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Chapter 1
Introduction

Games have long been used to model interaction between selfish adversaries
competing to gain the maximum possible benefit in a given situation. In the
case of multiplayer games, objectives no longer remain necessarily opposing
and each actor aims to do the best he can. The idea of strategies that are
best for everyone is captured through Equilibria which have recently been
elegantly extended to multiplayer games and treated in depth. We study the
concepts behind different types of equilibria on finite graph games and try
to solve some related problems that can help in deciding well paying stable
strategies. Later, with the understanding gained from this study, we propose
a test of stability of equilibria and try to evolve stable equilibria.

This theory is directly applicable in verification problems where multiple
agents have their own goals and must work in a common system. Different
results from this field have also been used in the past to solve other automata
theoretical problems. The later part of the work is of independent theoretical

interest, as the questions raised are foundational to the study of games.

Organization of the report

Chapter 2 sets up the preliminaries by introducing the reader to basic con-
cepts related to (stochastic) graph games & various equilibria and motivates
the difference through an example. Chapter 3 surveys existing results that

are useful for later development. The main developments in this work are di-



vided into two independent sections. First, chapter 4 deals with two problems
recognized from the literature associated with equilibria in stochastic games.
The two results in this chapter extend a known results to the stochastic case
and improve an existing proof. Later, chapter 5 delves into the meaning of
equilibrium and uses the familiarity gained with the concept to ask foun-
dational questions about stability of strategy profiles. Towards the end it
proposes partial solutions. We sum up the report with a short conclusion in

chapter 7.



Chapter 2
Preliminaries

We assume throughout this report that the reader is familiar with basic
concepts and terminology of automata and language theory. We now define
games and some basic concepts related to them that will act as a base for

the development through the report.

2.1 Graph Games

The games we study are turn based games of perfect information played on

graphs.

Definition 1 An infinite (turn-based, qualitative) multiplayer game
is a tuple G = (ILV, (Vi)ien, E, x, (Win;)enn) where 11 is the set of players,
(Vi)ien is a partition of V into the position sets for each player, x : V — C
is a coloring of the positions by some set C, which is usually assumed to be

finite, and Win; C C¥ is the winning condition for player .

The structure G on which these games are played is called the arena. An
initialized game begins with a token placed on an initial vertex v. The game
proceeds by moving the token along graph nodes. The owner of the current
vertex makes a move by moving the token to the next vertex along an edge.
An infinite sequence of these moves gives us a play. In order to ensure that
every play is infinite, it is assumed that the set uFE := {v € V : (u,v) € E} of

vertices that are the successors of u is non empty. A play is winning for player
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i if it belongs to Win;. Beginning at vertex vy, a typical play proceeds as
Vg, V1, Ug, V3, . . . Any prefix of a play is called a history of the game. vy, vy, vy
and vy, v1, Vo, v3 are example histories.

finite graph games and non-terminating Y-tree games: The games
that we discuss in this report are played on finite graphs, i.e., V is of finite
cardinality. Another important class of graph games that we use in several
proofs are the Y-tree games. The underlying graphs for these games are non
terminating trees.

Zero sum games: Another important restriction to the types of games
we consider is laid by requiring that for any feasible play on the graph, one
and only one of the players wins. Such games are called zero sum. The
name derives from the classical origins when two player zero sum games were
considered and this condition implied that the sum of "value" for the two

players was always zero.

Definition 2 A strategy o for player i is a probability distribution V*.V —
D(V') where D(V') is the space of probability distributions on the set of ver-
tices V. A play is said to be consistent with the strateqy o if after history h of
the game, at the position v, o(h,v) is the probability distribution of the next
move chosen by the player m who owns the vertex v. Note that D(u) = 0 if

(v,u) ¢ £

A strategy is called pure if ¢ is a function into V, i.e., if the player

chooses the next node deterministically for each history.

A strategy is called finite memory if it only uses finite number of pre-

vious nodes to determine the move at the current node

A strategy is called stationary if the next move is determined based

only on the current node.

A strategy is called positional if it is both pure and stationary.

Definition 3 A strategy profile is an n-tuple of strategies (o1, 09,03, ...0y)

such that each o; is a strategqy for player i. A play is said to be consistent



with strategy profile (o1, 09,03, ...0,) if for a given history h and vertez v,
D(u) = o;(h,v) where v €'V,

We will use the notation ((0;);err) to refer to a strategy profile where
player i has the strategy o; and ((0;)iem\ (53, 7) to refer to a strategy profile
where each player except j has the strategy o; and player j has the strategy
TT.

The very basic question that one is prompted to ask given a two player zero
sum game is whether there exists a strategy for either player that guarantees
a winning play. This idea is captured by determinacy. A game is said to be
determined if there exists a strategy o for one of the players such that that
player wins the game for any strategy m of the other player.

A final distinction must be made here between concurrent and turn based
games. In a concurrent game, all players make simultaneous moves at each
vertex and the probability distribution for the next vertex is determined by
all these actions together. We do not consider concurrent games in detail
here, but use them briefly in quoting a known result. On the other hand, in
turn based games, only one player makes a move at each vertex (and that
player is said to own that vertex). Henceforth, unless otherwise mentioned
we refer to turn based games as simply games.

Multiplayer games have found application in modeling systems where mul-
tiple agents interact with selfish goals. They have been recently applied in
the study of driver verification where many independent components are in-

volved.

The most studied graph games fall under the class of w-regular games.
w-regular games are graph games in which each player wins on plays that
form an w-regular set.

Let « be a generic play of the game. Following are well studied special cases

of w-regular winning sets:

1. Buchi: Specified by a set B C (; « is winning if the set of colors
occurring infinitely often in «, Q(«) is subset of B, Q(a) C B



2. co-Buchi: Specified by a set co-BC C'; o is winning if the set of colors
occurring infinitely often in «, Q(«) is disjoint from co-B, Q(«) N co-B

=0

3. Parity: Specified by a priority relation on the colors in C; « is winning

if the least color occurring in Q(«) is odd

4. Rabin: Specified by a family of pair of sets (E;, F}), E;, F; C C; « is
winning if 3(E;, F))(Q(0) NV E; £ 6 A Q(a) N F = )

5. Streett: Specified by a family of pair of sets (E;, F;), E;, F; C C; «v'is
winning if V(E;, F;)(Q(a) N E; = ¢ V Qo) N F; # ¢)

6. Muller: Specified by a family of sets F, F* C C; ais winning if Q(«) = F

for some F.

