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Abstract — We designed, implemented and analyzed a 

music recommendation system for our course project. 

Using the dataset provided by Kaggle [1] for their Million 

Song Dataset Challenge [2], we have analyzed various 

state-of-the-art techniques which can be used to build a 

music recommendation system. In this paper, we focus on 

describing different learning algorithms, which we 

employed in providing music recommendations. Apart 

from doing offline evaluations and analysis of different 

solutions, we also describe our experiences and learnings 

from building a prototype music recommendation system. 

Our results suggest that ensemble methods applied with 

user-based collaborative filtering work better than other 

methodologies for the chosen dataset in generating high 

quality recommendations for the music lovers. 
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collaborative filtering, million song dataset 

1.   INTRODUCTION 

    Currently, there are many music streaming services, 

like Pandora [3], Spotify [4], Rdio [5] and last.fm [6], 

which are working on building high-precision commercial 

music recommendation systems. These companies 

generate revenue by helping their customers discover 

relevant music and charging them for the quality of their 

recommendation service. Thus, there is a strong thriving 

market for good music recommendation systems.  

 

    One thing to note is that all the above mentioned 

applications use different proprietary techniques to 

recommend the most relevant music to their customers. 

For instance, last.fm uses a variant of user-based 

collaborative filtering [7] where they consider similarity 

between users based on their shared interests in music. 

Contrary to that, Pandora uses the similarity between the 

properties of songs or artists [8] to make appropriate 

recommendations. Thus, it is an open-ended problem with 

various possible solutions, and newer techniques to 

improve precision are being explored in both academia 

[23] and industry.  

    It is important to realize that recommending music is a 

harder problem than other forms of recommendations, for 

e.g. recommending items on an e-commerce website like 

Amazon.com. This is because music recommendation 

should also include the personal context of a user. In e-

commerce space, if two items are being frequently bought 

together, they can be recommended to a user if she 

already bought one of them before. But, two songs being 

frequently listened together doesn’t imply that a new user 

would like the other song if she has already listened to 

one of the songs. While recommending music, it is hard 

to predict the interests of a user. It may depend on the 

acoustic properties of a song or her favorite artists. A user 

may also like songs listened by her friends with similar 

taste in music 

 

    In this paper, we aim to closely analyze various 

algorithms which can be used to model a novel music 

recommendation system. As a primary baseline 

algorithm, instead of just giving random song 

recommendations, we chose to give overall top N popular 

songs to every user, where popularity of a song is 

measured by the number of users who have listened to 

that song in past. We have explored a diverse set of 

learning methodologies, for e.g., 
 

 Instance-based learning algorithms (k-NN) 
 

 Bayesian networks (Naive Bayes) 
 

 Collaborative filtering approaches (both item-based 

and user-based) 
 

 Ensemble methods (Bootstrap Aggregation) over the 

aforementioned algorithms.  

 

    Before starting with implementation of these 

algorithms, we made the following hypotheses based on 

our intuition:  
 

 Collaborative filtering (further referred as ‘CF’) 

methods, which are the most popular recommendation 

algorithms, should work better than other learning 

methods.  
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 Ensemble methods should improve performance of a 

learning algorithm.  
 

 Both item-based and user-based similarity metrics 

should perform almost equally well for same dataset.  

 

From our experiments, following are some important 

observations: 
 

 The precision of our results was low in general. This 

can be attributed to the fact that we ran our 

experiments on a subset of the original data. It might 

also be due to the choice of sub-optimal or irrelevant 

features in the algorithms. 
 

 The accuracy of a specific algorithm depended on the 

dataset used. For example, for our chosen dataset user 

similarity metrics based algorithms fared better than 

the song similarity metrics based algorithms.  
 

 Using ensemble methods for recommendation systems 

indeed performed better than the corresponding 

original state-of-the-art algorithms. 

 

1.1 Outline 

    In the following section, we describe the dataset 

provided by Kaggle and how we pre-process it to 

facilitate its consumption by our algorithms. Section 3 

describes different learning methodologies and 

approaches used in our experiments. We evaluate these 

algorithms offline and analyze the obtained results in 

Section 4. In Section 5, we describe the related work 

being done in modeling music recommendation systems. 

