two ounters.With this set of instrutions, it is known that the halting problem is unde-idable.Lemma 2 Given a program running on a ounter mahine as de�ned above,it is undeidable to determine whether the mahine halts on exeuting thegiven program.In order to show our problem to be undeidable, we must enode a generiprogram for the ounter mahine as a game. The game G is played by 5 play-ers, player 0, A1, B1, A0 and B0. There exists a Nash Equilibrium suh thatplayer 0 wins i� the ounter mahine does not halt on the program enodedby this game. Throughout this proof, At refers to either of A1 or A0 and t̄= (1 − t). We use the gadgets given in �gures 4.1 through 4.8 to synthesize22



the game for a given program. For every line i of program, there is a gadgetS1
i,γ (�gure 4.2) where γ ∈ {in(j), de(j), zero(j), init } for j ∈ {0,1}; thereare the end gadgets Ct

1,γ and Ct
2,γ assoiated with every S-gadget; and �nallyat the end of every S-gadget is an I-gadget, Iti,γ (�gure 4.1). Beginning withS1

0,init. the gadgets naturally get onneted in a network.Following a program exeution: Eah St
i,γ represents a program in-strution being exeuted on the mahine. To ensure that program exeutionis simulated faithfully, we must ensure that player zero makes the orrethoies at all the I-gadgets, i.e, he hooses that edge whih will get exeutedduring the run. We do this by remembering the ounter values at all timesduring the run and using them to fore player zero to make orret moves.Enoding the ounter value: We will enode the ounter values of thetwo ounters at eah gadget in the Ct

1,γ and Ct
2,γ respetively. The ountervalue at any point during program exeution is exatly the same as the max-imum number of times player zero plays the marked edge in the C-gadgets.Maintaining the orret ounter values: So the problem reduesto ensuring that the number of times player zero hooses the marked edge,all it j

n on the nth step for ounter j, is equal to the urrent value of theounters. We ahieve this by ensuring the loal relationships between 1
n &1

n+1 and 2
n & 2

n+1 respetively.Theorem 10 Let σ̄ be a strategy pro�le suh that player zero almost surelywins. Then σ̄ is a Nash Equilibrium if and only if
cj
n =











































cj
n + 1 ifγn+1 = inc(j)

cj
n − 1 ifγn+1 = dec(j)

cj
n = 0 ifγn+1 = zero(j)

cj
n otherwise









































for j = 1 & 2 23



Proof. Towards this, we prove the following lemma:Lemma 3 The pro�le σ̄ is a NE i� an, the probability of winning for playerAt at a node owned by At is equal to 2
3
.Proof. ⇒ assume that σ̄ is a Nash Equilibrium, then

an ≥
2

3sine otherwise, player At would hose to leave the game at that point andinrease her payo� and player 0 looses. Similarly, if bn is the probability ofwinning at a node owned by Bt,
bn ≥

1

3Also, at every vertex suh at player 0 wins, exatly one of At and Bt win.
an + bn = 1

an ≤
2

3

an =
2

3

⇐ assume that an = 2
3
, then from reasoning similar to above, bn = 1

3
.Hene, neither At nor Bt an improve their payo�. Player zero already winsalmost surely. Hene σ̄ is a Nash Equilibrium.Next, we show how these probabilities an are maintained loally.Lemma 4 an = 2

3
i� pn, the probability of winning for At in this and thenext omponent, is 1
2
.Proof. ⇒ let an = 2

3
. Note that

an = pn +
1

4
× an+224



also
an = an+2 =

2

3it follows:
pn =

1

2

⇐ if pn = 1
2
then we have,

an =
1

2
+

1

4
× an+2It is easy to see that the only value of a0 and a1 suh that 0 ≤ an ≤ 1 for alln is when a0 = a1 = 2

3
. But that means that an = 2

3
for all n.It remains to prove that pn is 1

2
i� the ondition in the theorem is satis-�ed. Towards this we state the following lemma:Lemma 5 if

