
Implementing Persistent File Cache on
Android Operating System

Prakhar Panwaria, Prashant Saxena, Robin Paul Prakash
Computer Sciences Department

University of Wisconsin-Madison

{prakhar, prashant, rprakash}@cs.wisc.edu

Abstract

In conventional systems, memory is treated as a non-
persistent storage. Because the contents of memory
are volatile, changes to the data stored in memory are
periodically written back to the disk. But some ap-
plications, which require higher reliability, explicitly
flushes the file cache to disk at a much higher rate,
thus affecting performance and energy consumption.
This memory’s perceived unreliability forces a trade-
off between performance and reliability. In battery
backed systems like mobile phones, the chances of
unexpected power failures are much lesser when com-
pared to conventional systems, which implies that
data in memory is likely to be safe for a much longer
duration. We leverage this idea to develop a model
which modifies the file cache to behave as a persistent
file cache, and hence increase system performance
and power efficiency. Since data is kept in memory
for a longer duration, it is more prone to corruption
due to kernel bugs like buffer overflows. We propose
two mechanisms - write protecting pages and use of
transcendent memory, to address this issue. We also
present analysis of the performance and power im-
provements of our system.

1 Introduction

In the modern storage hierarchy, I/O devices
such as hard disk drives are considered to be re-
liable storage medium, whereas random-access
memory (RAM), being volatile, is viewed as un-
safe to store any data for a long duration. How-
ever, the access time of memory is significantly
lesser than that of disks. Hence, to increase the
performance, systems try to read bulk of data
from the I/O device to the cache and then read
it directly from the cache rather than reading

it multiple times from disks. Similarly, data-
writes to disk are also buffered in caches and
are flushed to disk in larger blocks (to reduce
disk seek time) and at larger intervals (to re-
duce number of disk accesses). Applications
that desire higher reliability flush data to the
disk explicitly at much higher rates, in order to
minimize data loss in case of unexpected power
failures or system crashes. Though this leads
to better safeguarding of data, it increases the
number of disk accesses, thereby decreasing the
overall performance of the system.

It is intuitive to believe that if a better mecha-
nism is provided to protect data in memory, then
contents in memory can be treated as persistent
and such reliability induced flushes to disk can
be avoided. In battery backed systems like mo-
bile phones, the chances of unexpected power
failures are much lesser when compared to con-
ventional systems, which implies that data in
memory is likely to be safe for a much longer du-
ration. A robust protection mechanism on top
of persistent memory on such devices can deliver
significant performance boost. We leverage this
idea to develop a model for mobile platform op-
erating system which modifies the file cache to
behave as a persistent file cache, and hence in-
crease system performance and power efficiency.

With these ideas in mind, our goal is to achieve
performance of main memory with reliability of
disk for mobile systems. The major parts of the
design are:

1. Overriding flush requests from the applica-
tion and managing interval at which data is

1



written to disk.

2. Implementation of mechanism to protect
data in memory.

3. Securing contents of the memory in case of
a system crash/reboot.

We present the design and implementation of
our prototype on the Linux-based operating sys-
tem from Google - Android [16]. Since hand-
held devices store permanent data in sdcards
instead of spinning disks, we evaluate our sys-
tem performance on sdcards only. However, for
the sake of generality, we refer to disks as per-
manent media for storage in rest of the paper.
Performance evaluation clearly shows merits of
our approach. For write intensive workloads, we
get performance gains up to 143% (in emulator)
and 155% (in hardware) over standard Android
kernel.

The rest of the paper is divided as follows. In
Section 2, we discuss the research work that has
been done around making file system more reli-
able, while improving its performance. In Sec-
tion 3, we describe how we can make main mem-
ory behave as persistent storage. We also dis-
cuss mechanisms for in-memory data protection
from system crashes and kernel bugs. In Sec-
tion 4, we present the evaluation of our model,
and show how modifying file cache parameters
and avoiding flushing of data can enhance sys-
tem performance and decrease power consump-
tion. We present our conclusions in Section 5.

