
IR Timing Device
Version 1.0

Designed & Constructed by:
Peter K. Keller

psilord@cs.wisc.edu
Copyright 2007

Dedicated to the advancement of science and to my wife—who endured a lot of headaches 
and was of great help.

DESCRIPTION
The purpose of the IR Timing Device, henceforth “the device”, is to temporally measure 

the occlusion/present state changes of an infrared beam to approximately 1 millisecond 
resolution. The device auto-calibrates to the ambient IR intensity in the area, detects the 
state change events, and then sends the calibration and event data to a program running on 
a host computer via the serial interface. 

DESIGN

Power Supply
Figure 1 details the schematic for the power supply which is powered by a +9 volt 

800mA power brick with a positive tip, and negative shield. Diode A1 provides reverse 
polarity protection and even though the voltage drop is ~0.6V, it happens before the input 
into the 7805 voltage regulator, thus the regulator “sees” about 8.4 V as input. A2 smoothes 
the incoming power to A3 and is the values are picked such that the farad value is more 
than twice what the possible current draw of the device may be, and the voltage rating is 
more than twice possible of the input voltage. This heuristic was derived from 
“conventional wisdom” in creating this specific power supply. A3 has a heat sink since it 
may dissipate approximately 3 watts of power (due to 8.4 V * .800 A = 2.7 Watts). The 
circuit as a whole does not draw that much power but the heat sink will ensure a long life 
for A3. A4 is a high frequency sink which tries to remove as much of the ripple from the 5 
volt output supply of A3. A5 is present to act as a current sink to drain the power supply 
when the system is turned off or partially connected (as in when building or testing the 
device). A6 and A7 constitute the power light of the circuit. A7 has a voltage drop of 1.7 V 
and we would like a current of about 15mA going through the LED, so (5 V – 1.7V) / 
(15mA / 1000) = 220 Ohms for A6.

IR Emitter
Figure 2 details the schematic of the infrared emitter circuit. B1 was chosen to allow 

about 90mA (dissipating ~.5 Watt through B1) of current through B2 and in the actual 
implementation is comprised of three 10 ohm 1W resistors in series. This implementation 
detail is due to the availability of parts on hand. The PIC16F688 can only source a current 
of 20mA through a single pin so since B2 needs more current B4 was needed. Transistor 
B4 is switched on and off by the PIC16F688 via pin RA4 with logic 0 being off for B4 and 
logic 1 being on with respect to B4. B3 is chosen as to allow approximately .5mA current 

1



through the base-emitter path of the transistor. B3 protects the transistor from destruction 
and allows it to enter saturation, acting like a switch and allowing it to supply current 
through B2.

IR Detector
Figure 3 is the schematic for the infrared detector portion of the circuit. C1 limits the 

current sunk by RA2 to 5mA since the PIC16F688 cannot sink more than 20mA per pin. 
Photodiode C2 acts as a short to ground in the presence of infrared radiation and as an open 
circuit when no infrared radiation is present. Note that output voltage to RA2 does not go 
to zero in the presence of a full infrared beam, instead being ~.6V due to the voltage drop 
of C2. This is compensated by the calibration algorithm in the programming for the 
PIC16F688.

Beam Status Light
Figure 4 is the schematic for the beam status light. This light represents the occlusion or 

presence of the IR beam. It is on of the IR beam is present and off if the IR beam is 
occluded. We choose 15mA for the current through D2 (whose voltage drop is 1.7V) so D1 
is chosen with (5V – 1.7V) / (15mA / 1000) = 220 Ohms. Since the PIC16F688 may source 
up to 20mA from a pin, the beam status light is driven directly off of the RA4 pin.

