
1

TweetBuzz: Identifying Buzzwords in a Domain

Prakhar Panwaria Saurabh Aggarwal
Computer Sciences Department, University of Wisconsin-Madison

{prakhar, saurabha}@cs.wisc.edu

Abstract — Since past few years, social media has
become an integral part of modern society. The user
generated social data, in the form of tweets (microblogs),
wall-postings, blogs, video blogs (vlogs), etc. contains
great wealth of information and can be exploited to
explore any field including the current affairs worldwide.
In this paper, we introduce 'TweetBuzz', an application
which uses Twitter [10] data, i.e., tweets, to analyze the
current buzzwords, the topics which are being highly
discussed, in a particular domain. This system can be
applied to any area in general, provided we have its
knowledge base; and we also show that having some
specific knowledge about the domain can also help in
improving the accuracy of the system. In our case, we
have chosen 'Hollywood movies' as our area, and using a
large set of tweets, we try to find out what all movies in a
specific genre are popular among Twitter users.

Keywords — social media analysis, information
extraction, twitter

1. INTRODUCTION

With the rapidly growing user generated (and
unstructured) data via social media, lot of research is
being done around information extraction and data
mining. The data from online social networking sites, like
Facebook and Twitter, can be used to extract a lot of
information about what is going on in the world.
Applications have been built around tweets to predict the
stock market [1], and even detecting catastrophic events
like tsunami [2] or hurricane.

In this paper, we describe our application, TweetBuzz,
which can be used to identify the popular topics, in a
particular area, being discussed by Twitter users. This
application can have various use cases when applied to
different fields. For example, if we use ‘Computer
Science’ as our domain with specific research areas, say
‘Artificial Intelligence’, as one of the concepts in our
taxonomy, one can use this application to easily know
about the recent developments and current focus of
research in the field of AI. TweetBuzz can be used for

any domain, but to facilitate explaining the application
design, we have chosen a small field of ‘Hollywood
Movies’ as our domain. And, as an output, the application
generates a tagcloud to visualize the popularity of the
movies of a particular genre requested by the user as
his/her query.

1.1 Outline

In this paper, in brief, we try to describe TweetBuzz
architecture and how it performs on the real world tweets.
In the following section, we describe the related work
done around extracting information from the data
generated from social media. In Section 3, we discuss
how we created a taxonomy of Hollywood Movies and
other useful data structures. Then, in Section 4, we
describe how to process the tweets and identify the
relevant movie mentions out of them. In Section 5, we
show how we process the user’s query and generate a
tagcloud of movies, popular among Twitter users. In
Section 6, we present the results of our evaluation and
compare those with the baselines and other solutions. We
give our conclusions in Section 7.

2. RELATED WORK

According to a 2008 survey on information extraction
[5], there is lot of work being done in the area since last
two decades. Lot of applications are being developed
which are centered around extracting meaningful
information from unstructured data. In our application,
TweetBuzz, we are using tweets to identify the current
buzzwords in a particular domain. There are similar
applications like Google Trends [3] in which they are
using the search engine data to identify the topics, people
are most curious about. But, using Google Trends, it is
difficult to know the current trends in a particular field, as
it returns only the frequently searched words which are
similar to the query. Even Twitter provides an API [17] to
get top trends from the tweets, but using it, we can only
retrieve top 10 trending topics for a specific WOEID
(Yahoo! Where On Earth ID) of a physical location.
There has been work around trend detection over Twitter

2

stream as well. TwitterMonitor [18] is one such
application, but it is more focused towards analyzing real-
time tweets to find frequently appearing (bursty) words.
They are not doing any domain specific analysis, and for
that reason, they have not built a knowledge base for any
domain or in general.

In this paper, as we have used Hollywood movies as
our domain, we looked up for similar applications which
can find top movies in a particular genre. RottenTomatoes
[11] and IMDB [12] seem to do the similar work, but they
completely rely on the ratings given by their users or
movie reviewers as feedback. Their data is already
structured, and they just need to display according to
different genres. So, their problem statement is entirely
different.