2 Related Work

In past, multiple attempts to model reliable
main memory for persistent storage have been
proposed [1,2,3,4]. Mnemosyne [1] deals with
storage class persistent (SCM) memory. The re-
search builds upon the fact that storage class
memory provides data persistence inherently
and hence proposes mechanisms to expose SCM
directly to the application layer. There is a simi-
lar study around using NVRAM [2] (non-volatile
RAM) along with client cache to improve file
system reliability (data persists longer) and per-

formance (less write traffic). Software Persistent
Memory [3] talks about securing in-memory con-
tent by modifying data structure management
schemes of particular language (C in their case).

Phoenix [4] attempts to make all permanent files
reliable while in main memory. It keeps two ver-
sions of an in-memory file system. One of these
versions is kept write-protected, the other ver-
sion is unprotected and evolves from the write
protected one via copy-on-write. At periodic
check-points, the system write-protects the un-
protected version and deletes obsolete pages in
the original version.

Conquest [5] leverages the declining cost of per-
sistent RAM technologies like battery-backed
RAMs to implement a disk/persistent-RAM hy-
brid file system that holds small files in the bat-
tery backed persistent RAM and large files in
disks. As a new file systems with separate data
paths for in-core and on-disk storage was de-
signed, changes were needed in the operating
system as well. The performance tests using
benchmarks shows a performance improvement
of 43% to 97% over disk- based file systems.

None of the approaches to persistent storage
described above are directly applicable to our
model. Mnemosyne approach cannot be ported
on Android based systems due to lack of SCM
in mobile hardware. Instead, our approach fo-
cuses on providing standard disk based persis-
tent memory. Software persistent memory has
limited use in Android based systems since ap-
plication memory management is mostly done
transparently by Dalvik virtual machine. We
propose modification at kernel level, which op-
erates below the Dalvik virtual machine to pro-
vide support for persistent memory. Using hy-
brid file system entails major change in Android
operating system, and hence is out of scope of
our work.

What is more relevant is protecting the mem-
ory from operating system crashes and overwrit-
ing of application data through unauthorized ac-
cesses. Rio file cache [6,7] tries to address this
issue by forcing all processes including the ker-
nel to access memory through the virtual mem-

2



ory mechanism, thereby avoiding dangling ker-
nel pointers overwriting application data in the
event of a system crash. However, Rio File cache
implementation as defined in [6] uses warm re-
boot, which writes file cache data to disk during
reboot. Unfortunately, warm reboot relies on
several specific hardware features, such as a re-
set button that does not erase memory, and is
not applicable to most class of hardware used in
handheld devices.

Techniques like Recovery Box [8], keeps backup
copies to enable recovery of the system once it
crashes. As the aim of our recovery mechanism
is not to prevent applications from saving cor-
rupted data, but to recover unsaved data in the
event of a crash, we do not need a recovery mech-
anism based on checkpointing as we are able to
save the entire memory contents before a reboot.
Our work is inspired by SafeSync [7] approach,
which is a software based technique that requires
no hardware support. It writes dirty file cache
data reliably to the disk during the last stage of
a crash.

Our approach to memory protection primarily
uses two mechanisms - write-protecting pages
to avoid illegal accesses via corrupt pointers,
and making a copy of dirty data in transcendent
memory [9,10], which is not directly accessible
by kernel. These two mechanisms provide the
necessary protection to secure the contents of
memory. By using zcache [11,12] to compress
the pages, transcendent memory provides effi-
cient storage of duplicate pages without causing
too much memory overhead.

3 Design and implementation of a Re-
liable File cache

This section describes how we modified the file
cache implementation in Android operating sys-
tem to behave as a persistent file cache. We also
describe mechanisms to protect in-memory data
from system crashes and kernel bugs.