Given a play « it is possible to find out whether or not it is winning for
each of the players by looking at their winning sets and checking the winning
condition. A few points to note here are that w-regular winning conditions
are prefix independent, hence they do not depend on any finite history of the
game. Also, Parity sets include Buchi sets, Rabin and Streett sets include
Parity sets and are themselves a part of Muller sets. Hence, Muller sets are

the most general form of w-regular sets.

2.2 Equilibria

A very important concept that captures the stability of a strategy profile is
the concept of equilibrium. Given a profile, a player would want to use a
strategy that will give her the maximum benefit. Equilibria try to capture
strategy profiles where, under certain assumptions, none of the players would

want to change their strategies.

Definition 4 A strategy profile ((0;)ien) is a Nash Equilibrium if no

player can unilaterally change her strategy to some other strateqy © and in-



crease her payoff.

payoff; ((0i)ien) > payoff; ((0:)iem 3, 7)
for all player j strategies ™

This means that under lack of communication, every player is doing her
best against the strategy of the remaining players.
A stronger equilibrium is defined using the concept of Subgames. for a given
game G = (II, V, (V))ien, E, x, (Win;)sen, vo), a subgame G|, = (II, V,
(Vi)ien, E, x, (Wing|p)ien, vo) is defined as the game from v such that vg.h =
vand a € Win,|, = h.oo € Wiin;. In effect, a subgame is a game continuing
after an initial history h of the game. For any strategy o of G, a natural
restriction oy, is given by ol,(x,v) = o(h.z,v), i.e., the player plays as if the

game had actually begun at vy.

Definition 5 A strategy profile ((0;)ien) is a Subgame Perfect Equilib-
rium if for every feasible history h of the game, the profile ((0;)icn)|n is a
Nash Equilibrium in the game G|,

A subgame perfect equilibrium tries to capture situations where by taking
a non optimal choice in the course of the game, a player can induce another
player to change her strategy as well, leading to an increased payoff for the
first player in the end. Note that every Subgame Perfect Equilibrium is a
Nash Equilibrium

Definition 6 A strategy profile o is called Secure if for all players i # j
and for each strategqy o' of j it is the case that
<(0‘i)iel’[> ¢ WZTL] Vv <(0i)i6H\{j}> 0',> & WZTL]

= ((00)ien) & Win; V ((0i)iem 53, 0") € Win



A strategy profile is secure if none of the players can decrease some other
player’s payoff without decreasing their own payoff. A Secure Equilibrium
is a Nash Equilibrium that is also Secure.

Subgame Perfect Equilibrium and Secure Equilibrium are two different

extensions of the notion of Nash Equilibrium

2.3 Stochastic games

Definition 7 A two player stochastic game is a tuple G = (11, V1, V5, Vg,
E, x, p, Winy, Winy) where 11 is a directed graph with verter set V =
ViUVaUWy, x : V. — C is a coloring of the position by some set C, which is
usually assumed to be finite,p : Vo — D(V) is a function from vertices Vy to
D(V) and Winy C C¥ and Wing C C¥ are the winning conditions for player
1 and 2 respectively.

Here player 0 is nature. Nature chooses one of the successor nodes from
its vertex probabilistically, as given by p. These games are often called 2%
games because nature plays with a fixed stationary strategy. n% games can

1th

be similarly defined with n players and the n+41"* player being nature.

Definition 8 The value of a game for a player i is the mazimum payoff she
can quarantee against any strategies played by her opponents. An n% game
is said to be determined if there exist strategies such that each player can

achieve payoff equal to the value for that player.

An example to explain equilibria

Example 1 Let us see a 2% player game that clearly explains and distin-

guishes these equilibria.

Consider the game shown in figure 2.1. The circles are player nodes owned by
the player indicated. The diamonds are stochastic vertices with each outgoing

edge marked with probability of that edge being taken. The squares are end



8 9 10 1| [12 13
I [1.2] [2] [1.2] [2] [1,2]

Figure 2.1: A two player game with different equilibria

vertices and are labeled with the players that win on reaching that vertex.

Consider the following stationary positional strategy profiles:

Pi: o1(1) =2, 09(2) =5, 02(3) =6
Py: o1(1) = 3, 09(2) = 5, 02(3) =7
Pj: o1(1) =3, 09(2) =5, 09(3) =6
Py: o1(1) =2, 049(2) =4, 09(3) =17

We can make the following observations.

e P, is not a Nash Equilibrium because player 1 can increase her payoff

by moving to node 3 instead of 2.
e P, P3 and P, are all Nash Equilibria.

e P, is not a secure equilibrium since player 2 can move from node 3 to
node 6 without decreasing her own payoff, while decreasing player 1s

payoff. P3, the profile thus obtained is a secure equilibrium.

e P, is not a subgame perfect equilibrium either. Since the profile is not

a Nash Equilibrium after the history 1 — 2. P4, on the other hand is

10



an SPE. Note here that P, failed to be an SPE because player 1 could
change her strategy so that she could induce player 2 to change hers,
and the final profile was better for both. We will dwell more on this
interpretation of SPE later in the report.

11



Chapter 3

Existing results

3.1 Existence of equilibria

The following results are classical results for 2 player game determinacy.

Later results build on these old results.

Theorem 1 [4] Two player games with Borel winning conditions are deter-

mined.

Theorem 2 [5| Two player games with w-reqular winning conditions are

positionally determined.

Using the positional determinacy of 2 player games, Chaterjee et al showed
that any multiplayer game with Borel winning conditions has a Nash Equi-

librium. For n% player games, the following is a parallel result.

Theorem 3 [1]| There exists a Nash Equilibrium with pure strategqy profile

in every turn-based stochastic game with parity payoff conditions.

