
Verification of Concurrent Software

B. Tech. Seminar Report

Submitted in partial fulfillment of the requirements

for the degree of

Bachelor of Technology

by

Prathmesh Prabhu

Roll No: 06005002

under the guidance of

Prof. Supratik Chakraborty

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai

Contents

1 Introduction 1

2 Putting it into perspective 3
2.1 Formalization . 3
2.2 The twin schools of reduction and refinement . 4

3 Practical Approaches to Parallel Program Verification 6
3.1 Type safety for concurrency . 6

3.1.1 Type System for Race Freedom . 7
3.1.2 Type System for Atomicity . 9
3.1.3 Type Inference . 10

3.2 Model Checking . 11
3.2.1 Method View Consistency . 12
3.2.2 KISS - Keep It Simple and Sequential . 13
3.2.3 Iterative Context Bounding . 15

4 Conclusion 18

i

Abstract

Increasing complexity and widespread use of concurrent programs coupled with the pervasion of
software systems handling diverse costly, heavily loaded and safety critical equipment has led to
the need for benchmarking multithreaded software systems and verification of their reliability.
This seminar surveys some of the recent approaches to practical software verification.

ii

1 Introduction

The importance of software verification was brought to the foreground by a number of instances
of failures of costly and safety critical systems due to unforeseen and often trivial seeming bugs
in the system software. Quite a few famous disasters that occurred as a result of software mal-
functioning may be quoted that justify software verification as a central pursuit in academia as
well as industry[?].
In November 1985, a 2-byte buffer overflow led to a discrepancy in the Bank of New York se-
curities issue that involved mismanagement of securities worth 20 billion USD. A Russian mars
probe was ordered in September 1988 to commit suicide by the ground control when they mis-
takenly transmitted one wrong character in a message that was in entirety some 20 pages long.
A small bug in a switching station software upgrade by the AT&T led in 1990 to a malfunction-
ing of the entire New York CCS7 network till the upgrade was retracted and the company forced
to apologize and compensate its clients. Besides such instances of costly failures, there have even
been instances of loss of life as in the case of Therac-25 instruments where programming errors
led to death of at least 3 people by overdose of radiation during treatment using these machines.
It can thus be seen that there are enough examples justifying the need of robust and more reliable
software systems as we ever increasingly rely on autonomous equipment in critical applications.
Till date, manufacturers have relied on rigorous testing as the primary approach to produce
reliable software, but it is an accepted fact that testing is scarcely good enough to guarantee
quality. Over the years, it has been found that programmers on average make 50 errors every
1000 lines of code, and even after thorough testing, finished and well tested software has about 3
errors per 1000 lines lurking in the code on average. Considering the increasing complexity and
size of code that today’s software consists of, this directly implies a plethora of bugs inherent in
the system despite the usual testing measures. Quoting Dijkstra: “Testing can be a very effec-
tive way to show the presence of bugs, but it is hopelessly inadequate for showing their absence,
never their absence”. These observations clearly call for a more complete software verification
protocol.
A recent development in the field of programming methodology (or programming art!) is the
shift towards concurrent programming. Concurrent programming can be succinctly defined as
“the simultaneous execution of multiple interacting computational tasks”. As the processors’
capability curve seems to be flattening out at length, using multiple threads of execution is
fast becoming an alternate means of increasing computational efficacy and speed. Besides mul-
tithreading, advent of multiple processor machines and distributed computing have added to
the allure of concurrent programming. With more and more software employing heavily multi-
threaded programs, software verification also needs to adapt to the changing needs.
In this seminar, we study some of the more recent approaches towards treating this problem
of verifying concurrent programs in perspective of the overall theory of program verification as
developed over the last few decades.

Organization of the Report

This report discusses a few recent approaches to this problem of software verification in refer-
ence to concurrent programs. These approaches treat the issue of concurrency as the central
theme of development while building on top of the traditional sequential program verification

1

techniques, learning from the decades of experience in program verification that was mainly
limited to sequential software.
To put things in perspective and to aid the understanding of the underlying concepts of pro-
gram verification, we start with a review of the theoretical foundations. Section 2 explains the
historical treatment of the problem of verification that lead to the conception of a new branch
of computer science. It then goes on to treat how these concepts were extended to the world
of parallel programs as early as the 70s and touches upon the different schools built around the
way of reasoning about concurrent programs.
Section 3 discusses some recent and markedly different approaches to the said problem. A strik-
ing commonality of these treatments of the problems is the stress laid on finding practically
implementable and efficient solutions to the problem, which stems from the fact that these ver-
ification softwares are very much in need today in the industry. We start off by discussing in
detail an approach that deals with the problems raised by concurrency by statically type check-
ing programs and declaring them to be type safe. We then move on to other more testing like
approaches that involve model checking programs by various means. As the state space of a
concurrent program is infinite even with finite program length and data, novel approaches to
making these programs amenable to model checking are discussed.
Finally Section 4 concludes with a writer’s commentary on the methods discussed and the in-
sight gained through the exercise.

