
1

Music Recommendation System: Offline Evaluation of Learning

Methodologies
(Based on Million Song Dataset Challenge by Kaggle)

Aashish Thite Prakhar Panwaria Shishir Prasad

Computer Sciences Department, University of Wisconsin-Madison
{aashish, prakhar, skprasad}@cs.wisc.edu

Abstract — We designed, implemented and analyzed a

music recommendation system for our course project.

Using the dataset provided by Kaggle [1] for their Million

Song Dataset Challenge [2], we have analyzed various

state-of-the-art techniques which can be used to build a

music recommendation system. In this paper, we focus on

describing different learning algorithms, which we

employed in providing music recommendations. Apart

from doing offline evaluations and analysis of different

solutions, we also describe our experiences and learnings

from building a prototype music recommendation system.

Our results suggest that ensemble methods applied with

user-based collaborative filtering work better than other

methodologies for the chosen dataset in generating high

quality recommendations for the music lovers.

Keywords — recommendation systems, music,

collaborative filtering, million song dataset

1. INTRODUCTION

 Currently, there are many music streaming services,

like Pandora [3], Spotify [4], Rdio [5] and last.fm [6],

which are working on building high-precision commercial

music recommendation systems. These companies

generate revenue by helping their customers discover

relevant music and charging them for the quality of their

recommendation service. Thus, there is a strong thriving

market for good music recommendation systems.

 One thing to note is that all the above mentioned

applications use different proprietary techniques to

recommend the most relevant music to their customers.

For instance, last.fm uses a variant of user-based

collaborative filtering [7] where they consider similarity

between users based on their shared interests in music.

Contrary to that, Pandora uses the similarity between the

properties of songs or artists [8] to make appropriate

recommendations. Thus, it is an open-ended problem with

various possible solutions, and newer techniques to

improve precision are being explored in both academia

[23] and industry.

 It is important to realize that recommending music is a

harder problem than other forms of recommendations, for

e.g. recommending items on an e-commerce website like

Amazon.com. This is because music recommendation

should also include the personal context of a user. In e-

commerce space, if two items are being frequently bought

together, they can be recommended to a user if she

already bought one of them before. But, two songs being

frequently listened together doesn’t imply that a new user

would like the other song if she has already listened to

one of the songs. While recommending music, it is hard

to predict the interests of a user. It may depend on the

acoustic properties of a song or her favorite artists. A user

may also like songs listened by her friends with similar

taste in music

 In this paper, we aim to closely analyze various

algorithms which can be used to model a novel music

recommendation system. As a primary baseline

algorithm, instead of just giving random song

recommendations, we chose to give overall top N popular

songs to every user, where popularity of a song is

measured by the number of users who have listened to

that song in past. We have explored a diverse set of

learning methodologies, for e.g.,

 Instance-based learning algorithms (k-NN)

 Bayesian networks (Naive Bayes)

 Collaborative filtering approaches (both item-based

and user-based)

 Ensemble methods (Bootstrap Aggregation) over the

aforementioned algorithms.

 Before starting with implementation of these

algorithms, we made the following hypotheses based on

our intuition:

 Collaborative filtering (further referred as ‘CF’)

methods, which are the most popular recommendation

algorithms, should work better than other learning

methods.

2

 Ensemble methods should improve performance of a

learning algorithm.

 Both item-based and user-based similarity metrics

should perform almost equally well for same dataset.

From our experiments, following are some important

observations:

 The precision of our results was low in general. This

can be attributed to the fact that we ran our

experiments on a subset of the original data. It might

also be due to the choice of sub-optimal or irrelevant

features in the algorithms.

 The accuracy of a specific algorithm depended on the

dataset used. For example, for our chosen dataset user

similarity metrics based algorithms fared better than

the song similarity metrics based algorithms.

 Using ensemble methods for recommendation systems

indeed performed better than the corresponding

original state-of-the-art algorithms.

1.1 Outline

 In the following section, we describe the dataset

provided by Kaggle and how we pre-process it to

facilitate its consumption by our algorithms. Section 3

describes different learning methodologies and

approaches used in our experiments. We evaluate these

algorithms offline and analyze the obtained results in

Section 4. In Section 5, we describe the related work

being done in modeling music recommendation systems.

In Section 6, we describe the future work that can be done

to further improve the accuracy of our algorithms. We

describe our conclusions and our key takeaways from this

project in Section 7.