The existing proof for this result uses a much stronger result about discounted
concurrent games. In treating other games for similar results, we hope to use
alternative proof techniques than the one used here.

We state and prove the following two results about SPEs for two player and

n player games originally from [2].

12



Theorem 4 [2| Let (G,vy) be an initialized two player game such that every
subgame is determined. Then there exists a strategy profile (o1,09) that is a

subgame perfect equilibrium.

Proof. Since we are concerned only with the existence of a subgame per-
fect equilibrium and not the complexity of finding one, we can consider any
play on the graph to played on an equivalent Y-tree generated by unrolling
the graph on each node starting from the initialization vertex vy. Since we
already know that every subgame is determined, given a history h, either
player 1 or 2 has a winning strategy from this position. Also, from theorem 2
we need to consider only positional strategies on the >-tree. Let the optimal
strategy after history h for player i be denoted by o

If we allow both players to play their best strategies from every vertex in
the Y-tree, then either of the player must win. The problem in this simplistic
approach is that in any play of the game, players might switch strategies to
different ¢! infinitely many times. Thus no strategy is played for an infinite

suffix of the play, and hence no player is really playing her winning strategy.

For a history h, define a partition hy, hy of h to be a good partition for
player i if

e h="h;ohy

e o/, is winning in (G|y,vo)

e h; is the minimal possible such h;

Now, define the strategy for each player as follows:

0i(hv) = 07" (hyv) where hy o hy is good partition of h.

if no good partition exists, set o;(hv) = o(v)

i

Now consider any play after an initial history h. Let the strategy chosen
hi

as above be o;". We claim that if vy, vo, v3, v4 ..., v; be the subsequent

h1

vertices followed in the play according to this strategy, o;

.1 is at least one

permissible partition at vy, since it is winning for player i from h; o h,

13



against all strategies of player 7 and v}, is a state reached in accordance with
this strategy and hence must still be winning. Secondly, assume that a better
partition exists for h, vi, vo, v3, v4 ..., vi; since in the new partition h} <
hy, this process must reach a fixed point. And hence on no path can there
be an infinite number of switches in the strategy. So the above problem is

solved. And o; as defined gives the required strategy profile.

Theorem 5 [2]| n player stochastic games with parity winning conditions
have an SPE.

3.2 The problems NE & SPE

Define the problem NE as follows:

Definition 9 Given a multiplayer game, determine if there exists a Nash

Equilibrium with payoff vector between & and .

We say that the payoff vector p is between z and y when for each player i,
X; < pi < Vi

We discuss this problem in context of stochastic games. Since it is too difficult
to talk about NE in general, the following restrictions of the problem are

treated independently.
e PosNE: all players use positional strategies
e StatNE: all players use stationary strategies
e FinNE: all players use finite memory strategies
e PureNE:all players use pure strategies
e QualNE: the vectors & and y consist only of Os and 1s.

It can be shown that these problems are indeed independent, i.e., there are

games with one type of NE in a given range but not the other.

14



Definition 10 Simple Stochastic Multiplayer Games(SSMG) are stochas-
tic multiplayer games with payoff reachability objectives on terminal nodes.
The only final vertices are terminal vertices where the game keeps looping

forever and some players win while others lose.

The motivation for using this restrictive type of games is that it is a subset
of Buchi games and hence all w-regular games. All the undecidability and
hardness results for SSMG carry over to higher form of winning.

The following results summarize the current knowledge about NE in stochas-

tic games

Theorem 6 [6] [7] PosNE is NP-complete for all w-regular objectives as well
as SSMGs.

Theorem 7 [6] [7] StatNE is in P-space for all w-regular objectives as well
as SSMGs.

Theorem 8 [6] PureNE and FinNE are undecidable for games with at least
9 players and 13 players respectively.

A similar problem can be defined for SPE as follows

Definition 11 Given a multiplayer game, determine if there exists a Sub-

game Perfect Equilibrium with payoff vector between T and y

Nothing in known about SPE in stochastic games.

15



Chapter 4
Results on stochastic games

The first result is on the existence of subgame perfect equilibria in 2% player

zero sum stochastic games.

4.1 Two player stochastic zero sum games

Since we are concerned only with the existence of equilibria and not the
complexity of their computation, we argue about properties of >-tree games

obtained from unraveling the game graph at every node from the start node.

Lemma 1 For a game (G,vy), let S he the set of all reachable histories h
and let oo = ((04)icq1,2y) be a strategy profile optimal to both players. Then,

either val(co|n) = val(G|n) or h is not reachable in the strategy profile oy

Proof. Let h be reachable with strategy profile 6o. And assume that condi-
tion one does not hold. Hence,

3 history y such that val(ay|,) < val(G|,)

Then, in the game G|,, 3 a strategy o} for player 1 (against player 2) that
gives him a higher value, viz, val(G],).

Consider the strategy profile,

(( o7 for all histories whose prefix is not y, of for suffixes of y), o3)

then, player 1 has effectively increased his payoff to more than his value
against an "optimal" strategy of player 2.

This is a contradiction.

16



Hence one of the two assumptions above must be wrong.

Next, we show with a proof similar to theorem 4 that a subgame perfect

equilibrium exists for 2% player games.
Theorem 9 2% player zero sum games are subgame perfect determined.

Proof. For a given history h, define a partition hy, hy of h to be good for
player i if

[ ] h = h1 (0] h2
e hy € S_n, in the game Gln,
e h; is the minimal possible such h;

Now define the strategy for each player as follows:
o(hv) = o™ (hov) if a good partition hy, hy exists,

o(hv) = o"(v) otherwise.

It remains to prove that this strategy profile is optimal for all histories h.
Consider the game at history h. Let the strategy chosen as above be o™,
We are assured that this strategy gives the optimal value to player 1 from
lemma 1. Now consider any path consistent with the profile ¢™ from h. With
a reasoning similar to theorem 4 we can show that only a finite number of
switches in strategy occur on any path, And hence, the players obtain their
optimal value from history h.

This proves the result.