In Section 6, we describe the future work that can be done 

to further improve the accuracy of our algorithms. We 

describe our conclusions and our key takeaways from this 

project in Section 7. 

 

2.   DATASET DESCRIPTION 

    The Million Song Dataset (MSD) Challenge hosted by 

Kaggle [1], a platform for predictive modeling and 

analytics competitions, was used as the primary dataset 

for our experiments. The raw data consisted of listening 

history of a million users in <user_id, song_id, 

play_count> format. 
 

2.1   Preprocessing Data (Files to Database) 

    Raw data from files was extracted and loaded into a 

local MySQL database for easier consumption and 

subsequent analysis, using simple Python scripts. The 

very long string-based user and song identifiers were 

converted to monotonically increasing integers to reduce 

both memory and CPU-processing. Table [1] shows the 

normalized schema of  the  database  used  for our project  

and some random examples. 

 

user_id song_id play_count 

1 1 3 

1 2 6 

 [1a]: msd_data 

kaggle_user_id user_id 

00000b722001882066dff9 1 

00004fb90a86beb8bed1e9 2 

[1b]: msd_users_map 

kaggle_song _id song_id 

SOBQJJX12A6D4F7F01 1 

SOUBEXV12AB01804A 2 

[1c]: msd_songs_map 

Table [1]: Database Schema of MSD 

 

2.2   Low-level Dataset Description 

    The original MSD consists of 1 million users and 

songs. Processing such a large dataset is highly memory 

and CPU-intensive and requires a dedicated distributed 

system, for e.g. a Hadoop [20] cluster with 10 server 

machines. In the absence of such a powerful system, we 

opted to work on a random subset of the MSD. Table [2] 

shows the detailed summary of our randomly chosen 

subset of original data. 

 

Total 

Users 

Total 

Songs 

Total 

Records 

Avg. 

Recs/User 

Avg. 

Recs/Song 

10000 105042 479270 47.92 4.56 

Table[2]: Statistical summary of chosen subset 

 

3.   ALGORITHMS 

    We developed a few baseline algorithms which would 

serve as the benchmark for evaluating the effectiveness of 

our main algorithms. Table [3] describes a summary of all 

the algorithms being used in our case.  

 

3.1   Baseline Algorithms 

3.1.1   Top N Most Popular  

   This is a simple benchmark which works by computing 

the most popular songs i.e. the songs which have been 

listened by the maximum number of users. Such songs are 

then ranked in the decreasing order of popularity and top  

N songs are returned as recommendations. 
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Algorithm Summary 

Top N Most Popular Return the top N most popular 

songs 

k-NN Return the top N songs from K 

most similar users 

Naive Bayes Return top N probable songs 

conditioned on listening history 

Item-based CF Return the top N songs from all 

aggregated similar songs from 

song-similarity matrix 

User-based CF Return the top N songs from all 

the aggregated songs of similar 

users in user-similarity matrix 

Bagging Bagging approach with above 

learning algorithms 

Table [3]: Summary of Algorithms 

 

3.1.2   k-Nearest Neighbors  

   K-Nearest Neighbor algorithm was employed on the 

user listening history. For each test user, the set of closest 

K users in the training set were found. Each song was 

used to build a feature vector by weighing it according to 

the play count of that song for the user [9]. Closeness 

between the users is computed by determining the cosine 

distance  between their feature vectors. The final 

recommendations were obtained by merging the songs 

from K-closest users, ranking them based on number of 

song repetitions across those users and returning the top 

N results. 

 

3.1.3   Naive Bayes 

    It is our hypothesis that the conditional probability of a 

song (S) listened by a user, given the listening history 

(LH), would be a good measure to recommend a song to 

the user. We assume a song in the listening history is 

independent of other songs in the same set. Assuming this 

independence, we can construct a Naive Bayes network.  