In our application, we are preparing taxonomy and
other useful data structures which can help in improving
the accuracy of the system. Lot of work has already been
done around creation and maintenance of large-scale
knowledge bases [7], but in this paper we have not build
it large enough, like getting data from multiple sources,
for e.g., Wikipedia or DBPedia, and tried to keep it
simple for easy explanation of our application design.
After creating the taxonomy, we extract movie mentions
from the tweets and try to link them with the ones present
in our taxonomy. Similar work has been done in
Doctagger [6], in which they extract and link mentions to
classify and tag tweets. However, in our case, we are not
classifying and tagging tweets, but just identifying if the
tweet is alluding to a movie.

3. PREPARING TAXONOMY

The first step of our system is creating a knowledge
base of movies in the form of a taxonomy. For efficiently
matching the tweets with taxonomy nodes, we also create
a prefix map data structure. We also generate other useful
data structures using domain specific knowledge, which
can help improve the accuracy of the system. These steps
are mentioned in detail in the following sub-sections.

3.1 Creating Taxonomy Tree

The taxonomy should be large enough to get appropriate
results from this application, and, thus, should be able to
get updated dynamically. Hence, we use the TMDB
(The Movie Database) API [13] to fetch the movies and
their genres to construct the taxonomy.

In a nutshell, the TMDB API calls are as follows:

a) tmdb.getGenreList(): Returns a list of all
movie genres.

b) tmdb.getGenreMovies(gID,lang,pg):
Returns a page of movies of the genre with gID
and language lang. This method is called
repeatedly for each genre to fetch multiple pages
of movies in each genre in order to build a big
taxonomy.

The in-memory data structure that we use to store the
taxonomy is a 3-level tree, as shown in Figure (1). The
top level is the root, the next level contains all genres, and
the third level contains a huge list of movies for each
genre. If a movie belongs to a particular genre, it is a
direct child of that genre in the taxonomy tree.

Figure (1) Taxonomy Tree

All nodes of the taxonomy tree are indexed into an
array (henceforth, referred to as 'taxonomy node name
array'). Now, since building this huge taxonomy using the
TMDB API takes lot of time, so we persist the taxonomy
in a taxonomy XML in the following format:

<taxonomy>
<node name="Action" id="-1">

<node name="Movie1" id="1"/>
</node>
<node name="Comedy" id="-1">

<node name="Movie3" id="3"/>
</node>

</taxonomy>

The id attribute of the movie node is the movie
identifier returned from the TMDB API. This is later
used to fetch the movie’s cast using TMDP API again.
Since this is specific to movie nodes, id for genre nodes
is set to ‘-1’.

Once the above XML is built and stored on disk, our
system creates the taxonomy tree directly from the XML
file on next launch of the application. Whenever the
taxonomy tree needs to be updated, we simply regenerate
it by making TMDB API calls again.

3

3.2 Generating Prefix Map

The next step is to make the lookup of the movie
names in taxonomy tree faster. We do this the same way
as is done in DocTagger [6] using a prefix map. As a
black box, prefix map takes in all the movie names, each
tweet is run over the prefix map, and the prefix map spills
out which movies are found in the tweet text.

The data structure of each entry in the prefix map is
<Key, <NodeId, isLast>>. Here, Key is the
prefix of the movie name, NodeId refers to the id of the
movie node the key refers to and isLast signifies
whether the current key is the prefix of any other prefix
key or not. If isLast is true, then the current prefix is
not a prefix to any other prefix key.

We use the insert (String movieName)
method to create the prefix map. This method inserts the
movie with name movieName into the prefix map by
splitting it into tokens separated by whitespaces. For
example, for the movie "Dead Poets Society", it will
make 3 entries into the prefix map:

i. <"Dead", <-1, false>>
ii. <"Dead Poets", <-1, false>>

iii. <"Dead Poets Society", <25, true>>
(where 25 is the index of the movie "Dead Poets Society"
in the taxonomy node name array).