The next result is an effort towards reducing the gap in results associated
with decidability of PureNE (theorem 8) We show with a proof technique
very similar to the original suggested in [6] that PureNE is undecidable even

with 5 players. The question of 2 player PureNE has proved elusive so far.
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Figure 4.1: The I-gadget

i,y

0
—DO—P Stk,inc(j)

If ;= “inc(j); goto k;”
Stk,zero(j)u

5 st

If ;= “zero(j)? goto k: dec(j); goto I”

0
_.O_’ (Or Or OJ Or 0)

If ;= “halt;”

Figure 4.2: The S-gadget: Player 0 chooses the next I-gadget
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If y =inc(1)

Figure 4.3: Terminal gadget for incrementing counter 1

t
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0, A", BE

0, B, Bf

0,A, BT 0 A Bt 0 A" A

If y = dec(1)

Figure 4.4: Terminal gadget for decrementing counter 1
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0, A, B

0, B, Bf

0,A' BE 0,A A 0,ALB
Otherwise

The dashed line does not
exist for y = zero(1) or init(1)

Figure 4.5: Terminal gadget for counter 1 in other cases
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3

Ify =inc(2)

0, A" A

Figure 4.6: Terminal gadget for incrementing counter 2
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Figure 4.7: Terminal gadget for decrementing counter 2
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Figure 4.8: Terminal gadget for counter 2 in other cases

21



4.2 Undecidability of PureNE

In order to prove the undecidability of PureNE, we reduce the halting prob-
lem of two counter machine running on a program to a game such that the
game has a Nash Equilibrium where a certain player wins iff the machine

halts on the given program.

Definition 12 A two counter machine consists of two counters that can
be incremented, decremented and checked for zero/non-zero value. It takes
as input the program text and beginning at the top of the program, follows the
instructions manipulating the counters as directed. The machine stops when

it encounters the instruction "halt”.

One possible instruction set for the machine is:
e "inc(j); goto k;"
e "zero(j)? goto k :dec(j); goto ;"
e "halt"

where k and | are positions in the program text, and j is either 1 or 2, refers
to the two counters.

With this set of instructions, it is known that the halting problem is unde-
cidable.

Lemma 2 Given a program running on a counter machine as defined above,
it 1s undecidable to determine whether the machine halts on executing the

glven program.

In order to show our problem to be undecidable, we must encode a generic
program for the counter machine as a game. The game G is played by 5 play-
ers, player 0, A!, B!, A% and B°. There exists a Nash Equilibrium such that
player 0 wins iff the counter machine does not halt on the program encoded
by this game. Throughout this proof, A’ refers to either of A! or A? and ¢
= (1 —t). We use the gadgets given in figures 4.1 through 4.8 to synthesize
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the game for a given program. For every line i of program, there is a gadget
1 . . . . . . . .

Si., (figure 4.2) where v € {inc(j), dec(j), zero(j), init } for j € {0,1}; there

are the end gadgets C'iﬁ and Cgﬁ associated with every S-gadget; and finally

at the end of every S-gadget is an I-gadget, I!  (figure 4.1). Beginning with

’ Z?’y
S(l),mzt- the gadgets naturally get connected in a network.

Following a program execution: Each Sﬁﬁ represents a program in-
struction being executed on the machine. To ensure that program execution
is simulated faithfully, we must ensure that player zero makes the correct
choices at all the [-gadgets, i.e, he chooses that edge which will get executed
during the run. We do this by remembering the counter values at all times

during the run and using them to force player zero to make correct moves.

Encoding the counter value: We will encode the counter values of the

t
1y

value at any point during program execution is exactly the same as the max-

two counters at each gadget in the C}  and Céﬁ respectively. The counter

imum number of times player zero plays the marked edge in the C-gadgets.

Maintaining the correct counter values: So the problem reduces
to ensuring that the number of times player zero chooses the marked edge,
call it ¢/ on the n'* step for counter j, is equal to the current value of the
counters. We achieve this by ensuring the local relationships between ¢! &

1 2 2 -
Cpyq and ¢y & ¢ respectively.

Theorem 10 Let ¢ be a strategy profile such that player zero almost surely

wins. Then & is a Nash Equilibrium if and only if

&A1 ifyu = ine(j)
G =1 ifynr = dec(j)
=0 iy = zero(j)

cl, otherwise

S
I

forj =162
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Proof. Towards this, we prove the following lemma:

Lemma 3 The profile 6 is a NE iff a,, the probability of winning for player

A" at a node owned by A" is equal to 2.

Proof. = assume that ¢ is a Nash Equilibrium, then

an >

W N

since otherwise, player A* would chose to leave the game at that point and
increase her payoff and player 0 looses. Similarly, if b,, is the probability of

winning at a node owned by B?,

bn =

W=

Also, at every vertex such at player 0 wins, exactly one of A® and B! win.

< assume that a,, = %, then from reasoning similar to above, b, = %

Hence, neither A! nor B! can improve their payoff. Player zero already wins

almost surely. Hence & is a Nash Equilibrium.
Next, we show how these probabilities a,, are maintained locally.
2 . 7. . . t . .
3 Wff pn, the probability of winning for A® in this and the
next component, 1s %

Lemma 4 q, =

Proof. = let a,, = % Note that

1
an:pn+ixan+2
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also

2
Ap = Apn42 = g
it follows: .
DPn = 5
< if p, = % then we have,
1 1
Qn = 5 + 1 X Qp2

It is easy to see that the only value of ag and a; such that 0 < a,, <1 for all

n is when ag = a1 = % But that means that a,, = % for all n.

1
2
fied. Towards this we state the following lemma:

It remains to prove that p, is = iff the condition in the theorem is satis-

Lemma 5 if

1\ 1\ Gt 1\ 1\ Gt 0
(2)-G)+G)-6) -

1 _ 1 2 2
Cn - Cn—l—l/\cn - Cn—l—l

then

gien ¢ are all non negative.

Also note the following expressions derived from the arrangement of gad-
gets: If prob(n)(C) denotes the probability of winning of player A’ in the
gadget C on the n'* gadget, and prob(n+1)(C) the corresponding value for
the n+1" gadget then we have the following:

1 71\ 1 11 1
Pp = — - (5) + 1 -prob(n, Cy.,) + 3 (Z -prob(n,Cy ) + 1 -prob(n,Cs.))