We compute: 

                      

                       

                                              

                                                       

                                             
 

    As mentioned in [10], there is a problem with using 

plain conditional probabilities. These conditional 

probabilities could be high not because the song to be 

recommended was similar to other songs in the listening 

history, but may be because it was popular. A less popular 

song will be more reliable in giving recommendations 

than the one which is among the most popular. Work 

done in [10] gives a way to address such a problem by 

normalizing for popularity. To do this, we divide the 

conditional probability by the frequency of the song. This 

frequency can be scaled by a parameter α. With α=1, we 

get same result as the plain conditional probability. 
 

                  

 

             

                              

                         

 
 

3.2   Main Algorithms 

3.2.1   Collaborative Filtering 

    We used memory-based CF algorithms which work by 

building an in-memory similarity matrix on the complete 

dataset prior to recommendations. 

 

3.2.1.1   User-based CF 

    The intuition behind this algorithm is that similar users 

listen to similar songs. Thus, if we know user u is similar 

to user v, we can recommend v’s listened songs to u. The  

main steps of the algorithm are: 

 Build a user-to-user similarity matrix using cosine 

similarity. 

 For any test user u, find the set of all train users 

similar to it from the user similarity matrix. Merge all 

the listened songs of the users in the training set as 

possible recommendations, excluding songs already 

listened by the test user. Then, rank all the songs in the 

set based on their aggregated scores and return the top 

N songs to the test user. 

 

    To determine the similarity between any two users u 

and v, we use a variant of cosine similarity with a 

weighing factor α [9], which ensures that all users are not 

weighted equally in cosine distance calculations. A user 

who listens to lot of songs does not add much 

information, so she should have a lower contribution in 

the final recommendations and vice-versa. 
 
 

          
                  

                           
            

 

    To calculate the score of each train song c to be 

recommended for a test user u, we sum the user-similarity 

score for each user v in the set of train users V who has 

listened to this train song c. To further emphasize the 

impact of high weights and minimize for low weights, we 

also added a normalization coefficient γ[9]. 
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3.2.1.2   Item-based CF 

    The intuition behind this algorithm is that a user is 

most likely to listen to a song which is similar to songs 

which she has already listened. Thus, if we know that 

songs i and j are similar and the test user has already 

listened to song i, we can recommend song j to her. The 

main steps of the algorithm are as follows: 
 

 Build a song-to-song similarity matrix using cosine 

similarity. 

 For every test user u and for every training song c 

not listened by u, find how closely c resembles to the 

listening history of u by summing the similarity score 

for c with each song i listened by u. The final 

recommendations consist of the top N train songs 

with highest aggregated sums. 
 

    To determine the similarity score between songs i and 

j, we again use cosine similarity [9]. 
 

          
                  

                      
 

 

    To calculate the score of each training song c (not 

listened by the test user) to be considered for 

recommendation for a test user u, we sum the song-

similarity of c with all the songs in the listening history H 

of the test user. The top N songs with highest scores are 

returned as recommendations for the test user u. 
 

            

   

 

 

3.2.2   Ensemble Methods 

    In general, ensemble methods [22] are learning 

methodologies, which generate a set of classifiers on 

uncorrelated datasets and then classify test instances 

based on the predictions made by those classifiers. 

Ensemble approaches like bagging, boosting, and random 

forests are generally used for classification tasks. Since 

our algorithms generate a set of recommendations rather 

than performing classifications, we have used a variant of 

bagging, where instead of getting a plurality vote among 

the generated models, we do smart aggregation of the 

recommendations made by different models and return 

the top N most relevant songs for a particular test user. 

 

3.2.2.1   Modified Bootstrap Aggregation 

    Bootstrap Aggregation (or Bagging) approach is known 

for reducing the variance of the learning algorithms which 

ultimately helps in avoiding overfitting. Since, ensemble 

methods are independent of the learning algorithms used, 

we have used our modified approach with all the base 

algorithms, i.e. k-NN, Naive Bayes, and CF approaches. 