Now, if we try to insert another movie "Dead Poets",
the 2nd node created in the above example gets updated
to <"Dead Poets", <10, false>> (where 10 is the index of
the movie "Dead Poets" in the taxonomy node name
array).

3.3 Using Domain Specific Knowledge

Some tweets do not mention the movie name directly,
but there may be an indirect reference to the movie by
mentioning their casts. Let's consider following tweet for
instance: 'Kristen Stewart & Robert Pattinson in Miami to
promote their latest movie.'. This tweet refers to the movie
'Twilight' but does not specifically mention the movie
name.

Our system keeps a data structure to map the actors with
all their movies. Whenever we encounter an actor’s name,
we add some score to the nodes corresponding to each
movie of the actor in the taxonomy. However, the score
added is relatively low, as at this point we have less
confidence that it is actually referring to those movies. But
if there are more than one actor’s name in the tweet, then
the nodes of the movies common to both actors have a

high score. So, the key idea is that the tweets that mention
more than one actor significantly add to the movie’s score,
but a single reference does not.

More specifically, the data structure we use is a trie, as
shown in Figure (2). The key of the data structure is the
actor’s name, and the value is a list of indexes of all movie
nodes (in taxonomy node name array) of that actor. So, for
instance, if 'Tom Hanks' is one of the leaf nodes in the trie,
and if in the taxonomy, there are two of his movies with
the node names 'The Terminal' (node id: 2) and 'Caste
Away' (node id: 5), we would have values (2, 5) stored in
the trie leaf node. The structure is as follows:

Figure (2) Movie's Cast Trie

4. PROCESSING TWEETS

So, at this point, we have already prepared all the
relevant data structures related to taxonomy of movies
(like taxonomy node name array, taxonomy prefix map,
movies' cast trie), and stored them in memory. Our next
step is to start reading the tweets and process each one of
them. The output of this step is a big taxonomy node score
map <NodeName, Score>, a mapping of name of the
node in taxonomy and its score. This map is used to get
the score of the nodes, closely related to the user's query
(see Section 5.1). Processing provided Twitter data turned
out to be an expensive process in terms of time, hence it is
difficult to process all the tweets for every user's query.
Since we have a static data source, we store the taxonomy
node score map persistently in a file, so that we don't need
to create the data structure again when the application is
re-launched. On user's next query, we parse that file to
create taxonomy node score map in memory, which we
can then use to find out the score of the relevant nodes,

4

thus preparing the tagcloud as an output. Now, we go
through each step of processing the tweet in the following
sub-sections:

4.1 Reading a Tweet

For the purpose of our project, we were given around
17GB of static twitter data (with around 7.5 million
tweets) as a single huge file. Hence, for our use case, we
simply read the file and process tweet one by one. But, our
system can be scaled to take real-time tweets as an input,
provided we have proportionally scaled hardware
resources. The tweets in the file are in JSON format,
which we parse to extract the actual text tweeted by the
user, using its 'text' tag, and process it.

4.2 Preprocessing a tweet

Next, we preprocess the tweet message. In the
preprocessing step, the result is a set of word-level tokens
which can be used to identify the movies' mentions. We
filter out common characters like white spaces, colon,
comma, full stop, question mark, and symbols like '&' and
'-'. We also apply the same filters in the movies mentioned
in the taxonomy which makes sure that we are not missing
any movies from our taxonomy when we compare the
tokens with them. We also remove the words starting from
'@' and 'RT', as we are more focused towards the context
of the tweet message rather than a Twitter user.

Since, we are only considering Hollywood Movies in our
taxonomy, we are assuming only English tweets will
mention them. We consider that a tweet is in English if it
has more than half of the words in English. In order to
efficiently check if the tweet message is in English, we
maintain a dictionary of English words in a trie data
structure, against which we compare the tokens we get
after splitting the message string over the aforementioned
delimiters.

In our algorithm, we give more weight to the hashtags, in
a sense that if a hashtag mentions a movie, we are more
confident that the tweet is talking about that movie.
Hence, in that case, we give relatively higher score to that
mention. So, we maintain two different type of tweet
message tokens:

a) Hash tokens: If we find a token starting with '#',
we consider it as a hash token.

b) Normal (non-hash) tokens: A token which is not a
hash token

So, now the set of generated tokens are clean and contain
meaningful text which we now can process to identify
mention of the movies in the tweet.