2

2 Putting it into perspective

Before venturing into the different ways in which concurrent programs may be verified, it is im-
portant to understand the meaning of program verification and also the theoretical framework
on which all the approaches rest.
When we talk about “verifying a program” we essentially claim to be able to decisively show
that the program has a few well laid down properties. In program verification, these properties
are usually given in the form of assertions, or claims that certain of the program variables have
the given values, or satisfy a given relationship at some moment in the execution of the pro-
gram. Hence, one may claim the following: If a given set of mathematical relationships possibly
involving the program variables, holds before the execution of the program, and assuming that
the hardware and other variables do not alter the execution of the program, a given set of math-
ematical relationships may be claimed to be always satisfied after the running of the program.
Program verification essentially tries to either formally prove or otherwise guarantee such claims
about programs under consideration. An important point to note here is the assumption that
factors beyond the written code and the inputs given do not affect the execution of programs.
This assumption is fundamental in order that program results are reproducible and is inherent
in the theory and practice of formal verification. It is of course possible to question this very
assumption and hence the purported effectiveness of verification[?]. This seminar, however, re-
frains from the discussion of this issue and moves forward with the assumption that program
verification is indeed a topic worth the notice it has. Hoping for the best, we assume that no
alpha particle will strike the machine running a software verified by one of the discussed tech-
niques, flipping an important register & leading to utter failure of the whole system!

2.1 Formalization

The above stated idea of verifying assertions was formalized for programs by C.A.R Hoare[?][?]
conceptualizing the field of program verification. Hoare logic is a formal logic whose syntax
captures the semantics of a programming language which is then used to infer out theorems
that are programs annotated with associated assertions. Hoare logic formulae are of the form
PQR where P is an assertion that must hold before the execution of the program Q and R
is an assertion that can then be proved to hold after the execution of Q provided that P was
true before the execution. The proof technique relies on breaking down the given program into
individual statements such that the overall assertions about program correctness rely on some
properties (invariants, as for loops) that are maintained by these smaller pieces of code. Now,
if these properties can be proved for the smaller code, the logical framework provides a way to
combine these assertions and infer properties about the larger code block from the assertions
proved for smaller parts of the program. In this way a proof for the whole program can be built.
Hoare logic was later shown to be applicable by Hoare himself[?] and others to generate proofs
of parallel programs. As treated by Owicki & Gries[?], the formal system could handle parallel
programs if augmented with the cobegin and await syntactic constructs. Programs running in
parallel and using synchronization primitives could then be encoded in Hoare logic and proved
to be correct by proving the correctness of independent programs (assuming they run indepen-
dent of others) and then showing the independence of assertions in one of the programs to the
execution of other programs. Owicki & Gries called this independence the property of being

3

interference-free. Besides assertions about specific program variables, the questions of termina-
tion of the program and freedom from deadlock can also be treated within this formal system.

2.2 The twin schools of reduction and refinement

As the program size and thread interactions grow, formal proofs of correctness tend to become
cumbersome. In order to reason about properties of practical programs, some representational
shortcut for program proving is essential. We find here the dichotomy of bottom-up and top-
down reasoning in proof techniques.
Doeppner[?] suggested the technique of refinement to prove large concurrent programs. We be-
gin by proving the correctness of the given program assuming the whole program to be atomic,
i.e. we assume that the whole program takes place in one step and hence there is no question of
interference due to other programs running concurrently with this program. Having proved the
correctness thus, we refine our proof by degenerating the earlier assumption of atomic execution
into parts of program that are assumed to be atomic while the program comprises of these one
step parts. The essential step here is to be able to choose the refinement in such a way as
to preserve the earlier proof of correctness or so that the earlier proof can be modified so as
to accommodate the possible interleaving of programs due to this refinement - the idea of an
expansion being consistent. By repeated applications of refinement, we aim to reach a point
where the only steps assumed to be atomic are indeed executed as one step instructions by the
underlying hardware, and hence our proof is now applicable to the executing program.
A complimentary approach is that of reduction as suggested by Lipton[?]. Here we begin by
treating the given program P and assume certain statements to be uninterruptible in order to
prove the desired properties for the program. Let R be such a statement. If it be the case
that R is in reality interruptible, i.e. its execution may be interleaved with the execution of
some instruction in some other program possibly affecting the effect of R, then our proof of
correctness of P need not be correct(as our assumption was ill founded). But if it can be shown
that the P has the same properties even if R was actually interruptible as otherwise, then our
proof of correctness goes through. Let P/R is the program obtained from P by assuming R to
be uninterruptible. Then, we want to prove:

P has a property S iff P/R has the same property.

All reductions P/R for which this statement holds are called D-reductions. Many important
properties such as halting are preserved in D-reductions and these reductions are used exten-
sively in the techniques described in this report.