2. DATASET DESCRIPTION

 The Million Song Dataset (MSD) Challenge hosted by

Kaggle [1], a platform for predictive modeling and

analytics competitions, was used as the primary dataset

for our experiments. The raw data consisted of listening

history of a million users in <user_id, song_id,

play_count> format.

2.1 Preprocessing Data (Files to Database)

 Raw data from files was extracted and loaded into a

local MySQL database for easier consumption and

subsequent analysis, using simple Python scripts. The

very long string-based user and song identifiers were

converted to monotonically increasing integers to reduce

both memory and CPU-processing. Table [1] shows the

normalized schema of the database used for our project

and some random examples.

user_id song_id play_count

1 1 3

1 2 6

 [1a]: msd_data

kaggle_user_id user_id

00000b722001882066dff9 1

00004fb90a86beb8bed1e9 2

[1b]: msd_users_map

kaggle_song _id song_id

SOBQJJX12A6D4F7F01 1

SOUBEXV12AB01804A 2

[1c]: msd_songs_map

Table [1]: Database Schema of MSD

2.2 Low-level Dataset Description

 The original MSD consists of 1 million users and

songs. Processing such a large dataset is highly memory

and CPU-intensive and requires a dedicated distributed

system, for e.g. a Hadoop [20] cluster with 10 server

machines. In the absence of such a powerful system, we

opted to work on a random subset of the MSD. Table [2]

shows the detailed summary of our randomly chosen

subset of original data.

Total

Users

Total

Songs

Total

Records

Avg.

Recs/User

Avg.

Recs/Song

10000 105042 479270 47.92 4.56

Table[2]: Statistical summary of chosen subset

3. ALGORITHMS

 We developed a few baseline algorithms which would

serve as the benchmark for evaluating the effectiveness of

our main algorithms. Table [3] describes a summary of all

the algorithms being used in our case.

3.1 Baseline Algorithms

3.1.1 Top N Most Popular

 This is a simple benchmark which works by computing

the most popular songs i.e. the songs which have been

listened by the maximum number of users. Such songs are

then ranked in the decreasing order of popularity and top

N songs are returned as recommendations.

3

Algorithm Summary

Top N Most Popular Return the top N most popular

songs

k-NN Return the top N songs from K

most similar users

Naive Bayes Return top N probable songs

conditioned on listening history

Item-based CF Return the top N songs from all

aggregated similar songs from

song-similarity matrix

User-based CF Return the top N songs from all

the aggregated songs of similar

users in user-similarity matrix

Bagging Bagging approach with above

learning algorithms

Table [3]: Summary of Algorithms

3.1.2 k-Nearest Neighbors

 K-Nearest Neighbor algorithm was employed on the

user listening history. For each test user, the set of closest

K users in the training set were found. Each song was

used to build a feature vector by weighing it according to

the play count of that song for the user [9]. Closeness

between the users is computed by determining the cosine

distance between their feature vectors. The final

recommendations were obtained by merging the songs

from K-closest users, ranking them based on number of

song repetitions across those users and returning the top

N results.

3.1.3 Naive Bayes

 It is our hypothesis that the conditional probability of a

song (S) listened by a user, given the listening history

(LH), would be a good measure to recommend a song to

the user. We assume a song in the listening history is

independent of other songs in the same set. Assuming this

independence, we can construct a Naive Bayes network.

We compute:

 As mentioned in [10], there is a problem with using

plain conditional probabilities. These conditional

probabilities could be high not because the song to be

recommended was similar to other songs in the listening

history, but may be because it was popular. A less popular

song will be more reliable in giving recommendations

than the one which is among the most popular. Work

done in [10] gives a way to address such a problem by

normalizing for popularity. To do this, we divide the

conditional probability by the frequency of the song. This

frequency can be scaled by a parameter α. With α=1, we

get same result as the plain conditional probability.

3.2 Main Algorithms

3.2.1 Collaborative Filtering

 We used memory-based CF algorithms which work by

building an in-memory similarity matrix on the complete

dataset prior to recommendations.

3.2.1.1 User-based CF

 The intuition behind this algorithm is that similar users

listen to similar songs. Thus, if we know user u is similar

to user v, we can recommend v’s listened songs to u. The

main steps of the algorithm are:

 Build a user-to-user similarity matrix using cosine

similarity.