4.3 Using Web Context

Going through the tweets in the data source provided,
we observed that users generally include one or more web
links in their tweet to describe what they are alluding to.
So, we have also considered the web context of the tweet
as a relevant factor in identifying whether the tweet is
talking about any movie in particular. So, we first check if
the tweet contains any web link. If it does, we fetch the
title of the corresponding web page (using JSOUP API
[16]) , and consider it like yet another message string
linked to the current tweet, and hence perform the
preprocessing over it to find relevant tokens (we refer
them as 'web tokens'). Getting web context is a time-
consuming process, so we make sure that we find the
message context only after we have valid hash tokens and
normal tokens in the tweet.

4.4 Extracting and Scoring Mentions

This is the most important step performed while
processing a tweet. In this step, we identify any mentions
of movies in the tweet. A mention is denoted by <n, s>,
where n is the node identifier of the movie node
mentioned in the tweet and s is score given to that node by
our system. Please note that, unlike Doctagger [6], we are
not storing the matched token as we do not need any
further information from it. What we need is just the score
of relevant nodes in the taxonomy. So, the result of this
step is a map of <n, s> entries. We try to extract mentions
from all the hash tokens, normal tokens and web tokens
generated till now for the tweet. To extract the mentions
more accurately, we also use some domain knowledge
(see Section 3.3) apart from the prefix map generated from
the taxonomy.

As explained in Section 3.3, our system maintains a trie
with movies' casts, and map them to their movies in the
taxonomy tree. We use this trie to lookup for any mentions
of the movie actors in the tweets, and if we find any actor
name present in the tweet, we add the mentions of all
his/her movies present in the taxonomy, along with their
scores. After we used the movie casts as our domain
knowledge, we observed a decent amount of increase in
Recall, showing that use of domain specific knowledge
can indeed help improving the accuracy of identifying the
tweet context.

5

We use the prefix map, which we generated after we
created the taxonomy (see Section 3.2) to extract the
actual mentions in the tweet. Thus, to match the tweet
tokens with the taxonomy nodes, we use method
retrieve(String queryString) of prefix map.
This method returns the value for the key queryString
from the prefix map. The return value, as mentioned
before, is of the form: <NodeId, isLast>.If the value
returned is null, we move on to the next word. If it is non-
null, and if isLast is true, we stop appending text to the
query string with subsequent words, otherwise we keep on
appending subsequent words to lookup in the prefix map
again. For example, for the tweet 'I watched Dead Poets
Society', queryStrings generated are as follows,
considering the prefix map of the example mentioned in
Section 3.2:

i. "I": returns null
ii. "watched": returns null

iii. "Dead": returns <-1, false>
iv. "Dead Poets": returns <10, false>
v. "Dead Poets Society": returns <25, true>

Hence, as a result for this tweet, we get "Dead Poets
Society" as a movie mention, along with some score given
by the system.

4.5 Using Go-Words

In order to improve the accuracy of the system, we can
also use another form of domain specific knowledge,
which we refer to as 'go-words'. Basically, it is the
opposite of ‘stop words’ in a sense that more the stop
words in the tweet, less contextual information it contains,
but more the go-words in the tweet, more contextual
information it has, and hence, more relevant the tweet is.
Browsing through 200 tweets in our golden data set and
reading movie blogs on internet, we manually generated a
list of go-words, and their value. Their value denotes the
confidence of the tweet referring to a movie in our
taxonomy if that go-word appears in the tweet. For
instance, we include words like ‘watch’, ‘releas’ and
‘trailer’ in our go-words list. Please note that we have
stemmed the go-words (like, we have used ‘releas’ instead
of ‘release’, ‘released’, or ‘releasing’) so that we can
simply check if the words in the tweets start with any of
the go-words..

For matching the tweet tokens with go-words
efficiently, we again use trie data structure to store the go-
words.