(

1

2

)c1n

−
(

1

2

)c1
n+1

+
(

1

3

)c2n

−
(

1

3

)c2
n+1

= 0then
c1
n = c1

n+1

∧

c2
n = c2

n+1given cj
t are all non negative.Also note the following expressions derived from the arrangement of gad-gets: If prob(n)(C) denotes the probability of winning of player At in thegadget C on the nth gadget, and prob(n+1)(C) the orresponding value forthe n+1th gadget then we have the following:

pn =
1

4
·
(

1

2

)c1n+3

+
1

4
· prob(n, C2,γ) +

1

2
· (

1

4
· prob(n, C1,γ) +

1

4
· prob(n, C2,γ))We an also derive the values of prob(n, C) from the game graph as:prob(n,C):

prob(n, Cn
1,γ) = 1 −

(

1

2

)c1n+325



prob(n, Cn
2,γ) = 1 −

(

1

3

)c2n+3prob(n+1,C):
prob(n + 1, Cn

1,inc(1)) =
(

1

2

)c1
n+1

+1

prob(n + 1, Cn
2,inc(2)) =

(

1

3

)c2
n+1

+2

· 2and so on. Hene, the above equation redues to the form
(

1

2

)c1n

−
(

1

2

)c1
n+1

+
(

1

3

)c2n

−
(

1

3

)c21
n+1

= 0and using lemma 5, we get the required result.
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Chapter 5Capturing Equilibria
5.1 Philosophial basisEquilibria were introdued to apture inherent stability in strategy pro�les.Nash equilibrium apture this stability quite well in the ase of two playerzero-sum games. If (σ1, σ2) is a strategy pro�le, then player 1 is employingthe best possible strategy against player 2's strategy, and vie-versa. Indeed,player 1 hanging to a strategy σ′

1 an not inrease her payo� but may giveplayer 2 a hane to hange his strategy to σ′
2 inreasing his payo� against

σ′
1. Sine this is a zero sum game, this means that player 1's payo� reduesthrough this series of strategy hanges. Employing a similar reasoning, nei-ther players hooses to deviate from (σ1, σ2). Hene, this strategy pro�le isstable, in the sense that both players stik to this pro�le one deided.In the ase of non zero-sum games, It is possible that player 1 hooses σ′

1 over
σ1. From the assumption that (σ1, σ2) is a nash equilbrium, val1(σ

′
1, σ2) ≤

val1(σ1, σ2). As before, let player 2 now hoose σ′
2 inreasing his payo�against σ′

1. In this ase though, it is possible to have val1(σ
′
1, σ

′
2) ≥ val1(σ1, σ2).Thus, although (σ1, σ2) is a nash equilibrium, two rational players playingthe game would not stik to the strategies but move on to the strategies

(σ′
1, σ

′
2). Put down somewhat boldly, nash equilibria in this ase are nottruly equilibrium states. Hene, we see that in the non zero setting, it ispossible to have in a sense non stable nash equilibria. A detailed disussion27



of the stability of equilibria leads us to enquire into the proess of determi-nation of equilibria, and the preise meaning of moving-on / staying with astrategy. In the setion on proesses, we look at this proess and �nally tryto abstrat away one again to aptures some of the insights gained. Below,we state a litmus test for equilibria that stems from similar thoughts, whihwe use to show the inadequay of known onepts.Conept 1 Litmus test: We say that an equilibrium pro�le (σ1, σ2) failsthe litmus test if the following sequene of ations is possible. player 1 hangesher strategy to σ′
1, and then player 2 hanges his pro�le to σ′

2. In the end,we �nd val1(σ
′
1, σ

′
2) > val1(σ1, σ2) and val2(σ

′
1, σ

′
2) > val2(σ1, σ2)In the sequel, we say an equilibrium is stable if it passes the litmus test.5.2 Treatment of known EquilibriaIn this setion, we show how subgame perfet equilibria fail in apturingstability with respet to the litmus test. We later touh upon the essentialdi�erene between these onepts and seure equilibria.We laim that subgame perfet equilibria are neither su�ient nor neessaryonditions for a nash equilibrium pro�le to pass the litmus test.5.2.1 Su�ieny of SPE for stabilityFollowing is a ounter example of a subgame perfet equilibrium that failsthe litmus test.Consider the game graph in �gure 5.2.1 with V1 = {1, 3, 4, 6, 7, 8, 9, 10}and V2= {2, 5}. Let the initial node be {1} and the Buhi winning sets F1= F2 = {7, 10}.We laim that there exists a subgame perfet equilibrium suh that bothplayers lose, and it is possible for one player to indue a hange to a betterequilibrium. Here is a strategy pro�le for the game:

σ1(1) = 3, σ2(2) = 4, σ1(3) = 2, σ1(4) = 1,
σ2(5) = 6, σ1(6) = 2, σ1(7) = 6, σ1(8) = 1,28



σ1(9) = 8, σ1(10) = 8This is a pure pro�le. In the diagram, hosen edges are shown in bold.
(σ1, σ2) is a subgame perfet equilibrium, sine after any �nite history of thegame, the strategy pro�le fores the game bak to node 1 or 2 and no playeran unilaterally fore visits to 7 or 10 in�nitely often. Hene, both playerslose.�gure 5.2.1

1 34
7 6

8 910

5 2
player 1player 2

But (σ1, σ2) fails the litmus test. If player 1 hanges his strategy at node 1to σ1(1) = 5, then player 2 an hange her strategy at node 5 to σ2(5) = 7.Then, the new strategy pro�le is a nash equilibrium where both players win.Note that, the �rst hange (σ1(1) = 5) does not make sense in the nashsense sine it does not inrease the payo� for player 1. On the other hand,the seond hange (σ2(5) = 7) by player 2 is a ompletely sel�sh move,inreasing her payo� from 0 to 1. In this proess she ends up inreasingplayer 1's payo� from 0 to 1 as well. This is exatly the instability we areinterested in apturing. 29



5.2.2 Neessity of SPE for stabilityIt is easy to see that there exist games where nash equilibria that are notsubgame perfet equilibria do pass the litmus test. For example, take thegame in �gure 5.2.2�gure 5.2.2
12 43 5 6

This is a game with Buhi winning onditions with,V1 = {1, 3, 5, 6} V2 = {2, 4}F1 = {3} F2 = {3, 6}Then the strategy pro�le
σ1(1) = 2, σ2(2) = 3, σ1(3) = 3,
σ2(4) = 5, σ1(5) = 5, σ1(6) = 6is not a subgame perfet equilibrium as the strategies restrited to the initialhistory 1→4 is not a nash equilibrium. But it passes the litmus test sineboth players win in the urrent pro�le and hene no strategy swith an bepro�table to any player.Hene we see that subgame perfet is neither neessary nor su�ient forstability de�ned with respet to our litmus test.30



5.2.3 Semantis of subgame perfet equilibriaThe above disussion fores us to question what subgame perfet equilibriaatually apture. Following are the fats we know about SPE:� It is a nash equilibrium� Even for unreahable game states, a player has to play in a way thatwould ensure the best payo� against other players' moves from thatstate.� In the words of the authors of subgame perfet equilibrium for graphgames - "respets the possibility of other player hanging her strategy"[2℄As the next example shows, the last point above is not entirely true.�gure 5.2.3
1

3
2

3
b ged a f h

player 1 player 2
The above game is a two player non zero sum Muller game where the nodesare labeled with olors 1 thru 3. The winning sets are F1 = {{1, 2}, {3}31



} and F2 = {{1, 2}, {2, 3}}. The pure strategy pro�le (σ1, σ2) where thehosen edges are {a, b, d, h} is a subgame perfet equilibrium with payo�{1, 1}. But if player 2 hanges her strategy so that the ative edges beome{b, e, g, h}, then the new payo� vetor is {0, 1}. Player 1 is now fored tohange his strategy to ensure the best payo�.�gure 5.2.4
12 3a b

1,1 0,1 1,1 0,1 d e f
player 1player 2

Indeed to �respet the possibility of other player hanging her strategy� seemsa very strong statement. This would require that for player 1, σ1 is the beststrategy against any strategy of player 2. The example in �gure 5.2.4 showsthat this not always possible, whih is to be expeted.There does not exist σ1 suh that val1(σ
′
1, σ2) is optimal for the following twoplayer two strategies.