 For any test user u, find the set of all train users

similar to it from the user similarity matrix. Merge all

the listened songs of the users in the training set as

possible recommendations, excluding songs already

listened by the test user. Then, rank all the songs in the

set based on their aggregated scores and return the top

N songs to the test user.

 To determine the similarity between any two users u

and v, we use a variant of cosine similarity with a

weighing factor α [9], which ensures that all users are not

weighted equally in cosine distance calculations. A user

who listens to lot of songs does not add much

information, so she should have a lower contribution in

the final recommendations and vice-versa.

 To calculate the score of each train song c to be

recommended for a test user u, we sum the user-similarity

score for each user v in the set of train users V who has

listened to this train song c. To further emphasize the

impact of high weights and minimize for low weights, we

also added a normalization coefficient γ[9].

4

3.2.1.2 Item-based CF

 The intuition behind this algorithm is that a user is

most likely to listen to a song which is similar to songs

which she has already listened. Thus, if we know that

songs i and j are similar and the test user has already

listened to song i, we can recommend song j to her. The

main steps of the algorithm are as follows:

 Build a song-to-song similarity matrix using cosine

similarity.

 For every test user u and for every training song c

not listened by u, find how closely c resembles to the

listening history of u by summing the similarity score

for c with each song i listened by u. The final

recommendations consist of the top N train songs

with highest aggregated sums.

 To determine the similarity score between songs i and

j, we again use cosine similarity [9].

 To calculate the score of each training song c (not

listened by the test user) to be considered for

recommendation for a test user u, we sum the song-

similarity of c with all the songs in the listening history H

of the test user. The top N songs with highest scores are

returned as recommendations for the test user u.

3.2.2 Ensemble Methods

 In general, ensemble methods [22] are learning

methodologies, which generate a set of classifiers on

uncorrelated datasets and then classify test instances

based on the predictions made by those classifiers.

Ensemble approaches like bagging, boosting, and random

forests are generally used for classification tasks. Since

our algorithms generate a set of recommendations rather

than performing classifications, we have used a variant of

bagging, where instead of getting a plurality vote among

the generated models, we do smart aggregation of the

recommendations made by different models and return

the top N most relevant songs for a particular test user.

3.2.2.1 Modified Bootstrap Aggregation

 Bootstrap Aggregation (or Bagging) approach is known

for reducing the variance of the learning algorithms which

ultimately helps in avoiding overfitting. Since, ensemble

methods are independent of the learning algorithms used,

we have used our modified approach with all the base

algorithms, i.e. k-NN, Naive Bayes, and CF approaches.

 To use bagging, the algorithm is given a learning

method along with the TRAIN dataset as well as the

TEST_VISIBLE dataset (see Section 4.1 for more

details). First, we generate datasets by randomly drawing

instances from the original dataset with replacement. For

all randomly generated datasets, we build models of the

learning algorithms. For each model, we then get

recommendations (list of songs with their scores) for the

users in the TEST_VISIBLE dataset. After collecting the

list of song recommendations from all the models, we

aggregate the songs in a single data structure, while

adding up the score of a song if it is present in multiple

recommendations, and finally return the top N songs in

decreasing order of their scores.

 Bagging generally works well with unstable learning

algorithms, which are sensitive to the dataset, for e.g., k-

NN and CF approaches. In Section 4, we’ll observe the

performance of Bagging used with different learning

algorithms.

4. EVALUATION

4.1 General Methodology

 The general evaluation methodology that we used for

each algorithm is as follows:

1. Load the MSD from MySQL database.

2. Perform M-fold Cross-Validation (mostly with M=20)

3. Run the algorithm ‘M’ number of times. For each run:

a. Generate three datasets from the cross-validation

folds

 TRAIN dataset: Complete listening history of

existing users.

 TEST_VISIBLE dataset: Partially known

listening history of test users. It is used by

algorithms to make recommendations.

 TEST_HIDDEN dataset: Remaining partial

listening history of test users, which needs to be

predicted by algorithms.

b. Generate learning model using TRAIN dataset.

c. Generate recommendations using TEST_VISIBLE

dataset and the learned model. If algorithm is not

able to achieve N recommendations, bootstrap the

results with the top N overall popular songs.

d. Evaluate using the TEST_HIDDEN dataset and

compute precision for this run.

4. Return average precision for this algorithm across all

the runs.

5

4.2 Experimental Setup

 All the experiments were run on a single machine in

the mumble lab in CS department, whose configuration

was 8GB RAM, Intel(R) Core 2 Duo @2.66 GHZ.