3.1 Persistent File Cache

As discussed in previous sections, reading and
writing data off the memory is relatively fast
when compared to I/O from disks. Hence, our
aim is to retain the data in memory for longer
duration and serve subsequent requests from
cache. In conventional Android kernel, data mi-
gration from memory to disk can happen in two
scenarios - a) Explicit transfer, where an ap-
plication uses system calls to flush the data to
the disk, or b) Implicit transfer, where OS pe-
riodically flushes the data from buffers to disk.
In Android OS, implicit transfer happens every
30 seconds. Implicit transfer guards the user
from losing data in case of power failure or sys-
tem crash. In case of crash, only data between
the implicit transfer checkpoints is lost. Since
this window (30 seconds) is relatively small, very
small amount of data is at risk of being lost.

In following subsections, we briefly define file
synchronization mechanism adopted in Android
Linux kernel and highlight major changes to
achieve our goal of retaining data in memory.

3.1.1 File synchronization mechanism in
Android Linux kernel

Both implicit and explicit transfers are per-
formed using three system calls as defined be-
low:

• sync() - Allows a process to flush all dirty
pages to disk

• fsync() - Allows a process to flush all pages
that belong to a specific open file to disk

• fdatasync() - Very similar to fsync(), but
doesn’t flush the inode block of the file

The service routine sys sync() of the sync() sys-
tem call invokes a series of auxiliary functions-
wakeup bdflush(), sync inodes(), sync supers()
and sync filesystems().

wakeup bdflush() starts a pdflush kernel thread,
which flushes to disk all dirty pages contained in
the page cache.The sync inodes() function scans

3



the list of superblocks looking for dirty inodes to
be flushed. The function scans the superblocks
of all currently mounted filesystems; for each su-
perblock containing dirty inodes it first invokes
sync sb inodes() to flush the corresponding dirty
pages, then invokes sync blockdev() to explic-
itly flush the dirty buffer pages owned by the
block device that includes the superblock. The
sync blockdev() function makes sure that the up-
dates made by sync sb inodes() are effectively
written to disk. The sync supers() function
writes the dirty superblocks to disk, if neces-
sary, by using the proper write super superblock
operations. Finally, the sync filesystems() ex-
ecutes the sync fssuperblock() method for all
writable file systems.

The fsync() system call forces the kernel to write
to disk all dirty buffers that belong to the file
specified by the fd file descriptor parameter (in-
cluding the buffer containing its inode, if neces-
sary). The corresponding service routine derives
the address of the file object and then invokes
the fsync() method. Usually, this method ends
up invoking the writeback single inode() func-
tion to write back both the dirty pages associ-
ated with the selected inode and the inode it-
self. The fdatasync() system call is very similar
to fsync(), but writes to disk only the buffers
that contain the file’s data, not those that con-
tain inode information. Because Linux 2.6 does
not have a specific file method for fdatasync(),
this system call uses the fsync() method and is
thus identical to fsync().

3.1.2 Modifications to file synchroniza-
tion mechanism

In our implementation, we intercept sync(),
fsync() and fdatasync() system calls and pre-
vent them from flushing data back to the disk.
To achieve this functionality, we use a flag based
mechanism to switch between standard mode
and custom mode of operation. We define
fsync enabled flag which is set to false for all
explicit synchronization calls. To allow OS to
write data back at implicit checkpoints defined

previously, we reset the flag to true to allow nor-
mal mode of operation. The dual mode of op-
eration also gives the user flexibility to switch
between the two data synchronization modes.

Linux usually writes data out of the page cache
using a process called pdflush. The behaviour
of this multithreaded process is controlled by
a series of parameters defined in /proc/sys/vm.
These parameters are accessed and processes in
file page-writeback.c. Few important param-
eters modified in our implementation are de-
scribed below:

• dirty writeback centisecs (default 500): In
hundredths of a second, this is how often
pdflush wakes up to write data to disk.

• dirty expire centiseconds (default 3000): In
hundredths of a second, this parameter de-
fines for how long data can be in the page
cache before it’s considered expired and
must be written at the next opportunity.
Note that this default calculates to 30 sec-
onds.