We can also derive the values of prob(n, C') from the game graph as:
prob(n,C):

1 cL+3
prob(n,CY ) =1— <§)
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1

c2+3
prob(n,Cy. ) =1 — (g)

prob(n+1,C):

1 C}LH‘H
pTOb(’I’L + 1, Cﬁznc(l)) = (5)
1 c%+1+2
prob(n + 1, C'S’mc@)) = <§) -2

and so on. Hence, the above equation reduces to the form

1\ Ch 1N Chet NG G .
(5) ‘(5) *(5) ‘(5) -

and using lemma 5, we get the required result.
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Chapter 5

Capturing Equilibria

5.1 Philosophical basis

Equilibria were introduced to capture inherent stability in strategy profiles.
Nash equilibrium capture this stability quite well in the case of two player
zero-sum games. If (o1,09) is a strategy profile, then player 1 is employing
the best possible strategy against player 2’s strategy, and vice-versa. Indeed,
player 1 changing to a strategy o} can not increase her payoff but may give
player 2 a chance to change his strategy to o) increasing his payoff against
o1. Since this is a zero sum game, this means that player 1’s payoff reduces
through this series of strategy changes. Employing a similar reasoning, nei-
ther players chooses to deviate from (oy,07). Hence, this strategy profile is
stable, in the sense that both players stick to this profile once decided.

In the case of non zero-sum games, It is possible that player 1 chooses o] over
o1. From the assumption that (o1, 09) is a nash equilbrium, val;(o7, 03) <
valy(o1,09). As before, let player 2 now choose o) increasing his payoff
against 0. In this case though, it is possible to have valy (o7, ob) > valy (o1, 09).
Thus, although (o7, 03) is a nash equilibrium, two rational players playing
the game would not stick to the strategies but move on to the strategies
(o1,0%). Put down somewhat boldly, nash equilibria in this case are not
truly equilibrium states. Hence, we see that in the non zero setting, it is

possible to have in a sense non stable nash equilibria. A detailed discussion
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of the stability of equilibria leads us to enquire into the process of determi-
nation of equilibria, and the precise meaning of moving-on / staying with a
strategy. In the section on processes, we look at this process and finally try
to abstract away once again to captures some of the insights gained. Below,
we state a litmus test for equilibria that stems from similar thoughts, which

we use to show the inadequacy of known concepts.

Concept 1 Litmus test: We say that an equilibrium profile (o1, 09) fails
the litmus test if the following sequence of actions is possible. player 1 changes
her strategy to oy, and then player 2 changes his profile to o). In the end,

we find val, (o], 0b) > valy (o1, 09) and vals(ay, oh) > valy(oy, 09)

In the sequel, we say an equilibrium is stable if it passes the litmus test.

5.2 Treatment of known Equilibria

In this section, we show how subgame perfect equilibria fail in capturing
stability with respect to the litmus test. We later touch upon the essential
difference between these concepts and secure equilibria.

We claim that subgame perfect equilibria are neither sufficient nor necessary

conditions for a nash equilibrium profile to pass the litmus test.

5.2.1 Sufficiency of SPE for stability

Following is a counter example of a subgame perfect equilibrium that fails
the litmus test.

Consider the game graph in figure 5.2.1 with V; = {1, 3, 4, 6, 7, 8, 9, 10}
and Vo= {2, 5}. Let the initial node be {1} and the Buchi winning sets F;
= Fy = {7, 10}.

We claim that there exists a subgame perfect equilibrium such that both
players lose, and it is possible for one player to induce a change to a better

equilibrium. Here is a strategy profile for the game:

0'2(2) = 4, 0'1(3) = 2, 0'1(4) = ]_,
1 27

1 37
0'2(5) = 6, 0'1(7) = 6, 0'1(8) = 1,
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o1(9) =8,  o1(10) =8

This is a pure profile. In the diagram, chosen edges are shown in bold.
(01,09) is a subgame perfect equilibrium, since after any finite history of the
game, the strategy profile forces the game back to node 1 or 2 and no player
can unilaterally force visits to 7 or 10 infinitely often. Hence, both players

lose.

figure 5.2.1

Q player 1

player 2

But (oy,09) fails the litmus test. If player 1 changes his strategy at node 1
to 01(1) = 5, then player 2 can change her strategy at node 5 to g9(5) = 7.
Then, the new strategy profile is a nash equilibrium where both players win.
Note that, the first change (01(1) = 5) does not make sense in the nash
sense since it does not increase the payoff for player 1. On the other hand,
the second change (09(5) = 7) by player 2 is a completely selfish move,
increasing her payoff from 0 to 1. In this process she ends up increasing
player 1’s payoff from 0 to 1 as well. This is exactly the instability we are

interested in capturing.

29



5.2.2 Necessity of SPE for stability

It is easy to see that there exist games where nash equilibria that are not
subgame perfect equilibria do pass the litmus test. For example, take the

game in figure 5.2.2

figure 5.2.2

2 4
This is a game with Buchi winning conditions with,

V, = {1, 3, 5, 6} V, = {2, 4}
F, = {3} F, = {3, 6}

Then the strategy profile

o1(1) = 2, 09(2)

3, O'1<3) = 3,
09(4) = 5, o1(5) = 5,

O'1<6) =6

is not a subgame perfect equilibrium as the strategies restricted to the initial
history 1—4 is not a nash equilibrium. But it passes the litmus test since
both players win in the current profile and hence no strategy switch can be
profitable to any player.