4.3 Accuracy Metrics

 The metric we chose for computing the accuracy of our

algorithms was the precision value of song

recommendations. Specifically, it was equal to the

number of matched songs in the TEST_HIDDEN dataset

for a user (true positives) divided by the total number of

songs recommended for the user (predicted positives).

Our reason for choosing precision as the accuracy metric

is two-fold. First, this is the metric used for determining

the accuracy on Kaggle for MSD challenge [2]. Second,

precision is much more important than recall in a

recommendation system because false positives can lead

to a poor user experience.

4.4 Results

In this section, we evaluate different learning algorithms

mentioned in Table [3].

4.4.1 k-NN: Finding Optimal K

 In this experiment, we are trying to find an optimal

value of K in k-nearest neighbors algorithm which gives

best performance on the TEST_HIDDEN dataset. We

observed that the accuracy first increases up to a certain

point (when K = 40) and then decreases. With the value of

K being low, the reason of getting a low accuracy may be

susceptibility of the algorithm to the noise in the training

data. And, the reason of getting a low accuracy with the

value of K being too high may be inclusion of

recommendations from the less similar users. We can see

from Figure [1], that the optimal value of K for our

dataset comes to be around 40.

4.4.2 User-Based Collaborative Filtering: Finding

Coefficients

 Here, we try to find the variation of precision for user-

based CF algorithm as we vary α across different values

of γ and vice-versa [9]. From our experiments as shown in

Figure[2, 3], we observed that the maximum precision is

achieved for α=0.8 and γ=8.0.

4.4.3 Naive Bayes: Finding Model Parameters

 Here, we try to find an optimum value for the value α,

parameter used for normalizing the popularity of a song

to be recommended. We conducted experiments with

different values of α varying from 0.0 to 1.0. As indicated

in Figure [4], we observed that the maximum precision

was achieved for α =1.

Figure[1]: Avg. Precision for different values of K

Figure [2]: Avg. Precision vs α for User-based CF

Figure [3]: Avg. Precision vs γ for User-based CF

Figure [4]: Avg. Precision vs α for Naive Bayes

6

4.4.4 Impact of Bagging

 In this experiment, we used 20-fold cross-validation to

generate 20 different datasets, and ran our experiments to

get scatter plots showing the impact of bagging on

different algorithms. In general, we found that accuracy

of unstable learning algorithms improves with bagging.

4.4.4.1 Bagging with k-NN

 Figure[5] shows a scatter plot between k-NN

algorithms (with K = 40) with and without the application

of bagging. We can see that k-NN performed slightly

better when bagging is applied, which may be because k-

NN is an unstable algorithm, thus, applying bagging

might have resulted in different uncorrelated models,

reducing overall variance, and, hence, overfitting.

Figure [5]: Impact of Bagging on k-NN

4.4.4.2 Bagging with Naive Bayes

 We also applied bagging with Naive Bayes (with α=1),

but as we can see from the scatter plot in Figure [6],

algorithm did not perform well with bagging. This may be

because model parameters of Naive Bayes exhibit little

variation across different datasets generated by Bagging,

which might not have helped in improving the accuracy.

Figure [6]: Impact of Bagging on Naive Bayes

4.4.4.3 Bagging with Collaborative Filtering

 As shown in Figure [7] and [8], we find that both the

algorithms (for user-based CF, α=0.8 and γ=8.0) perform

better with bagging. Its reason may be same as that for k-

NN, as both the CF algorithms are sensitive to data.

Figure [7]: Impact of Bagging on Item-based CF

Figure [8]: Impact of Bagging on User-based CF

4.4.5 Comparison of Algorithms

 In this experiment, we chose optimal parameters for all

the algorithms (K=40 for k-NN, α=0.8 and γ=8.0 for user-

based CF, and α=1 for Naive Bayes), and using the same

dataset generated from 20-fold cross-validation, we

evaluated average accuracy of all the algorithms as shown

in Figure [9]. Following are results of this experiment:

 Comparing between our baseline algorithms, k-NN

performed better than TopN algorithm. This is

probably because k-NN learner uses similarity

between the users as its criteria, whereas TopN

algorithm just recommends N-most popular songs

which a user might not like.

 Figure [9] also shows that algorithms using user-

based similarity metrics have performed better than

item-based similarity metrics. For instance, both user-

based CF and k-NN showed better performance than

Naive Bayes and Item-based CF.