 

    To use bagging, the algorithm is given a learning 

method along with the TRAIN dataset as well as the 

TEST_VISIBLE dataset (see Section 4.1 for more 

details). First, we generate datasets by randomly drawing 

instances from the original dataset with replacement. For 

all randomly generated datasets, we build models of the 

learning algorithms. For each model, we then get 

recommendations (list of songs with their scores) for the 

users in the TEST_VISIBLE dataset. After collecting the 

list of song recommendations from all the models, we 

aggregate the songs in a single data structure, while 

adding up the score of a song if it is present in multiple 

recommendations, and finally return the top N songs in 

decreasing order of their scores. 

 

   Bagging generally works well with unstable learning 

algorithms, which are sensitive to the dataset, for e.g., k-

NN and CF approaches. In Section 4, we’ll observe the 

performance of Bagging used with different learning 

algorithms. 

 

4.   EVALUATION 

4.1   General Methodology 

    The general evaluation methodology that we used for 

each algorithm is as follows: 
 

1. Load the MSD from MySQL database. 

2. Perform M-fold Cross-Validation (mostly with M=20) 

3. Run the algorithm ‘M’ number of times. For each run: 

a. Generate three datasets from the cross-validation 

folds 

 TRAIN dataset: Complete listening history of 

existing users. 

 TEST_VISIBLE dataset: Partially known 

listening history of test users. It is used by 

algorithms to make recommendations. 

 TEST_HIDDEN dataset: Remaining partial 

listening history of test users, which needs to be 

predicted by algorithms. 

b. Generate learning model using TRAIN dataset. 

c. Generate recommendations using TEST_VISIBLE 

dataset and the learned model. If algorithm is not 

able to achieve N recommendations, bootstrap the 

results with the top N overall popular songs. 

d. Evaluate using the TEST_HIDDEN dataset and 

compute precision for this run. 

4. Return average precision for this algorithm across all 

the runs. 
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4.2   Experimental Setup 

    All the experiments were run on a single machine in 

the mumble lab in CS department, whose configuration 

was 8GB RAM, Intel(R) Core 2 Duo @2.66 GHZ. 

 

4.3   Accuracy Metrics 

    The metric we chose for computing the accuracy of our 

algorithms was the precision value of song 

recommendations. Specifically, it was equal to the 

number of matched songs in the TEST_HIDDEN dataset 

for a user (true positives) divided by the total number of 

songs recommended for the user (predicted positives). 

Our reason for choosing precision as the accuracy metric 

is two-fold. First, this is the metric used for determining 

the accuracy on Kaggle for MSD challenge [2]. Second, 

precision is much more important than recall in a 

recommendation system because false positives can lead 

to a poor user experience. 

 

4.4   Results 

In this section, we evaluate different learning algorithms 

mentioned in Table [3]. 

 

4.4.1   k-NN: Finding Optimal K 

    In this experiment, we are trying to find an optimal 

value of K in k-nearest neighbors algorithm which gives 

best performance on the TEST_HIDDEN dataset. We 

observed that the accuracy first increases up to a certain 

point (when K = 40) and then decreases. With the value of 

K being low, the reason of getting a low accuracy may be 

susceptibility of the algorithm to the noise in the training 

data. And, the reason of getting a low accuracy with the 

value of K being too high may be inclusion of 

recommendations from the less similar users. We can see 

from Figure [1], that the optimal value of K for our 

dataset comes to be around 40. 

 

4.4.2   User-Based Collaborative Filtering: Finding  

Coefficients 

    Here, we try to find the variation of precision for user-

based CF algorithm as we vary α across different values 

of γ and vice-versa [9]. From our experiments as shown in 

Figure[2, 3], we observed that the maximum precision is 

achieved for α=0.8 and γ=8.0. 

 

4.4.3   Naive Bayes: Finding Model Parameters 

    Here, we try to find an optimum value for the value α, 

parameter used for normalizing the popularity of a song 

to be recommended. We conducted experiments with 

different values of α varying from 0.0 to 1.0. As indicated 

in Figure [4], we observed that the maximum precision 

was achieved for α =1. 
 