• dirty background ratio (default 10): Maxi-
mum percentage of active pages that can
be filled with dirty pages before pdflush be-
gins to write them.

To increase the implicit writeback time, we
modify dirty expire centiseconds to increase the
dirty pages writeback time to 2 minutes un-
der normal load condition. We also mod-
ify dirty writeback centisecs to 1 minute and
dirty background ratio to 50 to initiate page
flush in between checkpoint duration to handle
sudden spikes in workload.

The increase in dirty writeback time from 30
seconds to 2 minutes brings along a consider-
able risk of data loss in case of system crash
between the checkpoints. To mitigate this prob-
lem, we modify kernel panic call stack to call
sync() function before rebooting the system. As
we show in the evaluation section, this improves
the performance of reads and writes by a factor
of 1.4 over conventional Linux kernel.

Overriding application requests to sync data

4



brings along a considerable risk of data loss
in case of system crash between implicit-sync
checkpoints. There are different solutions to
this problem. One approach is to do a warm
reboot, as used in Rio file cache[6], where once
the system recovers from a crash, data is read
from the file cache and then synced to the disk.
Other approach is to write dirty pages sequen-
tially to a separate part of the disk before re-
booting and maintain data structures to track
location of these pages in disk. Once the system
has rebooted, this dump of dirty pages is read
and synced to the disk. But, for our usecase, we
consider a simplified approach, which is to mod-
ify kernel panic call stack to call sync() function
before rebooting the system.

3.2 Memory Protection

When file data is forced to remain in volatile
memory and calls to fsync() are overridden,
there is an increased responsibility on the oper-
ating system to safeguard this data. The major
source of concern would be unexpected power
failures which would lead to loss of all data
stored in the volatile memory. But, in battery
backed devices like mobile phones, since there
are no unexpected power failures, this is not
a source of concern for our system. We flush
the dirty pages in the file cache to disk at regu-
lar intervals (currently 2 minutes) to reduce the
data loss in case the user decides to pull the
battery out. To avoid data losses in case the
battery runs out of charge, we revert to default
behaviour of fsync() and flushing dirty pages to
disk every 30 seconds, once the battery charge
is below a certain threshold.

Though data loss due to power failure is not a
major source of concern, the corruption of data
kept in memory is a serious issue that needs to
be dealt with. As kernel bugs like buffer over-
flows are not very uncommon [13, 14, 15], the
decision to keep data in memory without taking
regular backups would make it more prone to
corrupt pointer accesses from the kernel. There-
fore, a system which risks its data by keeping it
in the file cache should also provide a mechanism

to prevent the pages from getting corrupted
through illegal accesses. A brief description of
file permissions, the Linux page cache and how
file-backed pages are handled in Linux follows,
before describing our mechanisms to provide ex-
tra protection to the contents of the file cache.

When user invokes the system call sys open()
to open a file, the kernel checks the file permis-
sions and confirms whether the user is autho-
rized to open the file in the mode requested by
the user. The file system keeps track of the per-
missions with which each file was opened, and
any subsequent unauthorized calls to sys read()
or sys write() are blocked by the file system after
checking with these permissions. As this mech-
anism is implemented at the file system level, it
protects the file data only from illegal accesses
through the file system calls. However, any cor-
rupt pointer in the kernel which points to the file
data page can still corrupt the file data. There-
fore a mechanism has to devised which could
deal with protection at the page level.

Linux splits the address space of any process into
two regions - the user space and the kernel space.
While the user space is different for each process
and changes with context switches, the kernel
address space is shared among all the processes.
When a request for loading a page to memory
is handled by the system calls, sys read() or
sys write(), the page is brought to main mem-
ory and mapped to a virtual address in the ker-
nel address space. Needless to say, the page is
accessible only while running in Kernel Mode
and not from the User Mode. Therefore, the
extra protection that we implement deals with
accesses from the kernel space and not from the
user space.