 Finally, we observed that user-based CF was more

accurate than k-NN. Its reason may be that in k-NN,

7

we are considering songs from only 40 most-similar

users giving equal weights to each of them

irrespective of their distance. On the contrary, in user-

based CF, we consider all the users in training dataset

and give their songs a weight corresponding to their

distance from the test user in question.

Figure[9]: Comparison of Algorithms

4.5 Discussion

 Analysis of our observed results has given us a deeper

understanding of our proposed hypotheses and the actual

results obtained. Here is the comparison of our proposed

and actual results:

1. We hypothesized that item-based CF should work

equally well as the user-based CF algorithm. From

the results, we see that user-based CF performed as

per our expectations, but item-based CF algorithm

underperformed for our dataset. This is because the

song-similarity matrix was very sparse for our chosen

dataset. On an average, 1 user listened to 47 songs,

whereas 1 song was listened by only 4 users. From

this, we infer that item-based similarity is well suited

for the case where number of items is much lesser

than the number of users. For example, Pandora has

0.8 million songs and 80 million users [8]. Thus, their

song-similarity matrix would generally not be sparse.

This is confirmed by the fact that Pandora uses

content-based recommender systems [8].

2. Bagging indeed performed better than original

models.

Other lessons that we learned from our experiments are:

1. The success of the chosen algorithm depends a lot on

the underlying dataset. This indicates that we should

ideally use a hybrid approach where we choose

different underlying algorithms based on nature of the

data. For example, if the dataset has fewer songs in

proportion to the dataset size, item-based similarity

metrics should be used, otherwise user-based

similarity metrics should be preferred.

2. Music recommendation in general is a tough problem.

Our best algorithm could only manage 13.37%

precision. We need to provide additional signals to

our algorithms to simulate user’s interests. Additional

metadata, like song’s tempo or lyrics, and user’s

preferences, like genre, can help further improve the

algorithms’ accuracy.

3. Recommendation algorithms are computationally

intensive and are well suited to be run on distributed

systems for fast parallel processing.

4. The precision accuracy is dependent on the size of

data available for learning. This is commonly known

as Cold Start problem [11], where the initial

recommendations are poor because of insufficient

user preference data. We believe our algorithms

would give better accuracy when run on the complete

MSD on a distributed cluster.

5. RELATED WORK

 Music recommender systems are currently a hot

research topic in both academia and industry. Amazon

has been at the forefront of item-based CF [17] and

relevant algorithms like Slope-one [12] have been very

effective. In our project, we experimented with the

listening history of a user and the corresponding play

counts as the signals to our algorithms. But in real-world

systems, various other signals related to song metadata, as

mentioned before, are employed to further augment the

basic algorithms.

 Research in this field also suggests that hybrid

approaches which combine multiple models generally

outperform any individual method [13]. For example,

Hybrid CF which combines both Memory-based CF and

Model-based CF has been shown to perform much better.

But hybrid algorithms are expensive and difficult to

implement. The current research focus has been to reduce

the runtime complexity of hybrid algorithms, to make

them feasible for real-world systems [14].

 Another major area of focus has been the

parallelization of recommendation algorithms.

Approaches like CF create a huge similarity matrix that

cannot fit in memory on a single machine, when dealing

with real-world workloads. For example, Spotify

currently has 10 million users, and thus, would need a

user-similarity matrix of size 10
6
x10

6
 to implement user-

based CF [15]. Thus, both the data computation and

processing has to be parallelized using distributed system

clusters (e.g. Hadoop) to enable such large-scale

8

computation. Active research is happening in both

academia [16] and industry on this front.

6. FUTURE WORK

 In this course project, our goal was to implement state-

of-the art recommendation techniques and some new

algorithms learnt in our course like Naive Bayes,

ensemble methods etc. In the future we plan to extend our

work in the following directions:

1. Add song metadata from other data sources like

MusixMatch [18], last.fm [19] etc., as additional

signals to the recommendation algorithms and test its

accuracy. We believe including the context of the

song into our algorithms would boost the test data

accuracy.

2. Run the algorithms on a distributed system, like

Hadoop [20] or Condor [21], to parallelize the

computation, decrease the runtime and leverage

distributed memory to run the complete MSD. We

believe our accuracy results would improve further

when run with the complete MSD.

