Image Texture Tiling

Philip Reasa, Daniel Konen, Ben Mackenthun

December 18, 2013

Contents

| Experiments|

M

Energy Functions| o

M

Image Reduction|

[Resultsl

10
10
10
10

11
11
11

11

Abstract

There has been extensive research done on the subject of texture synthesis. The main focus has
been growing/continuing textures. We hope to explore the concept of texture synthesis beyond
simply increasing the texture size, and into tessellating/tiling the texture. When a "single unit”
of texture can be tiled such that seems are not seen and borders are hidden, the texture can grow
endlessly in all directions; something that current texture synthesis methods cannot achieve. Using
techniques such as seam carving to produce minimum energy costs, our group hopes to be able
to discover a ”single tile” of texture from an input image that contains the texture. This will be
applicable in areas such as web development, and anywhere else were images are not processed to
extend texture, but rather naively tiled.

Introduction

I Motivation

Texture Tiling

Although we have seen texture synthesis algorithms that can be applied in limited amounts (filling-
in small areas), we wanted to create an algorithm that was able to work perpetually; specifically
for its applications in web development. The first time that the need for such an algorithm was
realized was during a summer job when there was a need to find a tiling portion of a texture. Per
a mock-up, a background image had to be applied to a web-page, however the background image
provided did not tile without artifacts. Although the pattern present in the background image was
able to tile, the provided image in its current state did not. Without an algorithm to solve this
problem a simple guess and check was the most practical for finding such a tiling image.

Image Reduction

Seeing this problem from a completely different perspective, this problem is also a problem of
reduction. Specifically we are reducing a large image to a smaller image that can be used to
accurately regenerate the larger image.

IT Problem Statement

Given an input image (In) create an output image (out) such that when out is tiled it accurately
reconstructs In, and can continue to tile to grow beyond the original size of In.

n |:> ou

out | out | out

out | out | out —

out | out | out

IIT Related Work

There has been related work on texture synthesis done by Efros and Freeman [2] and Efros and
Leung [I]. These works are based off filling in texture holes, and in order to continue the texture
synthesis substantial computing power must be used. Our approach differs as the initial computing
is done all up front, and the continued synthesis can easily be carried out afterwards. That being
said we do use SSD error detection as suggested by Efros-Leung[I] and compute the energy functions
as done by Efros-Freeman [2]. We also solve a simpler problem than these two papers are solving.
We assume that the input image contains a tile that can be perpetually repeated. This means that
virtually no natural picture will satisfy our assumption, and only intentionally created patterns will
work - obviously an easier problem, but still with many applications.

Our Method

First: We have three specific parameters that are set for each run of our code.

1. Energy Mode - used to specify what energy function should be used. We chose to implement an
SSD similar to Efros-Freeman [2]. Other options for this are listed in the results/experiments
sections.

2. Seam Mode - specifies how the vertical seam within the energy image is computed. We cur-
rently have two methods implemented: (1) a straight seam, and (2) an 8-connect seam. The
best results tended to be produced by a straight seam; more information in results/experiments
sections.

3. Reduce Factor - specifies if we were going to find an global minimum seam or just a local
minimum. As mentioned in the results/experiments sections, we used global as it produced
better results.

Our basic tile finding algorithm (vastly simplified) is as follows
1. given image In
2. for all possible outputImage widths

(a) overlapingPartsO fImages = getOverlap(in, width)
(b) e = energyFn(overlapingPartsO fImages)
(¢) s = findBestSeam(overlapingPartsO f Images, e)
)

(d) currentBestMin = min(energyOfSeam(s),currentBestMin)
3. outputImage = squarelmage(In,s)
4. rotate image, re-run with in = outputImage

To clarify our algorithm we will briefly explain each step, however the exact algorithm can be
found in our code. Part 1 is simply accepting input from the user. Part 2 is very complex. In
essence we are trying to trim the input image so that its right-hand side perfectly matches its
left hand side. We do this like they do for image quilting. We choose a certain amount of over-
lap (multiple different amounts are iterated through at part 2), and then find the best seam so
that the pixel at (r,c) on the RHS will look good next to the pixel at (r,c + 1) on the LHS.