1) We create a trie of all the go-words, with the go-
words as the key, and their value in the leaf node.

2) For each token in the tweet, we run it across this
go-word trie. If there is a match, we set the tweet
scaling factor as the go-word's value. In case of
match with another token in the same tweet, we
set it to the maximum of current scaling factor and
recently matched go-word's value.

3) If there is no go-word found in the tweet, we
assume that the tweet might not be alluding to a
movie, hence, we give a scaling factor of (1 -
MAX_FACTOR), where MAX_FACTOR is the
maximum scaling factor given to a go-word.

After, we have calculated the scaling factor of the tweet,
we apply it to all the mentions generated till now for the
tweet, thus increasing or decreasing the scores of the
movies’ nodes in the taxonomy, according to the
confidence of the movie being referred to in the tweet.

4.6 Filtering Mentions

At this point, we will have a number of movie node
mentions and their score. In order to filter out the
mentions that might not be relevant (for example, the
mentions which got score on the basis of their cast (actors)
being mentioned in the tweet), we drop the mentions
which have a score less than a threshold.

4.7 Updating Global Score Map

This is the last step performed while processing each
tweet. At this point, we will have a set of relevant movie
mentions for the tweet. So, we update our global
taxonomy node score map, which will be used while
processing user’s query (see Section 5.1), with these
mentions. We get the score of the nodes present in the
current mentions, and simply add it to the existing score of
an entry with the corresponding node id in the global map.
So, after we are done with processing all the tweets, we
will have a big taxonomy node score map containing the
movie mentions from all the tweets. As mentioned before,
since we have static twitter data, we store the global
taxonomy node score map persistently in a file, and we
use it directly whenever we restart our system for
answering user’s query. In case our twitter data set
changes, we recreate the global map and use it again for
further queries.

5. PROCESSING USER'S QUERY

Now, we are ready to take user’s query as an input, and
output a tag cloud featuring the names of the movies,
related to user's query, which have been the buzzwords in
the tweets we have as static data. The output may also

6

represent the movies that have been highly famous, or
infamous, among the users (at least those on twitter).
Since, we have a small taxonomy (a three level tree with
only 3896 movies in it), we limit the user's query to be
one of the genres, which are essentially 2nd-level nodes
of the taxonomy (also shown in Figure (1)). Following are
the steps used in answering user's query.

5.1 Getting Scores of Relevant Nodes

First of all, we get the user's genre query as an input
and find the corresponding genre node in the 2nd-level
nodes of taxonomy tree. Now, since we want to find out
the movies of that particular genre which have been
discussed in the tweets, we have to get the scores of those
movie nodes. We can easily get those by iterating through
the children (3rd-level movie nodes) of queried genre
node in the taxonomy tree, and getting the score of the
node with corresponding node id in the global map.

5.2 Preparing TagCloud

After we have scores of the movies of the queried
genre, we shortlist, for simplicity, top 30 of them
according to their scores. Then, we give each of them a
tag cloud level on 1 to 10 scale according to the minimum
and maximum score of those shortlisted movies. We,
then, create the tag cloud by preparing a well formed
HTML using a custom style sheet. For instance, if the
query is ‘Action’ and 'Musical', we generate tagcloud
shown in Figure (3a) and (3b).

Figure (3a) TagCloud for Query - 'Action'

Figure (3b) TagCloud for Query - 'Musical'

6. EVALUATION

In this section, we present evaluation of our system.
We basically discuss how our application stands on
runtime, scalability and accuracy.

6.1 Runtime

The code runtime for each part of the algorithm is as
follows:

Let number of genres in the taxonomy = G
Let number of movies in the taxonomy = M
Let number of characters in a tweet = N (~= 143)
Let average number of words in a tweet = W
Let number of characters in a web document title = T
Let number of mentions found in one tweet = X

Preparing Taxonomy and Trie:
1) Creation of Taxonomy XML = G API calls

The bottleneck in this step is the network bandwidth
& TMDB API response-time.

2) Reading taxonomy XML = M
Single parse step for each movie.