3. Test additional ensemble methods, like AdaBoost

[22], and compare their accuracy with the above

recommendation algorithms.

7. CONCLUSION

 Our course project has given us a keen insight into the

recommendation systems for music domain. The low

precision of 13.37% has made us realize that predicting

songs for a listener is a fundamentally tough problem and

is dependent on many intrinsic (song’s metadata like

tempo, lyrics etc.) and extrinsic factors (user’s personality

etc.). We believe that including additional features like

song’s metadata would help in improving the overall

accuracy. We also learnt that recommendation algorithms

are highly CPU and memory-intensive and are well suited

to run on large distributed systems for faster processing.

 Our results indicate that ensemble methods tend to give

better precision as compared to the original algorithms

because of their model averaging approach. Also, the

success or failure of various algorithms depends on the

dataset involved. Our dataset had a very sparse song

similarity matrix, which led to lower precision for song-

based metrics as compared to user-based metrics.

REFERENCES

[1] Kaggle. http://www.kaggle.com/.
[2] McFee, B. and Bertin-Mahieux, T. and Ellis, D. and

Lanckriet, G. "The million song dataset challenge"
Proc. of the 4th International Workshop on Advances
in Music Information Research (AdMIRe), 2012

[3] Pandora.http://www.pandora.com/.
[4] Spotify. http://www.spotify.com/.
[5] Rdio. http://www.rdio.com/.
[6] last.fm. http://www.last.fm/.
[7] Collaborative Filtering (Source: Wikipedia).

http://en.wikipedia.org/wiki/Collaborative_filtering
[8] Pandora Radio (Source: Wikipedia)

http://en.wikipedia.org/wiki/Pandora_Radio
[9] Li, Y., Gupta, R., Nagasaki, Y., Zhang, T. "Million

Song Dataset Recommendation Project Report".
2012. Unpublished Manuscript.

[10] Karypis, George. "Evaluation of item-based top-n
recommendation algorithms."Proceedings of the tenth
international conference on Information and
knowledge management. ACM, 2001.

[11] Lam, Xuan Nhat. "Addressing cold-start problem in
recommendation systems." Proceedings of the 2nd
international conference on Ubiquitous information
management and communication. ACM, 2008.

[12] Lemire, Daniel, and Anna Maclachlan. "Slope one
predictors for online rating-based collaborative
filtering." Society for Industrial Mathematics 5
(2005): 471-480.

[13] Song, Yading, Simon Dixon, and Marcus Pearce. "A
Survey of Music Recommendation Systems and
Future Perspectives." 9th International Symposium on
Computer Music Modelling and Retrieval. June 2012.

[14] Das, Abhinandan S., et al. "Google news
personalization: scalable online collaborative
filtering." Proceedings of the 16th international
conference on World Wide Web. ACM, 2007.

[15] Spotify: Music Recommendations Algorithm.
http://www.slideshare.net/erikbern/collaborative-
filtering-at-spotify-16182818

[16] Aiolli, Fabio. "A Preliminary Study on a
Recommender System for the Million Songs Dataset
Challenge". Unpublished Manuscript.

[17] Linden, G., Smith, B., & York, J. (2003). Amazon.
com recommendations: Item-to-item collaborative
filtering. Internet Computing, IEEE, 7(1), 76-80.

[18] Musixmatch dataset.
http://labrosa.ee.columbia.edu/millionsong/musixmatch

[19] last.fm dataset.
http://labrosa.ee.columbia.edu/millionsong/lastfm

[20] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large clusters."
Communications of the ACM 51.1 (2008): 107-113.

[21] Raman, Rajesh, Miron Livny, and Marvin Solomon.
"Matchmaking: Distributed resource management for
high throughput computing." High Performance
Distributed Computing, 1998. Proceedings. The
Seventh International Symposium on. IEEE, 1998.

[22] Dietterich, Thomas G. "Ensemble methods in
machine learning." Multiple classifier systems.
Springer Berlin Heidelberg, 2000. 1-15.

[23] Sarwar, Badrul, et al. "Item-based collaborative
filtering recommendation algorithms." Proceedings of
the 10th international conference on World Wide
Web. ACM, 2001.

http://en.wikipedia.org/wiki/Collaborative_filtering
http://en.wikipedia.org/wiki/Pandora_Radio
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
http://labrosa.ee.columbia.edu/millionsong/musixmatch
http://labrosa.ee.columbia.edu/millionsong/lastfm