IN |::> LHS || RHS |::>

Step 3 is mostly an artifact of our implementation, but still is worth mentioning. We are left
with an image like (1) after we find the best seam. At that point we have to make the image
regular, so we merge the two jagged sides (which are mirrors of one another). In (3) it is im-
portant to note that any ”artifacts” that will be created during the tiling can be clearly seen in
the middle of this picture. This makes validatiop of the success of the algorithm much quicker.

(1) 2 - ©)

After step 3 we have an image that should tile nicely in the horizontal direction, so step 4 just
rotates and repeats in order to provide good tiling in the vertical direction. It is important to note
at this point, that a truly optimal algorithm would solve the vertical and horizontal seam at the
same time, however due to computational complexity we separated it into two distinct steps. Also
note that our output image will have to be rotated back before our algorithm returns.

Experiments

There are a number of things we could have done differently while calculating the seams. There
were many tradeoffs we had to decide on, and many things which we would like to implemented
when we get more time. Carving the seams was one of the bigger experiments because of the way
tessellating tiles worked. The way we calculated the energy of the tessellating image we were given
is something else that could be changed. There are also two functions in particular that could
increase the overall effectiveness of our program. These functions are finding the minimum tile and
verifying that no loss of data occurred.

I Seams

When calculating the minimum energy seams, we implemented it two ways: locally and glob-
ally. Calculating the minimum energy seam locally has the bonus of being fast, however it is
not guaranteed to be the best seam whereas calculating the seam globally is slower, but it will
be the very best seam available. We saw the best results for global seams, and the test images
we ran it on had no noticeable slow down due to the the global search. Another area to exper-
iment with came up when we were calculating the seam was how the seam-line was formed. We
initially thought the best way to do it would be a vertical 8-connected path of pixels in the im-
age from top to bottom with only one pixel in each row of the image. We quickly realized that
if we are given a texture that is already known to be tile-able (i.e. there is a perfect and dis-
tinct pattern present in the input image), a straight seam will produce much better results. We
tested this idea and found that the straight seams did produce much smoother tiles than the 8-
connected seams in the general case. When the input images were not perfect (there was not an
exact tile to be found) the 8-connect seam had more potential to produce a good result, how-
ever the errors were still very noticeable. An area for further exploration is n-connect seams.
instead of limiting our seams movement to 8 pixels, we could try arbitrary amounts (like 24)

n-connect

8-connect

24-connect

II Energy Functions

We calculated the energy using the sum of squared difference technique. Because of this, when we
rotate the image to find the horizontal seams we end up losing previously weighted pixels in the
final image. A way to mitigate this loss this would be to use a Gaussian weighted sum of squared

difference energy function. This would keep pixels in the center of the image at a higher weight (as
they are more likely to be in the output image), and limit the loss of weighted pixels during step
4 of the algorithm. Another experiment we wanted to try but were unable due to computational
complexity is the have a gradient energy function.

IIT Image Reduction

The initial idea behind our project was to make a program that would find the smallest tile possible
while keeping the texture tile-able. Originally, however, the smallest possible tile we could produce
was 1/4 the size of the input image. We resolved this by running our program through a loop. Our
program would find a smaller tile if possible, then compare the error values to previous error values,
and once those error values stopped improving we stopped looping and returned the previous tile.
This gets us the smallest tile possible if our program is running correctly. Another function we are
hoping to add is a function that would compare the original tile’s repeating pattern with the new
tile’s repeating pattern, and determine if they were a perfect match. Obviously, this is fairly easy
to determine by eye in most cases, but it would make finding the smallest possible tile easier. With
more time we would like to implement a function that did the comparison for us, and would return
a boolean to see if we lost data. With a function like this in place we would actually be able to
use our project as a compression tool for images! This could be a great utility for companies that
handle large amounts of image data.