3) Creating taxonomy tree = 3 x M
Because the tree is a 3-level tree, so each movie
insertion takes 3 steps.

4) Creation of Movie Cast XML = M API calls
The bottleneck in this step is again the network
bandwidth & TMDB API response-time.

5) Reading taxonomy XML = 5 x A
Because we fetch top 5 casts for every movie.

6) Creating movie cast trie = 20 x 5 x M = 100 x M
Assuming average length of a movie cast's name to
be 20 characters long, insertion in a trie takes as many
steps as the number of characters in the name.

Processing Tweets (complexities per tweet):
1) Preprocessing = N

Linear lookup of non-alphabetic characters and doing
preprocessing steps accordingly.

2) Tokenize tweet = N
Lookup of whitespace and other separators in a tweet.

3) Web context = N + 1 + T
Finding hyperlinks in the tweet takes N steps. JSOUP
[16] API call (which is the bottleneck) takes 1 step to
get the title of web document. T steps to tokenize the
title returned.

4) Extracting movie mentions = W
Linear in the number of words in tweet (using prefix
map).

5) Extracting movie cast mentions = N
Trie lookup is linear in the number of characters in
the tweet.

6) Go words lookup = N
Trie lookup again, linear in the number of characters
in the tweet.

7) Filtering mentions = X
Linear in the number of mentions found.

7

Finding final results:
1) Preparing tag cloud = U(X)

Where U(X) stands for the set union of mentions
found in each tweet.

Overall Complexity:
Since we prepare the taxonomy just once and then

persist the Movie & Movie cast XML's, that overhead is
incurred just once. The main complexity lies in the tweet
processing step.

So, Total complexity = 5N + W + T + X + 1

Now, since number of characters in a tweet is much
greater than the number of words and mentions in a tweet
or words in a title,

N >> W, T, X
So, overall complexity per tweet = 5N, where N is the
number of characters in a tweet.

6.2 Scalability

Here, we try to evaluate whether our system is scalable
enough to process the tweets coming from live Twitter
stream instead of reading it as static data from a huge file.

Number of tweets in the provided
Twitter data

~7.5 million

Time taken by TweetBuzz to
process all the tweets

~10 minutes

Average number of tweets
processed by TweetBuzz

~12500 / second

Maximum number of tweets
observed in live Twitter stream

~9000 / second
[ref. 15]

Table (1) Scalability Evaluation

Thus, from Table (1) and the value of average number
of tweets processed per second, we can see that our
system is capable of processing the data coming from live
Twitter stream.

6.3 Accuracy

We ran our system over the golden data set containing
200 tweets. We present the results of the system's
accuracy evaluation over the golden data set in terms of
Precision (P), Recall (R) and a function (F) with the value
2PR/(P + R), on the scale of 0 to 1. In our case, precision
means the ratio of the number of correct movie mentions
identified by TweetBuzz over the golden data to the total
number of movie mentions identified by TweetBuzz, and
recall means the ratio of the number of correct movie

mentions identified by TweetBuzz to the actual correct
movie mentions identified manually. In Table (2) below,
TweetBuzz includes use of movie cast and go-words
knowledge, and also web context in the system design.
Then, we compare our results with the solutions having
less features, like without web context, without movie
cast, and, then, without any of these features (i.e., simple
matching with the prefix map).

Solutions P R F
TweetBuzz 0.07 0.82 0.13
No Web Context 0.07 0.82 0.13
No Movie Cast 0.20 0.33 0.25

Naive 0.20 0.33 0.25

Table (2) Accuracy Evaluation

Following are some of our observations and lessons
learned while doing accuracy evaluations:
 Using the movie cast to increase the score of a movie

node works well to increase the recall of the system
(from 0.33 to 0.82), but the precision goes down
(from 0.20 to 0.07). This is because a cast or even a
pair of casts can be in more than one movie. For
example, a tweet mentioning “Robert Downey Jr.”
may refer to “Iron Man” or “Sherlock Holmes”.