D-reduction

Since D-reductions are used extensively by the techniques discussed below, let us delve a little
deeper into the theory. Let programs P and Q be running in parallel and p1 p2 p3 p4 q1 q2 p5

q3 . . . be an execution trace where p1 is the first instruction of P and so on. An instruction pi

of P is a left mover if in the execution trace, interchanging it with an instruction qj preceding
pi in the original trace leaves the required properties of the program execution unchanged. An

4

instruction is defined to be right mover similarly. Now, reducing S1,S2,S3,. . . ,Sk to an unin-
terruptible form [S1,S2,S3,. . . ,Sk] is a D-reduction if S1,S2,S3,. . . ,Sk consist of S1,S2,S3,. . . ,Si−1,
Si and Si+1,. . . ,Sk such that S1,S2,S3,. . . ,Si−1 are right movers and Si+1,. . . ,Sk are left movers.
Such a reduction preserves the proof of correctness of the given program.
Essentially, if some instructions can be translated to the right without changing the effect on
required properties of execution and following them are instructions that can be translated left,
then the whole code block can be assumed to be executed together, because to any execution
where it is not the case, the above translations can be applied resulting in an execution that has
all these instructions together and that preserves the required properties from the original execu-
tion. It may be noted that acquiring a lock is an example of a right mover action while releasing
a lock is a left mover, a fact that is used extensively in practical proof methods. Equipped with
this background into program proving and the extensions necessary using the dual approach of
expansion or reduction, we may now venture into practically feasible methodologies to tackle
the problem.

5

3 Practical Approaches to Parallel Program Verification

We have so far discussed theoretical concepts involved in proving parallel programs. It is nec-
essary to note that these techniques are not applied directly for proving large software systems.
Coming up with proofs for programs is a fairly involved exercise as can be realized by trying to
prove even a slightly non trivial program using the basic methods. For the purpose of proving
software systems practically, we need autonomous systems that can reason and/or verify pro-
gram correctness. We discuss some such approaches shortly. All these methods rely heavily on
the theory developed so far but do not directly apply them to get formal proofs.
Different methods to concurrent program proving can be said to loosely confirm, among others,
to one of following three approaches.

• The deductive approach follows the theory developed most closely in trying to come up with
static pre-runtime proofs of the correctness of programs guarantying their safe execution.
The first of the approaches discussed builds a type system that provides compile time
guarantee of program correctness and falls into this category.

• Another approach to program verification that resembles “testing” is model checking,
where we attempt to exhaustively reason out all possible execution paths of a parallel
program, trying out all possible interleavings and ensuring that the provided properties
hold for all these executions. For reasons given, an exhaustive search is not possible for
parallel programs and different methods handle this problem of state space explosion in
different ways.

• Lastly, a third strain of verification proposes a pre-emptive approach called Transactional
Memory. This stream of verification techniques relies on providing an abstract memory
model which provides ways to define interruption free functions and variables that can be
assumed to work correctly even in the presence of other processes. The onus of maintaining
the atomicity and other properties is relegated to the implementation of the TM and is
handled using well developed methods and insights learned from database transactions
either in software (Software Transactional Memory) or hardware (Hardware Transactional
Memory). We do not discuss these methods in this report.

3.1 Type safety for concurrency

A typical type system aims at formalizing a given set of constraints on the values that a variable
can take and the way that variable is treated in the context of the program. A similar idea can
be extended to cover concurrency ,i.e., develop a type system that ensures certain properties
relating to concurrency for type safe programs. The properties we treat here are race freedom
and atomicity

Race Freedom vs. Atomicity

It is important in our current context to distinguish between a method (function) that is free
from races and one that is atomic. To be free of race conditions means that two or more processes
executing at the same time may not access any shared variable at the same time. Let A and

6

B be two processes that share a common variable V. Then, readA(V) and writeB(V) occurring
at the same time leads to a race. Races are unacceptable because the value as read by A in
this case can be a corrupted value as B might be halfway in its write execution when A read
the value. Atomicity on the other hand means that any execution of process A can be assumed
to have happened in one single step and the actual interleaving of process A with B does not
change the effects of the execution of A. It is interesting to note that although atomicity and
race freedom often occur together in programs, neither is implied by the other as shown by the
example given in the figure below. The program in fig 1a is race free but is not atomic as cur
may become outdated by the time bal is updated, leading to incorrect update to balance, while
that in fig 1b is atomic despite having a possible race condition in the function read.

int read(){ int read(){
synchronized this {return return bal;
bal;} }
} int add(int val){
int add(int val){ synchronized this{
int cur = read(); int cur = read();
synchronized this{ bal = bal + cur;
bal = bal + cur; };
}; }
}

fig 1a. fig 1b.

3.1.1 Type System for Race Freedom[?]

Concurrent access control is handled in Java by the use of locks that must be held before ac-
cessing the guarded shared variables. As only one thread at a time can hold a given lock, this
ensures that concurrent updates do not occur. A type system that verifies that correct locking
is observed does the dual job of giving a way of formally specifying as well as checking locking
discipline in programs.