Hence we see that subgame perfect is neither necessary nor sufficient for

stability defined with respect to our litmus test.
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5.2.3 Semantics of subgame perfect equilibria

The above discussion forces us to question what subgame perfect equilibria

actually capture. Following are the facts we know about SPE:
e [t is a nash equilibrium

e Even for unreachable game states, a player has to play in a way that
would ensure the best payoff against other players’ moves from that

state.

e In the words of the authors of subgame perfect equilibrium for graph
!

games - "respects the possibility of other player changing her strategy’
2]

As the next example shows, the last point above is not entirely true.

figure 5.2.3

a
1 2
b
C d g h
e
3 3
f

Q player 1 player 2

The above game is a two player non zero sum Muller game where the nodes
are labeled with colors 1 thru 3. The winning sets are F; — {{1, 2}, {3}
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} and Fy = {{1, 2}, {2, 3}}. The pure strategy profile (oq,02) where the
chosen edges are {a, b, d, h} is a subgame perfect equilibrium with payoff
{1, 1}. But if player 2 changes her strategy so that the active edges become
{b, e, g, h}, then the new payoff vector is {0, 1}. Player 1 is now forced to
change his strategy to ensure the best payoff.

figure 5.2.4

Q player 1

1 b player 2

2 | 3
1.1 0.1 1.1 0.1

Indeed to “respect the possibility of other player changing her strategy” seems

a very strong statement. This would require that for player 1, oy is the best
strategy against any strategy of player 2. The example in figure 5.2.4 shows
that this not always possible, which is to be expected.

There does not exist o7 such that val; (o], 02) is optimal for the following two

player two strategies.

oy =d,e, best o7 = b

os=c¢f, best o1 = a

Not knowing what player 2’s strategy is reduces this game to an imperfect
information game.

We can still say that subgame perfect equilibrium guarantees safety against
a possible deviation from strategy by the opponent for a finite history of the
game. As noted in the first example above, if the other player deviates from
the declared strategy on an infinite number of terms in a play, the play might

become non optimal for the first player.
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Relation to secure equilibria

We must here note an important difference between secure equilibria and the
stability properties we are interested in. Secure equilibria ensure that player
2 can not decrease player 1’s payoff without incurring a cost herself, which
is an added constraint put on the game structure and does not stem from
the basic selfish game play. Since the games are non zero sum, there is no
inherent advantage in reducing the opponent’s payoff. On the other hand,
the instability in our sense means that rational players would not consider
the equilibrium advantageous from purely selfish motives, as it is possible to

exploit this instability to increase one’s payoff.

5.3 Maximal Nash Equilibria

We take a detour from the philosophical discourse on stability to discuss
some results concerning maximal equilibria. We define two special types of
nash equilibria, striccmax NE and max NE and try to answer some pertinent,
questions. The importance of these concepts becomes clearer in the following

sections.

5.3.1 Strict-max NE for 2 players

We first define strict max NE for two players and look at some associated

results before generalizing it to n players.

Definition 13 (0y,09) € strict-maz NE iff

valy(my, ™) > valy(oy, 09)

~ 3(71'1,77'2) € NE o /\’U&lQ(?Tl,ﬂ'2> > UCL12<O'1,O'2)

Strictmax NE, then, is a nash equilibrium such that no other nash equilibrium
gives both players better payoffs. Following result shows the existence of

strict max NE.
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Lemma 6 FEvery 2 player non zero sum game with Borel winning conditions

has a strict max NE.

Proof.

We use the following related lemma in proving the above lemma:

Lemma 7 For 2 player non zero sum games
Vo € mized o {{7 € NE Aval(7) = {1, 22} } =

36" € pureo {o' € NE ANval(c') = {y1,y2} A (1 > x1) A (y2 > 22)}}
With lemma 7 in place the result follows:

e For every n player non zero sum Borel game there exists a pure nash

equilibrium profile 7.

e From lemma 7 for any nash equilibrium with fractional payoffs, 3" eNE

such that the payoffs are strictly greater than earlier and are integral.

e If there exists @’ with payoffs greater than &', then the above step may

be repeated

e Since there are only finitely many integral payoffs, this repetition can

not happen indefinitely.
Hence we must arrive at a nash equilibrium profile such that a profile with

larger payoffs does not exist. This is the required strict-max NE profile.

figure 5.3.1
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Proof of lemma 7

Let G = (Vy, Vy, E, F) be a game. We obtain game G’ be unrolling the
game along the edges. Then, we know that every strategy in G can mapped
to a positional strategy in G’ and vice-versa. Let @ be the nash equilibrium
profile obtained for G’. Then, starting at the root recursively apply the

following transformation to @ (fig 5.3.1):

Let a, b € support(n), i.e.,
if ojjaev;(n)(a) > 0 and
aivev; (n)(b) >0
Then indeed,

if ojjaev; (n)(a) = oipe; (n)(b), since & is a nash equilibrium.

Otherwise, player i could have increased his payoff by choosing the node with

higher value deterministically.

Without loss of generality, let
valy_;(a) > valy_;(b)
i.e. the other player has highest payoff if player i chooses node a.
Then modify @ as follows:
1. Deterministically chose ‘a’ at n

2. Repeat this step for ‘a’ keeping @ unchanged for the other subtrees.

Now, if the subsequent changes in @ in the subtree under ‘a’ does not decrease

the payoffs for both players then the payoffs at n have also not decreased for
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either player.

Also, the new strategy profile is a nash equilibrium.

We know,
7 eENE
hence
(val;(a) = val; (b)) > (val;(c) = val;(d))
and also, val;(a) has not decreased through our transformation.

—> player i can not increase payoff changing strategy at n

Finally, starting at the root, a single play is deterministically followed, since
at each node the choice made is deterministic.
—> payoffs are natural numbers.

This proves Lemma 7.

Remark: The above proof of lemma 6 fails for n players because lemma

7 does not hold for n players as the following counterexample shows:

figure 5.3.2

XI—X

[1,1,0] [1,0,1]

Shown in figure 5.3.2 is a 3 player game with node 1 where player 1 make a
move and two terminal nodes. Here, player 1 wins no matter what strategy
he employees. Now he may chose the edges with probabilities x and 1-x,
for any x between 0 and 1. Every such strategy is a strictmax NE, since
the payoffs of player 2 and 3 add up to 1 and increasing 2’s payoff decreases
3’s and vice versa. Hence, for the strategy with x=0.5, there is no “better”

strategy profile with natural payoffs, as required by lemma 7.
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Another pertinent question is whether strictmax NE for 2 players is unique.