IC Power and Serial Communication
Figure 5 is the schematic for the power supply for the PIC16F688 and MAX233A 

integrated circuits and the serial port communication path. E5 and E6 sink high frequency 
signals to ground as to minimize the number of glitches the ICs might experience. E3 is 
present to prevent current droops to E2. E4 has been hardwired to automatically respond in 
the affirmative according to peripheral hardware handshaking protocols the host computer 
might perform. Both the transmission and reception communication channels are present 
even though the current design only uses the transmission line. This is for future 
expandability in the form of the host computer being able to speak to the device in case of 
programming changes on the PIC16F688. E2 is needed to transform the TTL logic the 
PIC16F688 outputs to the serial line level, which has -12V representing logic one and +12 
volts representing logic 0. In the construction of the device, the serial lines were twisted in 
order to minimize magnetic interference with nearby wires. The serial protocol 
configuration is 19.2K baud, 8 bit, 1 start bit, 1 stop bit, and no parity bit. The protocol the 
device emits to the host computer is detailed in Appendix C.

Reset Switch
Figure 6 details the reset switch circuit. It is an RC network where F1 and F2 are tuned 

to 100 ms (.1 uF * 1000 Ohms = 100ms). A very similar circuit is recommended in the 
PIC16F688 manual to debounce the reset switch even though the MCLR pin has circuitry 
to ignore small pulses. F3 is a momentary normally open push button switch and when 
pushed causes the MCLR line to go to ground halting the PIC16F688. The PIC16F688 is 
reset when the switch is released and MCLR is again allowed to reach 5 volts.

2



Project Box and Face Plate
Figure 7 is the layout for the face plate in the project box. The dotted box represents the 

PCB which is connected inside the box and upside down via 10mm standoffs directly to the 
faceplate. The 7805 box represents where the 7805 is located with respect to the face plate. 
This is important since ventilation holes in the side and bottom of the project box are 
drilled nearby the 7805’s heat sink and when the face plate is screwed onto the box the 
7805 must be near the holes. The detector and emitter jacks are 1/8 inch mono jacks with a 
positive tip and negative shield. The detector jack is the left jack, and the emitter jack is the 
right jack. The black lead must plug into the detector jack and the red lead must plug 
into the emitter jack. The power jack is a size “M” coaxial jack which accepts + tip and – 
shield power plug. The power switch is labeled with 0 for off and 1 for on. The power light 
is green and the beam status light is red. The DB25 connector must be female. The project 
box is 6x4x2 inches in volume and made of a hard black plastic material for easy drilling 
and shaping. All source/sink wires from the PCB’s header to any component on the 
faceplate must be twisted to minimize magnetic interference.

Instrument Leads
There are two leads for the instrument, the emitter lead and the detector lead. The 

emitter lead is the red jacketed lead and the 1/8 connector tip is positive and the shield is 
negative. The lead has a shielded cable, but the shield is currently not connected. The 
detector lead is the black jacketed lead whose 1/8 connector tip is positive and shield is 
negative. This lead also has a shielded cable, but that is also not connected.

PIC16F688 Assembly Code
The assembly code is heavily commented and attached as Appendix D. The only thing 

of special note is that currently the device simply sends the event changes to the host 
computer who then performs the timing according to when the host computer received the 
data. If the device’s accuracy is to be increased, then the assembly program for the 
PIC16F688 would have to be altered so the device performs the timing itself.

Host Computer Program
This simple program is heavily commented and attached as Appendix E. This program 

simply reads the event data from the device, figures out the time differential from the last 
event, and prints it out to the screen. There is no special requirement which causes this 
code to be written to the Linux environment only that it was what my available resources 
were.

Verification of the Device
Mathematics, detailed in Appendix F, shows the reasoning to detect if the device is 

working or not. The basic idea is to let a ½ inch diameter rod fall from a known height of 
ten centimeters through the beam. We calculate the time differential from when the leading 
edge of the ½ inch diameter rod breaks the beam and when the following edge restores the 
continuity of the beam. Then the physical system is constructed and we allow the device to 
measure the actual time difference. Appendix G is the data table and analysis which shows 
the accuracy of the device and host computer working in tandem.