The Annotation:In order to specify what locks must be held at what point in the program,
all variables at declaration also declare what locks guard them. This is done using the keyword
gaurded by. A variable thus declared must then be accessed in the program only if the required
locks are held by the thread. Similarly, a method declares the locks that it requires to be held
whenever a call to it is made using the keyword requires.

field ::= [final]opt type field name guarded by lock = expression

meth ::= type method name argument∗ requires lock set { expressions }
defn ::= class class name<ghost var*> body

In order to provide flexibility with respect to these annotations, classes can be defined with
ghost variables. Ghost variables are locks passed as parameters during instantiation. The correct

7

locks are then translated to the gaurded by and requires clauses. Besides, every class has its
own lock that we refer to by this. Finally, some classes can be defined to be thread local in order
to ease working with sequential parts of the code. We talk about these classes in some detail later.

The Type system: Having annotated the code thus, it can now be checked by type inferencing
whether each of the lock constraints declared are indeed followed in the code on field accesses.
The core of this system is a set of rules of the type

P ; E ; ls ` e : t

Where P is the program under consideration, E is the environment that provides the types
for free variables in e and ls is the set of locks currently held in program execution. Then, this
rules states that e can be inferred to be a valid expression of type t.
Let us look at an example of a type rule in this system that also highlights an important imple-
mentation issue. The rule type checks a reference to a field fd of a class c in the program P.

[exp ref]

P ;E; ls ` e : c

P ;E ` ([final]opt t fd guarded by l = e′) ∈ c

P ;E ` [e/this]l ∈ ls

P ;E ` [e/this]t

P ;E; ls ` e.fd ? : [e/this]t

This rule checks that e is a well typed expression of type c where c is a class define in the
program. It then checks that fd is a field in class c of type e guarded by l. Next, it checks
that the lock l is held at this point in the program. To do this, it replaces all instances e in the
expression for l by this, to get to a from in which the locks would have been defined inside c and
then checks for the membership of l in ls. Finally, it checks that t is a well defined type. If all
these checks go through, then the type checking for the inferred expression also goes through.
A Type safe program thus guarantees that the proper locks are held at all accesses to variables
and no race conditions occur. One last note worth making is the introduction of thread local
classes in the type system. These are classes that are not shared by threads and hence the an-
notational effort can be spared for such classes. So as to maintain the race freedom of programs,
a clear distinction is necessary between the shared and thread local classes. Shared classes are
classes that have a shared super class and have only sharable fields. A thread local class on the
other hand has thread local fields and may inherit from either type of classes. A thread local
class instance being treated as an instance of a shared super class can not be downcast to a
thread local type in a share method.

8

3.1.2 Type System for Atomicity

The type system developed by Flannagan and Qadeer[?] for Atomicity builds upon the type sys-
tem just described. In addition to the guard annotations, we now specify atomicity properties
to be satisfied by the procedures in the program and then verify that these atomicity conditions
are indeed observed by the implementation. For this, we first develop a framework for atomic-
ity types of program code. Based on the theory of D-reductions by Lipton every sub-program
(including individual instructions, procedures and the program itself) can be said to have any
of the following atomicities:

• Const: The evaluation of the piece of code does not depend on or change any state.

• Mover: As defined by Lipton, the evaluation is both a left and a right mover.

• Atomic: The whole evaluation can be assumed to be happening atomically.

• Cmpd: The evaluation is a sequence of steps that are disjoint and interleaving with other
processes may change the effects of this evaluation.

• Error: The evaluation violates some locking principle of the program. This is the atomicity
we are trying to eliminate from our program.

These atomicities follow the sub typing relationship

Const <: Mover <: Atomic <: Cmpd <: Error

For example, if a statement is of type Cosnt, then it definitely is also Mover, since it can be
translated in either direction without having any effect on the result of this or other threads.
Once the atomicities of individual program statements is known, the atomicities for larger blocks
of code can be inferred. For example, a code block with all instructions of atomicity Mover is
itself a Mover (since all instructions may translate left as well as right, and hence the whole code
block can translate as well) while a code block of Atomic instructions is Cmpd (since another
process interleaving between two atomic sub-programs can affect the execution of the overall
program) etc. The process of thus combining atomicities of consecutive code blocks to get the
overall atomicity is called sequential composition and is denoted by the operator ;

mover ; atomic = atomic etc.

Again, the non deterministic choice between executing two statements of choice α1 and α2 is

α1 t α2

called the join of α1 and α2

These atomicities are the base types in this type system. To account for conditional state-
ments where either one of the two execution paths may be taken, conditional atomicities have

9

to be introduced.

l ? T1 : T2

means that if the lock l is then type is T1 else T2

Our annotated program now consists of these atomicity tags added to the ones discussed above.
Hence, every method must be declared to have one of these atomicities.