σ1
2 = d, e, best σ1 = b

σ2
2 = c, f , best σ1 = aNot knowing what player 2's strategy is redues this game to an imperfetinformation game.We an still say that subgame perfet equilibrium guarantees safety againsta possible deviation from strategy by the opponent for a �nite history of thegame. As noted in the �rst example above, if the other player deviates fromthe delared strategy on an in�nite number of terms in a play, the play mightbeome non optimal for the �rst player.32



Relation to seure equilibriaWe must here note an important di�erene between seure equilibria and thestability properties we are interested in. Seure equilibria ensure that player2 an not derease player 1's payo� without inurring a ost herself, whihis an added onstraint put on the game struture and does not stem fromthe basi sel�sh game play. Sine the games are non zero sum, there is noinherent advantage in reduing the opponent's payo�. On the other hand,the instability in our sense means that rational players would not onsiderthe equilibrium advantageous from purely sel�sh motives, as it is possible toexploit this instability to inrease one's payo�.5.3 Maximal Nash EquilibriaWe take a detour from the philosophial disourse on stability to disusssome results onerning maximal equilibria. We de�ne two speial types ofnash equilibria, stri-max NE and max NE and try to answer some pertinentquestions. The importane of these onepts beomes learer in the followingsetions.5.3.1 Strit-max NE for 2 playersWe �rst de�ne strit max NE for two players and look at some assoiatedresults before generalizing it to n players.De�nition 13 (σ1, σ2) ∈ strit-max NE i�
∼ ∃(π1, π2) ∈ NE ◦



















val1(π1, π2) > val1(σ1, σ2)

∧val2(π1, π2) > val2(σ1, σ2)

















Stritmax NE, then, is a nash equilibrium suh that no other nash equilibriumgives both players better payo�s. Following result shows the existene ofstrit max NE. 33



Lemma 6 Every 2 player non zero sum game with Borel winning onditionshas a strit max NE.Proof.We use the following related lemma in proving the above lemma:Lemma 7 For 2 player non zero sum games
∀σ ∈ mixed ◦ {{σ ∈ NE ∧ val(σ) = {x1, x2}} =⇒

∃σ′ ∈ pure ◦ {σ′ ∈ NE ∧ val(σ′) = {y1, y2} ∧ (y1 ≥ x1) ∧ (y2 ≥ x2)}}With lemma 7 in plae the result follows:� For every n player non zero sum Borel game there exists a pure nashequilibrium pro�le σ.� From lemma 7 for any nash equilibriumwith frational payo�s, ∃σ′ ∈NEsuh that the payo�s are stritly greater than earlier and are integral.� If there exists σ′′ with payo�s greater than σ′, then the above step maybe repeated� Sine there are only �nitely many integral payo�s, this repetition annot happen inde�nitely.Hene we must arrive at a nash equilibrium pro�le suh that a pro�le withlarger payo�s does not exist. This is the required strit-max NE pro�le.�gure 5.3.1
34



n
a  dbSupport

Proof of lemma 7Let G = (V1, V2, E, F) be a game. We obtain game G′ be unrolling thegame along the edges. Then, we know that every strategy in G an mappedto a positional strategy in G′ and vie-versa. Let σ′ be the nash equilibriumpro�le obtained for G′. Then, starting at the root reursively apply thefollowing transformation to σ′ (�g 5.3.1):Let a, b ∈ support(n), i.e.,if σi|a∈Vi
(n)(a) > 0 and

σi|b∈Vi
(n)(b) > 0Then indeed,if σi|a∈Vi
(n)(a) = σi|b∈Vi

(n)(b), sine σ′ is a nash equilibrium.Otherwise, player i ould have inreased his payo� by hoosing the node withhigher value deterministially.Without loss of generality, let
val1−i(a) ≥ val1−i(b)i.e. the other player has highest payo� if player i hooses node a.Then modify σ′ as follows:1. Deterministially hose `a' at n2. Repeat this step for `a' keeping σ′ unhanged for the other subtrees.Now, if the subsequent hanges in σ′ in the subtree under `a' does not dereasethe payo�s for both players then the payo�s at n have also not dereased for35



either player.Also, the new strategy pro�le is a nash equilibrium.We know,
σ′ ∈ NEhene
(vali(a) = vali(b)) > (vali(c) = vali(d))and also, vali(a) has not dereased through our transformation.