We propose two different mechanisms through
which an increased protection from corrupt ker-
nel pointers can be achieved. The first method
write-protects all file-backed pages in the file
cache by changing the protection bits in the page
table entry, and removes the write protection
only when data is to be copied to the file page
from the application buffer. The second pro-
vides protection by maintaining the file-backed

5



pages in transcendent memory, which is not di-
rectly addressable by kernel.

3.2.1 Write Protection in Page Table en-
tries

A common source of kernel bugs is buffer over-
flows which would result in illegal pointer ac-
cesses to pages from within the kernel. In or-
der to prevent such accesses and allow access
to file-backed pages only via file system calls
like sys write() and sys read(), a mechanism
was needed which would check access rights on
each and every access to the page. In most
modern systems that support virtual memory,
all accesses to the file pages by the kernel are
through virtual addresses. Linux has a three-
level page table with top level Page Global Di-
rectory (PGD), the second level Page Middle
Directory (PMD) and the final level contain-
ing the actual Page Table Entries (PTE) which
stores the physical address of the page frame
being referenced. Apart from the physical ad-
dress of the page, the PTE also stores protection
flags that have been set on the page. The pro-
tection flags, unlike the ones maintained by the
file system, are checked by the virtual-physical
address translation hardware, on each access to
the page. Therefore, write protecting the pages
at the PTE level would protect the page from
any illegal accesses to the page. In case of legal
writes (i.e. sys write() function calls), the write
protection is removed just before copying data
from the application buffer into the file page,
and restored after copying. This would reduce
the window of vulnerability by a great extent.

The following is the code used to write-protect
a particular page. The function page address()
returns the address of the page we are trying to
write-protect. This address (with appropriate
masks) is used as index into the PGD, PMD
and PTE tables.

unsigned long addr;

pgd_t* pgd;

pud_t *pud;

pmd_t *pmd;

pte_t *ptep, pte;

addr = (unsigned long)page_address(page);

pgd = pgd_offset_k(addr);

if (!pgd_none(*pgd))

{

pmd = pmd_offset(pud, addr);

if (!pmd_none(*pmd))

{

ptep = pte_offset_map(pmd, addr);

pte = pte_wrprotect(*ptep);

set_pte_at(&init_mm, addr, ptep, pte);

flush_tlb_kernel_page(addr);

}

}

The function pte wrprotect() is used to set the
write-protect bit of the protection flags main-
tained in the page table entry. Similarly, for
removing write protection before copying data
from the application buffer to the pte mkwrite()
function is used to remove the write-protect bit
from the page table entry. The set pte at() func-
tion writes back the page table entry to the lo-
cation pointed to by ptep. Finally, the virtual
to physical address translation that is cached in
the processor TLB is flushed, so that the next
access to the page causes the translation mech-
anism to access the page table so that changes
in permission are reflected from the very next
access to the page.

It is important to note that the extra protection
implemented here is applicable only for pages
that are backed by files, and not for any of the
anonymous pages that the kernel would have al-
located. This is because, unlike the system calls
to file backed pages, there is no channelized way
in which anonymous pages are accessed.

3.2.2 Using Transcendent Memory

Our second approach for protection of applica-
tion file data from kernel bugs is to put file-
backed pages in a protected area which is not
addressable by the kernel. We found that we
could leverage transcendent memory [9,10] (as

6



Figure 1: Transcendent Memory

Figure 2: Transcendent Memory: Default con-
figuration

Figure 3: Transcendent Memory: Proposed
configuration

shown in Figure 1) for our purpose, as it is a
part of memory which is not directly address-
able by kernel and can be accessed only through
a narrow, well-defined, but a quirky interface
called ’cleancache’.