The Type Checker

The ideas presented above for a developing a type system extend directly to the added task
of inferring atomicity types for the statements and code blocks. The primitive instructions are
assigned either of the basic atomicities. The atomicities for the procedures are inferred using
the rules of the kind shown before:

[exp while]

P ;E ` e1 : int & a1

P ;E ` e2 : t & a2

P ;E ` whilee1e2 : int & (a1; (a2; a1)∗)

states that while e1 e2 can be inferred from the conditions given and if a1 and a2 are the
atomicities inferred for the statements above then the atomicity of the while loop is given by
(a1; (a2; a1)*).
The inference rules developed inculcate both intuition behind the basic atomicity types for prim-
itive statements and the composition of these atomicities in the program.

3.1.3 Type Inference

In the approach discussed above, the onus of annotating a program in order to be able to argue
about its type safety lies largely on the programmer. An intriguing next step in developing the
suggested type system would be to be able to infer consistent atomicity types for the program
procedures given an unannotated / partially annotated program[?].
We approach this problem by extracting a system of constraints from the program that should
be satisfied by any assignments to the unknown atomicities. We then solve this system of con-
straints, i.e., we find an assignment of atomicities to the unknown methods such that all the
constraints are satisfied, proposing a simple algorithm with this aim.
To first come up with the necessary constraints, we extend the type system developed so far a
little further. To accept methods with unknown atomicities, we introduce atomicity variables
that are placeholders for atomicity types inferred from the analysis. Our new type inference

10

system now consists of rules of the form:

P ;E ` e : t d C

where C is the set of constraints inferred in the type inference for the statement. For example,
let

A

B

D

i.e. expression D be inferred from the expressions A and B. and if this inference requires the
atomicity type αA of A to be subtype of the atomicity of B αB, then D can be inferred with the
constraint αA @ αB. The constraints thus obtained accumulate during the constraint generation
phase. Once the whole program has been type checked, the generated constraints are solved to
get a satisfying assignment.
Due to the form in which the constraints are generated and propagated in the type rules, all
obtained constraints are of the form αA @ d, where αA is an expression containing atomicity
variables and d is a closed (known) atomicity. A satisfying assignment is one that satisfies all
these subtyping constraints in the constraint set C. To find a satisfying assignment, we start
by assigning the lowest possible assignment of atomicity Const to all variables and then expand
the assignments incrementally by the least possible amount till we reach a fix point.

The methods discussed above have been implemented for the full Java language and tested on
non trivial programs. The results were encouraging with many known and unknown violations
detections in the tested Java libraries[?][?].

3.2 Model Checking

The second set of methods we discuss are based on model checking the given program. Model
checking is traditionally done by capturing the relevant properties from the given program in
the form of an abstract model drawn from the program and then exhaustively reasoning about
the required properties on this model.

Typical model checkers for sequential programs exploit the fact that primitive data types
in most languages are of finite range. This coupled with finite execution paths of the program
text means that there are only finitely many states that the program can be in (where a state
is defined as a particular combination of the program execution and the current data). This
reduces model checking to an exhaustive check over a finite (albeit large) state space. The
moment we introduce recursive function definitions, as found in most common languages today,
the state space becomes unbounded. In parallel programs, programs do not have a bound on
the number of threads that may be running at a given moment, and any possible combination of
states for each of these many threads forms one state of the whole system, exploding the state

11

space further. Even with a finite bound on the number of thread spawned at any given time,
the interleaving of these threads significantly increases the complexity of model checking.

The first two approaches discussed below reduce the problem of modeling concurrent pro-
grams to that of modeling a derived sequential program along with some extra work to ensure
that this modeling is consistent with the original concurrent program. The last approach actu-
ally model concurrent programs laying stress on ways to optimize search and cover the maximum
state space possible.

3.2.1 Method View Consistency

The first approach we consider is a model checking algorithm that runs on an abstract model
derived from the compile time internal representation of the Java program. To tackle the concur-
rency issue, we define method consistency and check that our model has this particular property.

The following model checking algorithm developed by Praun & Gross[?] is intended to ver-
ify a given property for Object Oriented Programs written in Java keeping in view the issues
raised by multiple threads running in parallel. The algorithm discussed here is neither sound
nor complete, i.e., it is possible that it misses out some instances of concurrency violations while
it is also possible that some of the alarms raised are false alarms.
The algorithm runs on HSG: The abstract model we choose for our algorithm is drawn from
the Heap Shape Graph (HSG) that the Java memory model creates during compile time. The
HSG has static nodes corresponding to each of the classes defined in the program and during
runtime, any instantiation of a class is carried out by copying out an instance from the model
in HSG. For our analysis, we work directly on the HSG and assume that any two instances
created for a class are one and the same and two threads working on data structures in these
two instances actually interfere. Thus, our analysis is on the conservative side assuming that
maximum possible interference takes place. It is found that this conservative approach does not
really increase the number of false alarms significantly since most threads that work on shared
data do work on the same class instance in typical programs.
Method Consistency: The modeling of concurrent access to methods is handled in this approach
through the idea of method consistency. First a couple of definitions are called for.