=⇒ player i an not inrease payo� hanging strategy at nFinally, starting at the root, a single play is deterministially followed, sineat eah node the hoie made is deterministi.
=⇒ payo�s are natural numbers.This proves Lemma 7.Remark: The above proof of lemma 6 fails for n players beause lemma7 does not hold for n players as the following ounterexample shows:�gure 5.3.2 1

[1,1,0℄ [1,0,1℄
x 1 - x

Shown in �gure 5.3.2 is a 3 player game with node 1 where player 1 make amove and two terminal nodes. Here, player 1 wins no matter what strategyhe employees. Now he may hose the edges with probabilities x and 1-x,for any x between 0 and 1. Every suh strategy is a stritmax NE, sinethe payo�s of player 2 and 3 add up to 1 and inreasing 2's payo� dereases3's and vie versa. Hene, for the strategy with x=0.5, there is no �better�strategy pro�le with natural payo�s, as required by lemma 7.36



Another pertinent question is whether stritmax NE for 2 players is unique.We answer this query in the negative with the example shown in �gure 5.3.3.�gure 5.3.3
1

[1,1℄ [1,0℄
x 1 - x

Here again, player 1 plays at node 1 and may hose to play the edges withany probability, every x gives a stritmaxNE.Lemma 8 There need not exist a unique stritmax NE pro�le for 2 playernon zero sum games, and as a orollary for n player games.5.3.2 Strit-max NE for n playersWe now extend the de�nition to n players:De�nition 14 σ ∈ strit-max NE i�
∼ ∃ π ∈ NE ◦ (∀ i vali(π) > vali(σ))The following lemma is the parallel of existene result in 2 player ase.Lemma 9 Every n player non zero sum game with Borel winning onditionshas a strit max NE.Proof:Sketh: Note that it is enough to show that there exists a nash equilibriumwhere at least one player has the payo� 1, sine no other equilibrium anthen have stritly greater payo� for this player. We use the existene ofsubgame perfet equilibrium to get an initial pure nash equilibrium, andthen if neessary, push the payo� of at least one player to 1.37



Let G = (V,Π, O, E, F) be the game with Π set of players and O theownership funtion from V to Π played on the unrolled game tree.As usual, G|h denotes the game play restrited to history h, and σ|h(x) givesthe next move in the game G|h after an extend history h.x.The existene proof for subgame perfet equilibrium in Borel games gives usa pure strategy pro�le σ0 suh that
∀ h ∈ V* ( σ0|h is NE)if vali(σ0) = 1 for some i

σ0 is stritmaxNE, as noted aboveelse
∀i vali(σ0) = 1, sine ∀i vali(σ0) = 1 or 0Now, let V ω denote the set of in�nite plays.if ∀(ρ ∈ V ω) ∀i vali(σ0)(ρ) = 0There is no winning run for any player

⇒ ∀σ ∀i vali(σ) = 0
σ is stritmax NE.else
∃ρ0 ∈ V ω vali(σ) = 1 for some i.Hene, there is a run ρ where some player, say j, wins. But this run is notompatible with the strategy pro�le (σ).if ∀ h ∈ V* vali(σ) = 0 ∀iif h ≤ ρ0

π(h) = ρ(len(h) + 1)else
π(h) = σ0(h)laim: π ∈ NElet ∼(h ≤ ρ0)
⇒ ∀x ∼(h.x ≤ ρ0)
⇒ ∀x π(h.x) = σ0(h.x) 38



⇒ π|h(x) = σ0|h(x)

σ0|h is NE ⇒ π|h is NE for ∼(h ≤ ρ0)else (h ≤ ρ0)then, ∀x+ ∈ extension(x),
∼ (x+ ≤ ρ0 ⇒ vali(x

+) = 0 as above ∧ π(x) = x+ ⇒ X+ ≤ ρ0

⇒ π(x) ≥ π(x)The only remaining ase is when there indeed is some history h suh that
vali(σ0|h) 6= 0 for some i.
∃h (σ0|h) 6= 0 for some i.let x ∈ V* be suh that ∀v ≤ x vali(y) = 0 for all i.We will push this winning value up the history x.We know σ0 is a subgame perfet equillibrium. De�ne:
π : ∀s ≤ x, let x = s.n.s′

π(s) = nelse
π(s) = σ0(s)then, π is a subgame perfet equilibrium.