We answer this query in the negative with the example shown in figure 5.3.3.

figure 5.3.3

Xl—x

[1,1] [1,0]
Here again, player 1 plays at node 1 and may chose to play the edges with

any probability, every x gives a strictmaxNE.

Lemma 8 There need not exist a unique strictmax NFE profile for 2 player

non zero sum games, and as a corollary for n player games.

5.3.2 Strict-max NE for n players

We now extend the definition to n players:

Definition 14 & € strict-mar NE iff
~ 37 € NEo (¥ ival;(w) > val;(7))

The following lemma is the parallel of existence result in 2 player case.

Lemma 9 FEvery n player non zero sum game with Borel winning conditions

has a strict max NE.

Proof:

Sketch: Note that it is enough to show that there exists a nash equilibrium
where at least one player has the payoff 1, since no other equilibrium can
then have strictly greater payoff for this player. We use the existence of
subgame perfect equilibrium to get an initial pure nash equilibrium, and

then if necessary, push the payoff of at least one player to 1.
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Let G = (V,II, O, E, F) be the game with II set of players and O the
ownership function from V to II played on the unrolled game tree.

As usual, G|, denotes the game play restricted to history h, and 7|, (z) gives
the next move in the game G|;, after an extend history h.x.

The existence proof for subgame perfect equilibrium in Borel games gives us

a pure strategy profile &y such that
VvV h € V* (75, is NE)

if val;(o5) = 1 for some i
T, is strictmaxNE, as noted above
else

Vi val;(ag) = 1, since Vi val;(3g) = 1 or 0
Now, let V* denote the set of infinite plays.

if V(p € V¥) Vi val;(35)(p) = 0
There is no winning run for any player
= Vo Vi val;(c) = 0
o is strictmax NE.
else
dpo € V¥ val;(7) = 1 for some i.

Hence, there is a run p where some player, say j, wins. But this run is not

compatible with the strategy profile (o).

if Vh € V¥ val;(7) =0 Vi

it h < pg

7(h) = p(len(h) + 1)
else

=(h) = 75(h)

claim: 7€ NE

let N(h < po)
= Vo w(h.x) = 55(h.x)
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= T|n(x) = 70[n(x)
Toln is NE = 7|, is NE for ~(h < po)
else (h < po)
then, V2™ € extension(x),
~ (xt < pg = val;(xt) =0 as above A T(z) =2t = X1 < py
= 7(x) > 7(2)

The only remaining case is when there indeed is some history h such that
val;(Toln) # 0 for some i.

3h (ag|n) # 0 for some i.

let x € V* be such that Vv < x val;(y) = 0 for all i.

We will push this winning value up the history x.

We know @ is a subgame perfect equillibrium. Define:

T:Vs <ux let x =sn.s
m(s) = n

else

then, 7 is a subgame perfect equilibrium.

Vh, ~ (h < z) = 7T(s) = 7o(s)
hence, 7|, is NE
Vh s.t. h — x.n.s,
let 7| € NE, O(n)=j
since, val;(ag],) =0
Vn' € siblings(h) A n #n’
valj(T|pn = valj(Tlhn) =0 A T|pw € NE
Hence, val;(7|n) = valj(T|p.n) > val;(T|p.)
= 7|, is NE.

Hence, 7 is SPE with val(7) # 0.
As a corollary,we get an alternate proof for the two player case. We have

already seen that strictmax NE is not necessarily unique.
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5.3.3 maxNE for n player games

A related definition is that of maxNE which relaxes the constraint that all
the players get a better payoff to simply that no player gets a lower payoff.
As it turns out, existence in the two player case is provable with a proof on

lines of strictmax NE, but the n player proof breaks down.

Definition 15 & € max NE iff
~ 37 € NE o (Vi val;(T) > val;(@) N Fi val;(T) > val;(7))

Lemma 10 Fvery 2 player non zero sum game with Borel winning condi-

tions has a max NE.

Proof: The existence proof for 2 player strict max NE goes through.

figure 5.3.4

[0,1] / \ - O Q player 0

2

O 4 player 1

[1,0]

To the question whether max NE is unique, we again answer with a negative,
albeit with a slightly more complex counter example of a Buchi game with
indicated payoffs (fig 5.3.4):
maxNE;: o1(1) =3, 02(3) =4, rest loops

= 5,

maxNE;: o1(1) =2, 02(3) rest loops
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Lemma 11 There need not exist a unique max NE profile for 2 player non

zero sum games, and as a corollary for n player games.

The question of existence of maxNE profiles in n player games remains open.
The earlier proof for strictmaxNE does not work because pushing the payoff
of any one player to 1 is not enough to ensure that no other equilibria exist
where some other player gets a better payoff. Nor could we directly extend

the proof.

5.4 Process View

In order to understand the reason behind instability in equilibria we have
to look at how a group of players actually reach an equilibrium profile. In
the world of one shot complete information games, all players decide their
strategies for all histories of the game before the game starts, and these
strategies are public knowledge. Hence, a player decides his strategy hav-
ing complete knowledge of what other players’ strategies are, and in effect,
knowing completely how the game will proceed (probabilistically, in case of
mixed strategies) having decided his own strategy. Clearly, a strategy profile
can be said to be stable if no player would like to change to some other strat-
eqy given the strategy profile, assuming that players are rational beings with
selfish motives. We have seen that all the known equilibria fail the litmus
test and hence are not stable.

But, how are strategies decided?

We look at a few models of strategy decisions. Since all players must know
the strategies of all other players while deciding their own, we may consider
a model where a complete nash equilibrium strategy profile is “announced”
and the players choose to either except it or reject it. A profile is accepted
if all the player accept it and rejected otherwise. We call a profile stable, if
there is no other nash equilibrium which the players will accept replacing the
current one. The pertinent question now is, when do players accept a new

strategy profile?
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e Case 1: Player i accepts the profile @ over 7 iff val;(c') > val;(7)
i.e., the player are lazy, and will only accept a change in status quo when
it increases their payoff. This is precisely the case of strictmax NE. We
find that strictmax NE is the weakest kind of equilibrium that satisfies

our meaning of stability. Other notions are extension of strictmax NE.

e Case 2: Player i accepts the profile @ over 7 iff val;(¢") > val;(7)
i.e., the player are acquiescing, and will accept any change in the profile
as long as it does not decrease their payoff. This is the case of max

NE. It can easily be seen that maxNE = strictmaxNE.