Lock View is a set of <variable, access> pairs that model the variables accessed and the
type of access by a lock t at runtime. Access may be read(r) of update(u). The set of lock views
of thread t is specified as Lt = l1, l2, l3,. . . lk.
Method View is a set of <variable, access> pairs that model the variables accessed during the
method call at runtime. Here both read and write access are added to the set and the set of
Method views of a thread t is Mt = m1, m2, m3,... mk.

Two views are said to overlap if their intersection is non empty, i.e. some variable is accessed
in the same way in these two views. A set of V of views form a chain with respect to a view v’
if their intersections with v’ form a collection of increasing sets, i.e. :

u ∈ V ∧ v ∈ V −→ u ∩ V ⊂ v ∩ V ∨ v ∩ V ⊂ u ∩ V

12

(a) Method Consistent: intersections form a

chain

(b) Not Consistent: An execution can

go through several disjoint locks

Figure 1: Method Consistency: The square is a Method View and the Ovals are the intersecting
Lock views. A chain formed ensures that stale values are not re-written. The dotted line
represents a method call and the different values accessed.

A program is said to be method consistent if, for all the methods in the program, the over-
lapping lock views form a chain.
What this means is that given any method of the program, for any variable access within the
method, the locks held must be nested. This idea is made clear by the picture above. Method
consistency correctly captures a very common reason for violation of atomicity where a variable
is read in a method under one lock and then written back under another lock. The possibility
of a stale value of the variable being written back leads to inconsistency. Method consistency
ensures that such stale values will be caught during model checking.
Model Checking : As described above, the model checker does an exhaustive search on the HSG
model of the Java program. During this search, the model checker assumes the program to be
sequential and then aims to guarantee atomicity by checking for method consistency in relevant
methods. To begin with, methods from different classes can not interfere because in OOP the
only data members visible are those within the classes. Even within a class, methods that are
not synchronized are pruned from the search. The sets of relevant methods in each class are
then checked for method consistency by evaluating the view overlap of all locks with all methods
and checking for the chain property.
Thus, this model checker aims at verifying the given program through an exhaustive model
search. To contain the state space explosion seen with concurrent programs, the model checker
verifies the program assuming that it is the only program running (that is, running in sequen-
tial mode). The model checker then guarantees that errors due to concurrency do not arise by
checking relevant methods to be method consistent. This is a simple and effective approach
to model checking, but it is only an approximation to verification and can not guarantee good
results.

3.2.2 KISS - Keep It Simple and Sequential[?]

This approach with the vogue name works by reducing the given concurrent program to a se-
quential one that models in some way the runtime behavior of the original program. This new

13

sequential program can then be model checked by any existing model checker (here SLAM) for
errors that capture errors arising from concurrency issues as well as other sequential program
errors. It is important to note that the sequential program obtained does not model all pos-
sible executions of the original concurrent program but only a small subset of the executions.
It is hoped that any problems arising from concurrency issues will manifest themselves in the
restricted form of concurrency modeled by this approach.
Program transformation: We model the execution of the concurrent program by introducing a
non deterministic scheduler that may do one of the following at any point in the execution of
the original program:

1. Start a new thread evoked by the concurrent program asynchronously in the past.

2. Terminate an existing thread.

To implement this non deterministic scheduler, instrumentation code is added after every
line of code in the original program. The new program obtained has a single stack (sequential
program). This single stack stores the context of all the thread that are currently “active”,
i.e. have been started by the scheduler some time in the past but have not terminated yet,
in contiguous blocks. If the “scheduler” decides to terminate the currently running process, it
sets a local variable “raise” to true and returns at that point. The variable raise leads to an
immediate return by all functions down the call stack of the current process, there by causing
an “immediate” return by the process. The process below the current process in the call stack
then continues its execution from the point where the terminated process was started.
In order to schedule a new process and in order to do this activity in a bounded fashion, we
introduce a global array ts that keeps count of all scheduled processes. Whenever the concurrent
program evokes a function asynchronously, the function is added to ts if ts is not already full.
The scheduler may now decide to evoke this function from ts any time in the future non deter-
ministically, meaning that another context is created on top of the stack and the new call stack
resides here. If ts happens to be full, then the asynchronous call is converted to a synchronous
call and a new thread is created immediately.