∀h, ∼ (h ≤ x) ⇒ π(s) = σ0(s)hene, π|h is NE
∀h s.t. h = x.n.s,let π|h.n ∈ NE, O(n)=jsine, valj(σ0|h) = 0

∀n′ ∈ siblings(h) ∧ n 6= n′

valj(π|h.n′ = valj(σ|h.n′) = 0 ∧ π|h.n′ ∈ NEHene, valj(π|h) = valj(π|h.n) ≥ valj(π|h.n′)

⇒ π|h is NE.Hene, π is SPE with val(π) 6= 0.As a orollary,we get an alternate proof for the two player ase. We havealready seen that stritmax NE is not neessarily unique.39



5.3.3 maxNE for n player gamesA related de�nition is that of maxNE whih relaxes the onstraint that allthe players get a better payo� to simply that no player gets a lower payo�.As it turns out, existene in the two player ase is provable with a proof onlines of stritmax NE, but the n player proof breaks down.De�nition 15 σ ∈ max NE i�
∼ ∃ π ∈ NE ◦ (∀i vali(π) ≥ vali(σ) ∧ ∃i vali(π) > vali(σ))Lemma 10 Every 2 player non zero sum game with Borel winning ondi-tions has a max NE.Proof: The existene proof for 2 player strit max NE goes through.
�gure 5.3.4 12 3 54[0,1℄

[1,0℄
[0,0℄ player 0player 1

To the question whether max NE is unique, we again answer with a negative,albeit with a slightly more omplex ounter example of a Buhi game withindiated payo�s (�g 5.3.4):maxNE1: σ1(1) = 3, σ2(3) = 4, rest loopsmaxNE2: σ1(1) = 2, σ2(3) = 5, rest loops
40



Lemma 11 There need not exist a unique max NE pro�le for 2 player nonzero sum games, and as a orollary for n player games.The question of existene of maxNE pro�les in n player games remains open.The earlier proof for stritmaxNE does not work beause pushing the payo�of any one player to 1 is not enough to ensure that no other equilibria existwhere some other player gets a better payo�. Nor ould we diretly extendthe proof.
5.4 Proess ViewIn order to understand the reason behind instability in equilibria we haveto look at how a group of players atually reah an equilibrium pro�le. Inthe world of one shot omplete information games, all players deide theirstrategies for all histories of the game before the game starts, and thesestrategies are publi knowledge. Hene, a player deides his strategy hav-ing omplete knowledge of what other players' strategies are, and in e�et,knowing ompletely how the game will proeed (probabilistially, in ase ofmixed strategies) having deided his own strategy. Clearly, a strategy pro�lean be said to be stable if no player would like to hange to some other strat-egy given the strategy pro�le, assuming that players are rational beings withsel�sh motives. We have seen that all the known equilibria fail the litmustest and hene are not stable.But, how are strategies deided?We look at a few models of strategy deisions. Sine all players must knowthe strategies of all other players while deiding their own, we may onsidera model where a omplete nash equilibrium strategy pro�le is �announed�and the players hoose to either exept it or rejet it. A pro�le is aeptedif all the player aept it and rejeted otherwise. We all a pro�le stable, ifthere is no other nash equilibrium whih the players will aept replaing theurrent one. The pertinent question now is, when do players aept a newstrategy pro�le? 41