 

Figure[1]: Avg. Precision for different values of K 
 

 

Figure [2]: Avg. Precision vs α for User-based CF 

 

Figure [3]: Avg. Precision vs γ for User-based CF 
 

 

Figure [4]: Avg. Precision vs α for Naive Bayes 
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4.4.4   Impact of Bagging 

    In this experiment, we used 20-fold cross-validation to 

generate 20 different datasets, and ran our experiments to 

get scatter plots showing the impact of bagging on 

different algorithms. In general, we found that accuracy 

of unstable learning algorithms improves with bagging. 

 

4.4.4.1   Bagging with k-NN 

    Figure[5] shows a scatter plot between k-NN 

algorithms (with K = 40) with and without the application 

of bagging. We can see that k-NN performed slightly 

better when bagging is applied, which may be because k-

NN is an unstable algorithm, thus, applying bagging 

might have resulted in different uncorrelated models, 

reducing overall variance, and, hence, overfitting. 
 

 
Figure [5]: Impact of Bagging on k-NN 

 

4.4.4.2   Bagging with Naive Bayes 

    We also applied bagging with Naive Bayes (with α=1), 

but as we can see from the scatter plot in Figure [6], 

algorithm did not perform well with bagging. This may be 

because model parameters of Naive Bayes exhibit little 

variation across different datasets generated by Bagging, 

which might not have helped in improving the accuracy. 

 
 

 
Figure [6]: Impact of Bagging on Naive Bayes  

 

4.4.4.3   Bagging with Collaborative Filtering 

    As shown in Figure [7] and [8], we find that both the 

algorithms (for user-based CF, α=0.8 and γ=8.0) perform 

better with bagging. Its reason may be same as that for k-

NN, as both the CF algorithms are sensitive to data. 

 
Figure [7]: Impact of Bagging on Item-based CF 

 

 
Figure [8]: Impact of Bagging on User-based CF 

 

4.4.5   Comparison of Algorithms 

    In this experiment, we chose optimal parameters for all 

the algorithms (K=40 for k-NN, α=0.8 and γ=8.0 for user-

based CF, and α=1 for Naive Bayes), and using the same 

dataset generated from 20-fold cross-validation, we 

evaluated average accuracy of all the algorithms as shown 

in Figure [9]. Following are results of this experiment: 
 

 Comparing between our baseline algorithms, k-NN 

performed better than TopN algorithm. This is 

probably because k-NN learner uses similarity 

between the users as its criteria, whereas TopN 

algorithm just recommends N-most popular songs 

which a user might not like. 
 

 Figure [9] also shows that algorithms using user- 

based similarity metrics have performed better than 

item-based similarity metrics. For instance, both user-

based CF and k-NN showed better performance than 

Naive Bayes and Item-based CF. 
 

 Finally, we observed that user-based CF was more 

accurate than k-NN. Its reason may be that in k-NN, 
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we are considering songs from only 40 most-similar 

users giving equal weights to each of them 

irrespective of their distance. On the contrary, in user-

based CF, we consider all the users in training dataset 

and give their songs a weight corresponding to their 

distance from the test user in question. 

 

 
Figure[9]: Comparison of Algorithms 

 

4.5   Discussion 

    Analysis of our observed results has given us a deeper 

understanding of our proposed hypotheses and the actual 

results obtained. Here is the comparison of our proposed 

and actual results: 
 

1. We hypothesized that item-based CF should work 

equally well as the user-based CF algorithm. From 

the results, we see that user-based CF performed as 

per our expectations, but item-based CF algorithm 

underperformed for our dataset. This is because the 

song-similarity matrix was very sparse for our chosen 

dataset. On an average, 1 user listened to 47 songs, 

whereas 1 song was listened by only 4 users. From 

this, we infer that item-based similarity is well suited 

for the case where number of items is much lesser 

than the number of users. For example, Pandora has 

0.8 million songs and 80 million users [8]. Thus, their 

song-similarity matrix would generally not be sparse. 

This is confirmed by the fact that Pandora uses 

content-based recommender systems [8]. 
 

2. Bagging indeed performed better than original 

models. 
 

Other lessons that we learned from our experiments are: 
 

1. The success of the chosen algorithm depends a lot on 

the underlying dataset. This indicates that we should 

ideally use a hybrid approach where we choose 

different underlying algorithms based on nature of the 

data. For example, if the dataset has fewer songs in 

proportion to the dataset size, item-based similarity 

metrics should be used, otherwise user-based 

similarity metrics should be preferred. 
 