The scheduler and race detection code: When we say that the scheduler decides to start a
scheduled thread, we mean that the a part of the instrumentation code added in between the
lines of the original program makes this choice. This scheduler is implemented on an abstract
level by a function schedule() that is called after every line. It goes through the ts array and
non deterministically decides to run any of the threads. Code displaying such non deterministic
behavior can be efficiently checked by sequential model checkers like SLAM. Also, instrumen-
tation code contains a choice between RAISE and NULL where the former leads to immediate
termination of the running thread while the later does nothing. Finally, this instrumentation
code must also contain code that checks that all the required assertions at a point are met and
that no race condition exists. A possible way to check race condition is using functions like:

14

Figure 2: A pictorial view of the singel stack program. Different ‘active processes’ reside in
contiguous blocks on the stack

checkr(x){ checkw(x){
if (x == &r){ if (x == &r){
assert (q(written(r)); assert (qread(r) && qwritten(r));
read(r); written(r);
} }
} }

These functions check that beyond aliasing, no accessed variable has been written/read since
the last step execution of the current process.
Finally, it is instructive to argue about the state space covered by this approach. Clearly, it does
not exhaustively trying out all possible execution paths of the concurrent program. We note that
the only source of concurrency modeling in the resulting program are through the synchronous
or asynchronous calls executed by the scheduler code and the end of program terminations or
RAISE terminations. Hence, any thread that starts executing once goes into the stack and
many more threads may then execute preemptively before the termination of this thread, but
once this thread terminates, it never restarts. This is precisely the types of interleaving that
this procedure models: A stack based interleaving where every new thread is added to a stack
and popped out on normal or preemptive termination. Any number of threads may be stacked
on top of this thread during this time, giving rise to heavy concurrency even in this restricted
domain. Also note that the length of the array ts determines the number of possible outstanding
threads at any time, hence acting as a knob on the extent of concurrency exhibited by the model.

3.2.3 Iterative Context Bounding

We now move on to actually stepping through a model that captures all possible execution paths
of a concurrent program. The approach developed by Musuvathi and Qadeer[?] simulates the

15

execution of the program itself, without abstracting away from the source code while following
a systematic protocol to be able to guarantee the correctness of program to some measurable
metric. In order to tackle the problem of infinite state space in model checking, the idea of
depth-bounding is often used. Depth-bound model checkers guarantee the correctness of systems
for the first m number of steps, m being the depth of the search. This idea was developed for
and is very effective for modeling message queues where any protocol violation that may happen
is likely to occur within the first few messages exchanged as long as all possible orderings of
this exchange are captured. The same idea when extended to concurrent program verification,
though, gives unsatisfactory results because programming errors may be situated anywhere in
the program code and exhaustively verifying the first few lines of code does not guarantee pro-
gram correctness on the average.
The complimentary idea that applies well here is that of context bounding. Context bound is an
upper limit on the number of context switches that occur in the execution of the program. We
define a context switch as a preemptive replacement of a running thread by some other thread
(it does not include the change of context when a thread yields or blocks on a call). Then, a con-
text bounded search tries out all possible executions of a program with no more than m context
switches where m is the search depth. Iterative Context Bounded search starts with a bound of
zero, i.e. a program execution without any context switches and verifies that program is correct
when assumed to run independently. Then, it iteratively increases the bound, exhausting out
all possibilities of the current bound before moving to a higher one. This process should ideally
go on till infinity to cover all possible execution paths but practically only a small number of
context switches are modeled and required to cover significant part of the state space.
Let us pay attention to a few important attributes of the search explained above. First, with
a context bound of zero, the modeling guarantees the correctness of program running indepen-
dently. Even with this trivial bound, the results obtained are meaningful!. Secondly, Context
Bounded search gives us a very intuitive metric on the extent of program correctness assured
at the end of modeling. A search up to bound m means that no errors occur up to a maximum
of m context switches during the execution of program, irrespective of how and where these
switches occur, since the state space for each bound is covered exhaustively. If it can be shown
that modeling software execution with a bounded number of context switches faithfully simu-
lates the actual execution of programs, then this modeling can prove to be a very efficient way
of verifying correctness under parallelism, as is found to be the case. It was found that most
common bugs in concurrent software manifest themselves in as few as 3 context switches, and
if up to 8 context switches are allowed then almost all bugs can be found. Of course this search
is not exhaustive and not all bugs can be detected by this approach as the number of switches
has to be kept small to contain the state space. The number of states visited can be shown to
equal

nkCc.(nb + c)!

where n is the number of threads, k is the length of program code for each thread, b is the
number of non preemptive context switches and c is the number of preemptions. n and b are
typically small and as long as c is kept small this bound is a polynomial bound on the length of
code. Hence, keeping the number of preemptions small reduces the normally exponential bound
to a polynomial bound on the number of states.