� Case 1: Player i aepts the pro�le σ′ over σ i� vali(σ
′) > vali(σ)i.e., the player are lazy, and will only aept a hange in status quo whenit inreases their payo�. This is preisely the ase of stritmax NE. We�nd that stritmax NE is the weakest kind of equilibrium that satis�esour meaning of stability. Other notions are extension of stritmax NE.� Case 2: Player i aepts the pro�le σ′ over σ i� vali(σ
′) ≥ vali(σ)i.e., the player are aquiesing, and will aept any hange in the pro�leas long as it does not derease their payo�. This is the ase of maxNE. It an easily be seen that maxNE ⇒ stritmaxNE.The above senario with parallel announement of equilibrium strategies isa very arti�ial setting beause, �rst, in a real world example there is noindependent authority announing strategies, and seond, the announedpro�les have to be nash equillibria, so the problem is assumed to be alreadyhalf solved, before we begin. A more natural setting is the following: Allplayers take turns in a irle. In his turn, a player may either hoose to nothange her strategy or announe a new strategy. The pro�le is said to bestable when all players have announed no hange in one round. This is amuh more natural setting and we an also desribe nash equillibria in thissetting.Funtion haraterization of proessIf in the afore mentioned setting we assume that a player hooses to shift toa new strategy if it gives her a better payo� than the urrent pro�le, thenwe obtain a preise haraterization of nash equilibrium.For two players, onsider that, a player does not hange her strategy if shegets the best possible payo� with the urrent pro�le, or

∀σ′vali(σ) ≥ vali(σ
′)
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Now onsider the funtion F : {(V*→D(V)) × (V*→ D(V)) × {0, 1}} −→{(V*→D(V)) × (V* →D(V)) × {0, 1}}
F (π0, π1, i) =







{π′
0, π1, 1 − i} if vali(π

′
i, π1−i) > vali(πi, π1−i)

{π0, π1, 1 − i} otherwise





This funtion aptures the proess of hoosing a new strategy in response tothe urrent pro�le by the players. Now, as mentioned, a stable pro�le in ourproess is obtained when two ontinuous appliations of F lead bak to thesame pro�le. It an be shown that a pro�le is stable wrt this F i� it is a nashequilibrium. The proof is straightforward and we omit it here.Let us now try to apture the �litmus test� through this funtion formalism.De�ne F as:
F (π0,π1, i) =

{π′
0, π1, 1 − i} if

{vali(π
′
i, π1−i) > vali(πi, π1−i)}∨

∃π′
1−i

















vali(π
′
i, π

′
1−i) > vali(πi, π1−i)∧

val1−i(π
′
i, π

′
1−i) > val1−i(π

′
i, π1−i)∧

∀π′′
i {val1−i(π

′
i, π

′′
1−i) ≥ val1−i(π

′
i, π

′
1−i) →

vali(π
′
i, π

′′
1−i) ≥ vali(π

′
i, π

′
1−i)}

















{π0, π1, 1 − i} otherwiseThe ��x point� of F then as disussed above for nash equilibrium here ap-tures the litmus test approximately. The last ondition of safety has beenput in to ensure that player (1-i) does play in a way that helps i. Sine thisfuntion looks two steps into the future to deide on the best strategy, it anbe alled a ply-2 lookup. We an show that stritmaxNE and maxNE aresubsumed by this formulation. In partiular, we show how maxNE ensureply-2 stability.Lemma 12 maxNE −→ ply-2 stability and stritmaxNE −→ ply-2 stabilityProof: 43



let (π0, π1) be maxNE ⇒

∀π′
i vali(π

′
i, π1−i) ≤ vali(πi, π1−i) · · ·(1)

∧ ∀π′
1−i vali(πi, π

′
1−i) ≤ vali(πi, π1−i) · · ·(2)

∧ ∀π′
i ∀π′

1−i[ (vali(π
′
i, π

′
1−i)≤ vali(πi, π1−i) ∨ val1−i(π

′
i, π

′
1−i) < val1−i(πi, π1−i))

∧ · · ·(3)(vali(π
′
i, π

′
1−i) < vali(πi, π1−i) ∨ val1−i(π

′
i, π

′
1−i) ≤ val1−i(πi, π1−i))℄From this follows:

∀π′
i π′

1−i

vali(π
′
i, π1−i) ≤ vali(πi, π1−i) from (1)and

vali(π
′
i, π

′
1−i) ≤ vali(πi, π1−i) from (3)whih is enough to prove that F(π0, π1, 0) = {π0, π1, 1}. Similarly for F(π0,