2. Music recommendation in general is a tough problem. 

Our best algorithm could only manage 13.37% 

precision. We need to provide additional signals to 

our algorithms to simulate user’s interests. Additional 

metadata, like song’s tempo or lyrics, and user’s 

preferences, like genre, can help further improve the 

algorithms’ accuracy. 
 

3. Recommendation algorithms are computationally 

intensive and are well suited to be run on distributed 

systems for fast parallel processing. 
 

4. The precision accuracy is dependent on the size of 

data available for learning. This is commonly known 

as Cold Start problem [11], where the initial 

recommendations are poor because of insufficient 

user preference data. We believe our algorithms 

would give better accuracy when run on the complete 

MSD on a distributed cluster. 
 

5.   RELATED WORK 

    Music recommender systems are currently a hot 

research topic in both academia and industry. Amazon 

has been at the forefront of item-based CF [17] and 

relevant algorithms like Slope-one [12] have been very 

effective. In our project, we experimented with the 

listening history of a user and the corresponding play 

counts as the signals to our algorithms. But in real-world 

systems, various other signals related to song metadata, as 

mentioned before, are employed to further augment the 

basic algorithms. 

 

    Research in this field also suggests that hybrid 

approaches which combine multiple models generally 

outperform any individual method [13]. For example, 

Hybrid CF which combines both Memory-based CF and 

Model-based CF has been shown to perform much better. 

But hybrid algorithms are expensive and difficult to 

implement. The current research focus has been to reduce 

the runtime complexity of hybrid algorithms, to make 

them feasible for real-world systems [14]. 
 

    Another major area of focus has been the 

parallelization of recommendation algorithms. 

Approaches like CF create a huge similarity matrix that 

cannot fit in memory on a single machine, when dealing 

with real-world workloads. For example, Spotify 

currently has 10 million users, and thus, would need a 

user-similarity matrix of size 10
6
x10

6
 to implement user-

based CF [15]. Thus, both the data computation and 

processing has to be parallelized using distributed system 

clusters (e.g. Hadoop) to enable such large-scale 



8 

 

computation. Active research is happening in both 

academia [16] and industry on this front. 

 

6.   FUTURE WORK 

    In this course project, our goal was to implement state-

of-the art recommendation techniques and some new 

algorithms learnt in our course like Naive Bayes, 

ensemble methods etc. In the future we plan to extend our 

work in the following directions: 
 

1. Add song metadata from other data sources like 

MusixMatch [18], last.fm [19] etc., as additional 

signals to the recommendation algorithms and test its 

accuracy. We believe including the context of the 

song into our algorithms would boost the test data 

accuracy.  

2. Run the algorithms on a distributed system, like 

Hadoop [20] or Condor [21], to parallelize the 

computation, decrease the runtime and leverage 

distributed memory to run the complete MSD. We 

believe our accuracy results would improve further 

when run with the complete MSD. 
 

3. Test additional ensemble methods, like AdaBoost 

[22], and compare their accuracy with the above 

recommendation algorithms. 

 

7.   CONCLUSION 

    Our course project has given us a keen insight into the 

recommendation systems for music domain. The low 

precision of 13.37% has made us realize that predicting 

songs for a listener is a fundamentally tough problem and 

is dependent on many intrinsic (song’s metadata like 

tempo, lyrics etc.) and extrinsic factors (user’s personality 

etc.). We believe that including additional features like 

song’s metadata would help in improving the overall 

accuracy. We also learnt that recommendation algorithms 

are highly CPU and memory-intensive and are well suited 

to run on large distributed systems for faster processing. 

 

    Our results indicate that ensemble methods tend to give 

better precision as compared to the original algorithms 

because of their model averaging approach. Also, the 

success or failure of various algorithms depends on the 

dataset involved. Our dataset had a very sparse song 

similarity matrix, which led to lower precision for song-

based metrics as compared to user-based metrics. 
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