Linux 3.0 kernel started supporting clean-

cache (as an optional feature), which
provides an interface to transcendent
memory, with simple calls like clean-
cache get page(), cleancache put page() and
cleancache invalidate page(). Currently, the
operating systems view cleancache as a sec-
ond level cache (Figure 2). So, when the
page replacement algorithm evicts a clean
page from page cache, it attempts to put the
evicted page into transcendent memory using
cleancache put page(). Later, when file system
wishes to access a page in a file on disk, it
uses cleancache get page() to check if the page
already exists in cleancache, and if it does,
the page is copied into the kernel memory,
avoiding a disk access. Though this improves
the file system performance, the extra memory
required for redundant storage could be of
concern in systems with limited RAM like
mobile phones. In such systems, the file system
can use zcache drivers [11, 12] which stores
pages in the cleancache in a compressed format.

We intend to use cleancache as a protected area,
where we can store the application data to pro-
tect it from any corrupt kernel pointers or ma-
licious driver from overriding. Hence, we pro-
pose a slightly modified version of cleancache
(Figure 3), in which we consider it as the pri-
mary cache for file-backed pages. To read or
write pages of a file in the cleancache, we ex-
tend its interface by adding two APIs - clean-
cache grab page() and cleancache write page().
cleancache grab page() tries to get a partic-
ular page from the cleancache using clean-
cache get page() and if the page is not present in
the cleancache, the page is brought into clean-
cache from the disk. cleancache write page() is
used to write to a page in the cleancache at any
particular offset within the page: it internally
uses cleancache grab page() to get the page in
the cleancache, modifies the page and puts the
page back in the cleancache. Android file system
code is routed to these interfaces in case of file-
backed pages. cleancache grab page() is called
whenever an application wants to read a page
of the file, and cleancache write page() is called
when application wants to write to a page of the

7



file.

In addition to that, we are deviating from the
normal use case of cleancache, in which it is
used by the system to cache clean (i.e. read-
only) pages, which may be evicted at any time
later depending upon the working set size of the
process and the total physical memory of the
system. In our case, since we are using clean-
cache to store dirty pages as well, the pages are
written to disk when they are evicted from the
cleancache. Since all file-backed pages are now
mapped to an area not directly accessible by
kernel, corrupt pointer accesses from the kernel
would no longer be able to access the file data.

Another optimization that can be added to the
modified cleancache, is the use of zcache drivers
to store the pages in a compressed form. This
would reduce the overall space used by the file
cache and could prove very useful in systems
with limited RAM. But there is an extra over-
head of compressing and decompressing pages
on every read and write to the page.

4 Evaluation

For testing our changes to the file system, we
needed a I/O benchmarking tool. We started
off by standard benchmarking tools available
for Android, namely - AnTuTu Benchmark [20],
Quadrant Standard Edition [21], SmartBench
[22] and CF-Bench [23]. Most of these bench-
marking tools calculate a raw score at the end
of tests to show the device performance. How-
ever, in most cases, the exact interpretation of
these scores was not known and the scores were
primarily used as a metric to compare the device
with other devices. Moreover, since the under-
lying implementation of I/O tests was not ex-
posed, we found varying results across different
benchmarking tools, some qualifying our imple-
mentation as superior while others did not.

To come up with a better implementation of I/O
benchmarking tool, we decided to implement
our own benchmarking tool. While designing
the tool, we came across multiple factors which
could possibly affect the I/O performance, which

also explains why different benchmarking tools
performed differently on the same device. One
such factor is the storage structures used by the
benchmarking tool.

Android provides several options to save per-
sistent application data. The chosen solution
depends on specific needs, such as whether the
data should be private to the application or ac-
cessible to other applications (and the user) and
how much space the data requires[17]. Major
data storage options are the following:

• Shared Preferences: Store private primitive
data in key-value pairs

• Internal Storage: Store private data on the
device memory

• External Storage: Store public data on the
shared external storage

• SQLite Databases: Store structured data in
a private database

• Network Connection: Store data on the web

Since external storage is the most common form
of storage found in handheld devices, we decided
to use external storage for our benchmarking
tool. The algorithm for measuring performance
is as below:

get_start_time()

repeat for n times

write to file buffer

flush the buffer

issue sync

end repeat

get_end_time()