 The reason why web context doesn't seem to improve
accuracy of our system over our golden data set can
be that we only lookup the title of the web document
so that the tweet processing is fast enough. Looking
at the whole web document is very time consuming
and may also return false positives For example, if
the link points to a news website, then we may
discover news articles on the same page that are not
relevant to the tweet.

 We also noticed that using go-words feature did not
add much to the recall. This is probably because we
manually added the list of go-words and intuitively
assigned them scores. This can be better handled by
reverse learning the words that are used in the tweets
which are about movies. But this would need much
larger training data (golden data) set, in terms of
number of tweets, than what we currently had.

 The precision and recall of the system varies a lot
depending on the source of tweets. The initial golden
data we tried to collect was from the twitter handle
“@Movies”. That turned out to be a bad idea because
all the tweets had the movie names perfectly
mentioned in the tweet. In such cases, where simple
string matching over the movie name works, naive
algorithm’s accuracy comes out to be higher.

8

 Our final golden data was collected as a combination
of different types of tweets, some which directly
mentioned the movie name, some which seemed like
they mentioned the movie name but they did not, and
some that indirectly talked about a movie. This was
done using Twitter4J API [14] and searching for
tweets with different keywords.

7. CONCLUSION

In this paper, we have discussed the design of our
application, TweetBuzz, which can take Twitter data as
its input and generate a tagcloud of buzzwords in a
particular domain. We used ‘Hollywood Movies’ as our
domain, so the application outputs a tagcloud of the
movies which are highly discussed in the Twitter world.
We also show how using domain specific knowledge (for
instance, Movie Casts and Go-Words) can improve
accuracy of the system. There can be various use cases of
this application when applied to different fields.

REFERENCES

[1] Bollen, Johan, Huina Mao, and Xiaojun Zeng.
"Twitter mood predicts the stock market." Journal of
Computational Science 2.1 (2011): 1-8.

[2] eddine Dridi, Houssem. "An approach for analyzing
textual data in microblogs."

[3] Choi, Hyunyoung, and Hal Varian. "Predicting the
present with google trends". Economic Record 88.s1
(2012): 2-9.

[4] Mangold, W. Glynn, and David J. Faulds. "Social
media: The new hybrid element of the promotion
mix." Business horizons 52.4 (2009): 357-365.

[5] Sarawagi, Sunita. "Information extraction."
Foundations and trends in databases 1.3 (2008): 261-
377.

[6] Doan, AnHai. (2013). "Entity Extraction, Linking,
Classification, and Tagging for Social Media: a
Wikipedia Based Approach". Unpublished
manuscript.

[7] Doan, AnHai. (2013). "Building, Maintaining, and
Using Knowledge Bases: A Report from the
Trenches". Unpublished manuscript.

[8] Wong, Felix Ming Fai, Soumya Sen, and Mung
Chiang. "Why watching movie tweets won't tell the
whole story?." Proceedings of the 2012 ACM
workshop on Workshop on online social networks.
ACM, 2012.

[9] Asur, Sitaram, and Bernardo A. Huberman.
"Predicting the future with social media." Web
Intelligence and Intelligent Agent Technology (WI-

IAT), 2010 IEEE/WIC/ACM International Conference
on. Vol. 1. IEEE, 2010.

[10] Twiiter. http://www.twitter.com/.

[11] Rotten Tomatoes - Top Movies.
http://www.rottentomatoes.com/top/.

[12] IMDB - Genres. http://www.imdb.com/genre/.

[13] The Movie Database. http://www.themoviedb.org/.

[14] Twitter4J. http://twitter4j.org/en/.

[15] YearInReview - Tweets Per Second.
https://blog.twitter.com/2011/yearinreview-tweets-
second.

[16] JSOUP. http://jsoup.org/.

[17] Twitter - Get Trends API.
https://dev.twitter.com/docs/api/1/get/trends/%3Awoe
id

[18] Mathioudakis, Michael, and Nick Koudas.
"Twittermonitor: trend detection over the twitter
stream." Proceedings of the 2010 international
conference on Management of data. ACM, 2010.