Results

Our Results can be found on our website, and you can generate your own results using our code
(website and code can be found in Work Details Section). There were quite a few interesting results.
They can be broken down into the following categories:

1. Non-Tileable - Some images were simple impossible to tile. An example of this is the blue
bird MC Escher painting that is on our website. Although there is a distinct and obvious
pattern present, our algorithm cannot pick it up. This is because there is no ”"box” that
would produce a perfect tile present in the image. The pattern never fully repeats in the
painting, and although our human eye can extrapolate the image, there isn’t enough data for
our algorithm to work.

2. Seam - Our best results were produced by straight seams. That being said, if a perfect pattern
was not present in the input image 8-connect seams did produce better results. The image
below is an example of no perfect tile begin present, and the straight seam output. You can
see how a better seam could be found, even if it wasn’t a perfect seam.

3. Wrong Pattern - Occasionally our algorithm would pick up the wrong pattern. Although the
output it produced did tile perfectly the pattern was not what was input into the program.
There are multiple examples of this on our website. This is part of the motivation behind
wanting to add a function to check if the image produced was a perfect representation of the
input image.

4. Perfect tile - It has been alluded to multiple times that an input that contains a perfect
tile produces the best results. Not only is the pattern important, however, but the color is
too. Our yellow MC Escher painting example (again on our website) is an example of this.
Although our algorithm picked up the pattern perfectly Escher’s painting had a gradient from
top to bottom that produces an obvious artifact in the results.

Work Details

I Approximate lines of code

PHP: 50
HTML/CSS/JS: 300
MATLAB: 350
C(MEX): 150

IT Work Per Person

Idea exploration: Phil, Dan, and Ben

Initial Repo Setup/Project Start: Phil and Ben
Website core: Phil and Ben

Website style: Phil and Dan

Matlab code core: Phil

Matlab experiments: Phil, Dan and Ben

Paper: Phil, Dan and Ben

Presentation: Phil and Dan

IIT Data Locations

Website located at: http://pages.cs.wisc.edu/~preasa/534
Examples Images located at: http://pages.cs.wisc.edu/~preasa/534/output.php

Code repo (made public on 12/18) located at: https://bitbucket.org/534team/final-project/

10

http://pages.cs.wisc.edu/~preasa/534
http://pages.cs.wisc.edu/~preasa/534/output.php
https://bitbucket.org/534team/final-project/

Conclusion

I Further Work

1. isPerfect function
2. More energy function (Possibly gaussian weighted SSD)
3. n-connect seam

4. more results

IT Assessment

Our algorithm seems to solve the problem for almost all images for which a tile is clearly present.
Although this is a very small subset of all images, we do have a viable solution. Our algorithm
does fail under certain cases, such as the minimal energy providing visually unappealing break in
the pattern. Overall, however, we are satisfied with the results and look forward to future research
and implementation both into patterned image reduction and patterned image tiling.

11

Bibliography

[1] Cecilia Aguerrebere, Yann Gousseau, and Guillaume Tartavel. Exemplar-based Texture Syn-
thesis: the Efros-Leung Algorithm. Image Processing On Line, 2013:213-231, 2013.

[2] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis and transfer.
Proceedings of SIGGRAPH 2001, pages 341-346, August 2001.

Code Contributions: All code was written by the authors specifically for this project save the
attributions below:

1. Website skeleton: Boilerplate HTML5 (http://html5boilerplate.com/)

2. seam_overlay.m: modified from project 3 code

12

http://html5boilerplate.com/

	Abstract
	Introduction
	Motivation
	Problem Statement
	Related Work

	Our Method
	Experiments
	Seams
	Energy Functions
	Image Reduction

	Results
	Work Details
	Approximate lines of code
	Work Per Person
	Data Locations

	Conclusion
	Further Work
	Assessment

	References