16

An optimization in the search is possible by limiting the points at which the said context switch
occurs. Initially, we assumed that a context switch can occur at any point in the program but
it can be shown that it is enough to schedule context switches preceding synchronization oper-
ations in the program provided that race detection is done otherwise through other methods.
Specifically, it can be shown that,
A race free terminating execution of a program α is equivelant to another race free terminating
execution β where all context switches occur before synchronised actions with no more context
switches than the original execution α.
In view of this result, the total number of states that need to be visited decreases further giving
us a fairly efficient approach to modeling large concurrent systems.
As the approach described above relies heavily on the claim that a small number of context
switches effectively model real program concurrency problems, it is mandatory to validate these
results with actual implementation to program verification. The initial results stated in [?] are
encouraging. An algorithm developed on this philosophy was tested with a number of concurrent
software systems and it was found to detect a number of known and previously unknown bugs
within a small context bound of 2 or 3. Also, it was found that almost all of the state space is
covered (in terms of the number of distinct states visited) with a bound of 8 to 11. In initial
testing, this method was found to work remarkably better then other contemporary methods of
depth bound search and depth first search.
The algorithm discussed above does seem to cover large tracts of the state space effectively. It is
imperative though for the reader to keep in mind that it merely provides a systematic approach
to program testing. Like other model checking methods it does not guarantee program correct-
ness but provides us with a metric that objectively ensures correct execution of programs in a
large number of cases and weeds out most common bugs effectively.

17

4 Conclusion

Programming Language Principles is a field of computer science where one sees theory and prac-
tical implementation come close. We notice a similar situation in the course of this seminar.
Beginning with the motivation behind program verification that for some stems entirely from
the lure of finding structures in the different programming languages we use, and their effect
on the correctness or effectiveness of the exam while for others is a simply he need of the day,
to the approaches that have developed to tackle this problem, we find a series of magnificent
insights from theory being brought out to a practically implementable level.
We see that the earliest work in the field was largly theoretical in nature. This earlier work
helped in clearly defining the framework on which the subject builds and exploring the implica-
tions and limitations of the newly conceptualized ideas. This early work provided a robust base
for the subject to build on.
It was soon realized that the formal concepts need to be diluted in order to build meaningful
verification systems. The methods of Owick & Gries[?] never got uesd to prove any non trivial
software systems. This formal methods were found to be too cumbersome for direct application.
The first strain of the approaches we discussed simulated the original ideas the closest. The
way these ideas were assimilated to come up with a type system to statically type check con-
current programs is amazing. Formalizing all necessary notions for concurrent safe programs,
such type systems have opened a new window for system verification softwares, and also for a
new programming paradigm that pays due heed to ensuring well written programs in parallel
environments. It provides a means not only to verify programs but to switch to programming
techniques that reduce inherent errors.
The other fork of verification software we saw are the more usable and current verification ap-
proaches, that systemize testing by modelling and extend the most intuitive approach to program
safety a step further. Because these modelling software closely model the way most program-
mers are used to testing their programs, they go down well in the programming community. By
providing a plethora of well implemented software verifiers, these model checking programs have
catered to the current need of the industry. It is nice to note that all these approaches proived
very intuitive and effective methods to control state space explosion, being simple (and hence!)
efficient at the same time.
Finally, it is apt to note that the field of concurrent software verification is still in its youth.
A lot of active research is going on and a lot of work is being done in the two fields discussed
here as well as transactional memory. One hopes that along with tools to verify programs that
make software systems safer and more reliable, the insights gained will help POPL to come up
with language models tailored to the prallel environment and also the programmers to inculcate
better coding habits leading to cleaner code : an utopian goal of a lot of CS research!

Acknowledgements

I would like to thank my guide, Prof. Supratik Chakraborty for introducing me to this wonderful
topic and for his guidance therein. The experience has been enthralling.

18

References

[1] Peter H. Roosen-Runge. Why do we need software verification tools?

[2] Anthony Hall. Software verification and software engineering - a practitioner’s perspective.
Verified Software: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3 Conference,
VSTTE.

[3] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10), October 1969.

[4] C.A.R. Hoare. Proof of a program: Find. Communications of the ACM, 14(1), January
1971.

[5] C.A.R. Hoare. Parallel programming: An axiomatic approach. Computer Languages, 1:151–
160, 1975.

[6] Susan Owicki and David Gries. An axiomatic approach for parallel programs i. Acta
Informatica, 6:319–340, 1975.

[7] Thomas W Doeppner. Parallel program correctness through refinement. Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
155–169, 1977.

[8] Richar J. Lipton. Reduction: A method of proving properties of parallel programs. Com-
munications of the ACM, 18, 1975.

[9] Cormac Flannagan and Stephen N. Freund. Type based race detection for java. Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 219–232, 2000.

[10] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 338–349, 2003.

[11] Stephen N. Freund Cormac Flannagan and Marina Lifshin. Type inference for atomicity.
Proceedings of the TLDI’05: 2005 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, pages 47–58, 2005.

[12] Christoph Von Praun and Thomas Gross. Static detection of atomicity violations in object
oriented programs. Journal of Object Technology, 3:103–122, 2004.

[13] Shaz Qadeer and Dinghao Wu. Keep it simple and sequential. Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), pages
14–24, 2004.

[14] Madan Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 446–455, 2007.

19