The above scenario with parallel announcement of equilibrium strategies is
a very artificial setting because, first, in a real world example there is no
independent authority announcing strategies, and second, the announced
profiles have to be nash equillibria, so the problem is assumed to be already
half solved, before we begin. A more natural setting is the following: All
players take turns in a circle. In his turn, a player may either choose to not
change her strategy or announce a new strategy. The profile is said to be
stable when all players have announced no change in one round. This is a
much more natural setting and we can also describe nash equillibria in this

setting.

Function characterization of process

If in the afore mentioned setting we assume that a player chooses to shift to
a new strategy if it gives her a better payoff than the current profile, then
we obtain a precise characterization of nash equilibrium.

For two players, consider that, a player does not change her strategy if she

gets the best possible payoff with the current profile, or

Vo val; (o) > val, (')
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Now consider the function F : {(V*—D(V)) x (V*— D(V)) x {0, 1}} —
{(V¥*=D(V)) x (V¥ =D(V)) x {0, 1}}
/ 1—4 . (ol . By
F(mo,m,1) = {mg, 71, it iof wal(wl,m_;) > vali(m;, T_;)
{mo, m,1— i} otherwise

This function captures the process of choosing a new strategy in response to
the current profile by the players. Now, as mentioned, a stable profile in our
process is obtained when two continuous applications of F lead back to the
same profile. It can be shown that a profile is stable wrt this F iff it is a nash
equilibrium. The proof is straightforward and we omit it here.

Let us now try to capture the “litmus test” through this function formalism.
Define F as:

F(mo,m,1) =
{mb, m, 1 — i} if
{val;(w}, m1_;) > val;(m;, m_;)}V
val;(wh, m ;) > val;(m;, m ;)\

, valy_;(m}, m_;) > valy_; (7, m_;)A

| v {valy_i(x), 7)) > valy_i(nl,w_;) —

valy(mj, my_;) 2 vali(mj, m_;)}

{mp, 71,1 — i} otherwise

The “fix point” of F then as discussed above for nash equilibrium here cap-
tures the litmus test approximately. The last condition of safety has been
put in to ensure that player (1-i) does play in a way that helps i. Since this
function looks two steps into the future to decide on the best strategy, it can
be called a ply-2 lookup. We can show that strictmaxNE and maxNE are
subsumed by this formulation. In particular, we show how maxNE ensure

ply-2 stability.
Lemma 12 maxzNE — ply-2 stability and strictmaxNE — ply-2 stability

Proof:
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let (mg, ) be maxNE =
V! val;(m), m—;) < wval;(m;, m—;) (1)
AT vali(my, m_) < wvali(mg,m_;) - +(2)
AN VT,
[ (val;(w), m_) < valy(m;, m1—;) V valy_;(7), 7 _;) < valy_;(m;, m1-4))
A - (3)
|

(’UCLZZ‘<7T£, Wifﬂ < vali(m, 7T1,i) V Uallfl'(ﬂ';, Wifi) < vall,i(m, 77172‘))

From this follows:

v T
val;(7}, m—;) < wval;(m;, m—;) from (1)
and

val;(wl, m_;) < wval;(m;, m—;) from (3)

which is enough to prove that F(mg, 71, 0) = {mo, 71, 1}. Similarly for F(mo,
71, 1)

A similar proof works for strictmaxNE.

Issues:

Note that we said above that we consider strictmaxNE to be the weakest
equilibrium that captures stability, but ply-2 stability is implied by strict-
maxNE. This is the case because ply-2 stability does not in fact capture
stability completely. The safety condition explained above has been put in
artificially and it is not clear if it is the best way to capture certainty that
player 1-i does ends up helping player i while playing selfishly. But the pre-
liminary results like capturing nash equilibrium and the clear emulation of
the process of strategy determination motivate the study of these functions
and their “fixed points” in detail. We do not delve deeper into these matters

in this report.
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5.5 collusion equilibrium

We end this report with an abstraction from the process view explained in
the last section to introduce a new equilibrium concept that builds on the

insights gained from elementary concepts like strictmaxNE and maxNE.

Definition 16 A strategy profile & in a game (V,O,11, F) is a collusion
equilibrium if no subset T € 1l can change their strategies in a way that

increases the payoff of every m € T i.e.,

V7 ell Vo' = (Ufmmeﬁ},U{i,otherwise})
Hi|m; € TH{wval;(d") < val;(7)}

We note is collusion equilibrium = strictmaxNE
This definition is a process independent definition like nash equilibrium, al-
though more complex. We hold the hope that results on existence of collusion
equilibrium can be found parallel to those known for nash equilibrium. An-
other open problem is that of placing collusion equilibrium squarely in the
process framework discussed in this report. We express our inability to treat

them here for the lack of proper mathematical machinery.
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Chapter 6
Conclusion & future directions

Following claims can be made at the end of this report:

e The undecidability result for pure-NE for SSMG was improved, the

number of players required brought down to 5.

e Some advancement was made towards proving the existence of subgame
perfect equilibria in stochastic games. We could prove the result for 2
player games, but the n player game remains open. We believe that
the difficulty here lies in addressing the infinite tree zero sum stochastic

game problem.

e It was felt the nash equilibrium and the other known equilibria do not
capture the notion of rational stability of strategy profile adequately.
This conviction was motivated through discriminating examples and an
attempt was made towards trying to delve into the process of equilib-
rium reachability process, to gain insights into this foundational ques-

tion. The problem still remains open.
Some important areas where we are left mid-stream by this work:

e Closing the undecidability gap for n% games.

e Following up the process characterization in greater detail and trying

to formulate the stability problem as a fixed point computaion.

e A complete treatment of collusion equilibrium.
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