π1, 1).A similar proof works for stritmaxNE.Issues:Note that we said above that we onsider stritmaxNE to be the weakestequilibrium that aptures stability, but ply-2 stability is implied by strit-maxNE. This is the ase beause ply-2 stability does not in fat apturestability ompletely. The safety ondition explained above has been put inarti�ially and it is not lear if it is the best way to apture ertainty thatplayer 1-i does ends up helping player i while playing sel�shly. But the pre-liminary results like apturing nash equilibrium and the lear emulation ofthe proess of strategy determination motivate the study of these funtionsand their ��xed points� in detail. We do not delve deeper into these mattersin this report.
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5.5 ollusion equilibriumWe end this report with an abstration from the proess view explained inthe last setion to introdue a new equilibrium onept that builds on theinsights gained from elementary onepts like stritmaxNE and maxNE.De�nition 16 A strategy pro�le σ in a game (V, O, Π, F ) is a ollusionequilibrium if no subset π ∈ Π an hange their strategies in a way thatinreases the payo� of every π ∈ π i.e.,
∀π ∈ Π ∀σ′ = (σ′

{i|πi∈π},σ{i,otherwise})

∃{i|πi ∈ π}{vali(σ
′) ≤ vali(σ)}We note is ollusion equilibrium =⇒ stritmaxNEThis de�nition is a proess independent de�nition like nash equilibrium, al-though more omplex. We hold the hope that results on existene of ollusionequilibrium an be found parallel to those known for nash equilibrium. An-other open problem is that of plaing ollusion equilibrium squarely in theproess framework disussed in this report. We express our inability to treatthem here for the lak of proper mathematial mahinery.
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Chapter 6Conlusion & future diretionsFollowing laims an be made at the end of this report:� The undeidability result for pure-NE for SSMG was improved, thenumber of players required brought down to 5.� Some advanement was made towards proving the existene of subgameperfet equilibria in stohasti games. We ould prove the result for 2player games, but the n player game remains open. We believe thatthe di�ulty here lies in addressing the in�nite tree zero sum stohastigame problem.� It was felt the nash equilibrium and the other known equilibria do notapture the notion of rational stability of strategy pro�le adequately.This onvition was motivated through disriminating examples and anattempt was made towards trying to delve into the proess of equilib-rium reahability proess, to gain insights into this foundational ques-tion. The problem still remains open.Some important areas where we are left mid-stream by this work:� Closing the undeidability gap for n1
2
games.� Following up the proess haraterization in greater detail and tryingto formulate the stability problem as a �xed point omputaion.� A omplete treatment of ollusion equilibrium.46



Bibliography[1℄ Krishnendu Chatterjee, Rupak Majumdar, and Marin Jurdzinski. Onnash equilibria in stohasti games. In CSL, pages 26 � 40, 2004.[2℄ Erih Grädel and Mihael Ummels. Solution onepts and algorithms forin�nite multiplayer games. In New Perspetives on Games and Intera-tion, volume 4 of Texts in Logi and Games, pages 151 � 178. AmsterdamUniversity Press, 2008.[3℄ Chaterjee Krishnendu. Stohasti Omega-regular games. PhD thesis,University of California at Berkeley, 2007.[4℄ Donald A. Martin. Borel determinay. Ann. Pure Appl. Logi, 102:363 �371, 1975.[5℄ Mihael Ummels. Rational behaviour and strategy onstrution in in�nitemultiplayer games. In Proeedings of the 26th International Conferene onFoundations of Software Tehnology and Theoretial Computer Siene,FSTTCS 2006, volume 4337 of LNCS, pages 212 � 223. Springer, 2006.[6℄ Mihael Ummels and Dominik Wojtzak. The omplexity of nash equi-libria in simple stohasti multiplayer games. In Proeedings of the 36thInternational Colloquium on Automata, Languages and Programming,ICALP 2009, volume 5556 of LNCS, pages 297 � 308. Springer, 2009.[7℄ Mihael Ummels and Dominik Wojtzak. Deision problems for nashequilibria in stohasti games. In Proeedings of the 18th Annual Confer-ene of the European Assoiation for Computer Siene Logi, CSL '09,volume 5771 of LNCS, pages 515 � 530. Springer, 2009.47