We ran our benchmarking tests on two sepa-
rate environments - Android emulator and Sam-
sung Galaxy S3 running Android 4.0.4. Since
we did not have access to a Android device
with root privileges, we changed the benchmark
tool to skip synchronization requests to emulate
the behaviour we expect in our synchronization
model. Note that doing so will underestimate
the time taken to run the benchmark, since there
is a fixed amount of cost associated with call-
ing fsync() function. But this cost would be

8



Figure 4: I/O performance on emulated environment

Figure 5: I/O performance on hardware

much lesser than the cost of syncing data to
disk. Since our intention is to use real hard-
ware as a proof of concept and not for actual
cost/benefit analysis, we do not consider this as

a major issue. For more accurate measurements,
we planned to run benchmarking tests on Rasp-
berry Pi board. But since a stable port for An-
droid was not available at the time this work

9



Figure 6: Energy consumption on emulated environment

Figure 7: Energy Consumption on hardware

was done, we are unable to present evaluation
results for Raspberry Pi hardware.

We present I/O performance of our benchmark
on emulated environment and real hardware in

10



Figure 4 and 5 respectively. Clearly, write inten-
sive workloads perform better in our implemen-
tation. We see a performance speedup of upto
143% on emulated environment and upto 155%
in real hardware.

An indirect benefit of limiting the disk access
is reduction in costs associated with read and
write calls[18]. Since getting a page from disk
is computationally more expensive operation, it
requires more power to fetch a page from disk
when compared to getting a page from mem-
ory. We test this idea using a power profiling
tool called PowerTutor[19]. This tool shows the
energy consumed by an application in Joules.
Figures 6 and 7 show the result of power pro-
filing using different combination of workloads.
As expected, our system outperforms the stan-
dard Android kernel and provides significantly
cheaper read/write system calls.

An ideal way to evaluate the proposed memory
protection mechanisms would be through fault
injection. Code to inject various types of faults
into the kernel could be written, and our protec-
tion mechanism could be evaluated on the basis
of how many faults the modified kernel is able to
prevent. But this process needed an elaborate
study on the various types of faults and ways to
inject faults into the kernel. Due to time lim-
itations, we adopt a much simpler method to
test our protection mechanism on a per-file ba-
sis. During a sys write() system call to write
data to the file under test, since address of the
page is known and the process is running in ker-
nel mode we could run our test code to access
the write-protected page.

5 Conclusions

In our work, we have made a case for persis-
tent memory in mobile operating systems. Our
performance experiments show that using tech-
niques defined in the paper, we can achieve con-
siderable performance benefits at little or no
risk of data loss. For write intensive workloads,
our implementation provides significant perfor-
mance benefit over conventional Android kernel.

By reducing the disk access frequency, we also
reduce the cost associated with each read/write
request, thereby reducing the power consump-
tion of all applications.

We also define two approaches to protect in-
memory data - write protecting pages and using
transcendent memory, which provide additional
protection to data while it resides in main mem-
ory. We believe that combination of persistent
memory with protection domains successfully
achieves our goal of designing a file cache which
is fast and reliable at the same time. Moreover,
the ideas presented in this paper are generic and
can be applied to any file system implementa-
tion.

References

[1] H. Volos, A. J. Tack, and M. M. Swift.
Mnemosyne: Lightweight persistent
memory. ASPLOS 11: Proceeding of the
16th international Conference on
Architectural support for Programming
Languages and Operating Systems, New
York, NY, USA, 2011. ACM.

[2] Baker, M., Asami, S., Deprit, E.,
Ousterhout, J., and Seltzer, M. (1992).
Non-Volatile Memory for Fast, Reliable
File Systems. In Proceedings of the Fifth
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS-V), pages
1022.

[3] Jorge Guerra, Leonardo Marmol, Daniel
Galano, Raju Rangaswami, and Jinpeng
Wei. Software persistent memory. FIU
SCIS Technical Report TR-2010-12-01,
2010.

[4] Jason Gait. Phoenix: A Safe In-Memory
File System. Communications of the
ACM, 33(1):81-86, January 19, 1990.

[5] A.-I.A. Wang et al., Conquest: Better
Performance through a
Disk/Persistent-RAM Hybrid File System,
Proc. 2002 USENIX Ann. Technical Conf.,
June 2002.

11



[6] P. M. Chen, W. T. Ng, S. Chandra, et al.
The Rio File Cache: Surviving Operating
System Crashes. In Proc. of the 7th Int’l.
Conf. on ASPLOS, pages 74-83, 1996.

[7] Ng, N. T. and Chen, P. M. 2001. The
design and verication of the Rio le cache.
IEEE Trans. Comput. 50, 4, 322337.

[8] M. Baker and M. Sullivan. The recovery
box: Using fast recovery to provide high
availability in the UNIX environment.
Proc. of the Summer USENIX Conf., June
1992.

[9] D. Magenheimer, C. Mason, D.
Mccracken, K. Hackel, and O.
Corporation, Transcendent memory :
Re-inventing physical memory
management in a virtualized environment,
OSDI 08 WIP session, 2008, pp. 167-193.

[10] D. Magenheimer and O. Corp,
Transcendent Memory on Xen, Xen
Summit, 2009, pp. 1-3.

[11] Nitin Gupta. compcache: Compressed
caching for linux.
http://code.google.com/p/compcache/,
Accessed Oct. 2012.

[12] Nitin Gupta, zcache: page cache
compression support.
http://lwn.net/Articles/396467/, Accessed
Oct. 2012.

[13] Crispin Cowan, Calton Pu, Dave Maier,
Heather Hinton, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang. Stackguard:
Automatic adaptive detection and
prevention of buffer-overflow attacks. In
7th USENIX Security Symposium, San
Antonio, Texas, January 1998.

[14] Crispin Cowan, Perry Wagle, Calton Pu,
Steve Beattie and Jonathan Walpole.
Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade.
DARPA Information Survivability
Conference and Exposition. January 2000.

[15] David Wagner, Jeffrey S. Foster, Eric A.
Brewer and Alexander Aiken. A First Step
Towards Automated Detection of Buffer
Overrun Vulnerabilities. Network and
Distributed System Security Symposium.

February 2000.
[16] Android Open Source, Google, 2010. Web.

http://source.android.com/source/index.html
[17] H. Kim, N. Agrawal, and C. Ungureanu,

Examining storage performance on mobile
devices, in Proceedings of the 3rd ACM
SOSP Workshop on Networking, Systems,
and Applications on Mobile Handhelds
(MobiHeld), 2011.

[18] A. Carroll and G. Heiser. An analysis of
power consumption in a smartphone. In
USENIX, 2010.

[19] Z. Qian Z. Wang R. P. Dick Z. Mao L.
Zhang, B. Tiwana and L. Yang. Accurate
online power estimation and automatic
battery behavior based power model
generation for smartphones. In Proc. Int.
Conf. Hardware/Software Codesign and
System Synthesis, 2010.

[20] AnTuTu Labs. AnTuTu Benchmark.
http://www.antutulabs.com/antutu-
benchmark, Accessed Oct.
2012.

[21] Aurora Softworks. Quadrant Standard
Edition. http://www.aurorasoftworks.com,
Accessed Oct. 2012.

[22] SmartBench.
http://smartphonebenchmarks.com,
Accessed Oct. 2012.

[23] CF-bench. CPU and memory benchmark
tool.
http://www.chainfire.eu/projects/46/CF-
Bench/, Accessed Oct.
2012.

12


	Introduction
	Related Work
	Design and implementation of a Reliable File cache
	Persistent File Cache
	File synchronization mechanism in Android Linux kernel
	Modifications to file synchronization mechanism

	Memory Protection
	Write Protection in Page Table entries
	Using Transcendent Memory


	Evaluation
	Conclusions