3



Recommended Use of Device

The emitter IRLED and the detector photodiode should be enclosed in a blackened 
shroud, especially the back of the detector. This will prevent ambient IR from causing 
calibration or beam state detection failures. The emitter and detector should be securely 
attached to their mounting to prevent alignment shifts during use of the device.

Do not drop the detector as it may unseat the ICs inside the enclosure. If they happen to 
unseat, replace them with an IC insertion tool such that the notch end of the IC matches the 
notch end of the IC holder and the pin counts match.

Before each measurement run with the device, it is recommended that the device be 
reset as to recalibrate itself according to the ambient IR conditions.

While precautions in the construction of this device were performed, the device might 
perform unreliably in the event of strong electromagnetic interference.

The host operating system of the computer to which the device connects may be any 
operating system which provides a suitable serial port abstraction.

Do not expose the device to temperatures below 0 degrees centigrade and above 40 
degrees centigrade.

If the calibration fails and both on and off values are high, it means that the beam is 
misaligned.

If the calibration fails and both on and off values are low, it means there is too much 
ambient IR in the room for the device to function.

4



5



6



7



8



Acknowledgements

I would like to thank Sean Petzold for granting me a wonderful opportunity to build a 
fun project, Dan Bradley, a friend of mine who checked the mathematical reasoning for the 
validity test, and last but not least, my wife Stephanie Keller, without whom I would not 
have been able to complete this project.

Licensing

The host computer client code, the PIC16F688 assembly code, the schematics, this 
document, and the device itself are under the BSD license.

9



APPENDIX A

Bill of Materials
Note: All LED packages are 5mm T-1 ¾.

Quantity Item Price
1 PIC16F688 $0.00
1 MAX233A $0.00
2 220 Ohm, 1/4 W $0.26
3 1 KOhm, 1/4 W $0.26
1 10 KOhm, 1/4 W $0.26
3 10 Ohm, 1 W $2.24
1 LM7805 Voltage Regulator $1.59
1 1N4004 Diode $0.19
1 2N2222 NPN Transistor $0.23
1 10 uF 50V Electrolytic 20% $0.22
1 2200 uF 35V Electrolytic 20% $4.49
1 IRLED 1.3V 150mA 950nm $1.75
1 IR Detector 5Vec 50mA 850nm $1.75
4 .1uF 50V Ceramic 20% $2.98
1 14-pin IC Holder $1.29
1 20-pin IC Holder $0.69
1 6x4x2 plastic project box $4.99
2 1/8 inch mono jacks $3.99
2 1/8 inch mono plugs $1.50
1 DPDT Power Switch $3.99
1 Red LED 1.7V, 15mA $1.00
1 Green LED 1.7V, 15mA $1.00
1 DB-25 Female with solder leads $1.99
1 Type M coaxial power jack $1.99
1 Type M coaxial power plug $0.00
1 9V DC 800mA Wall Wart $18.99
1 db-25/db-9 serial cable $9.99
1 Small Pushbutton N.O. Momentary Switch $0.87

6 feet 2 conductor twisted/shielded cable $1.20
Various Heat shrink tubing small/medium diameter $1.50

4 10mm standoff with 2 2-3x5mm screws $2.99
1 TO-220 heat sink $1.49
1 TO-220 heat sink mounting hardware $1.99
1 Component PC Board (RS 276-168) $3.49

Enough Red 22awg wire $0.50
Enough Green 22awg wire $0.50
Enough Black 22awg wire $0.50

4 Cushion Feet $0.66
2 LED snap holders $0.60

Total: $83.92

10



APPENDIX B

Construction
One thing to note here is that the PCB board I used from radio shack (detailed in the 

BOM) has an erroneous labeling of the row numbers, so be aware of this when following 
these instructions.

The Header Pin Table describes the meaning of each header pin on the PCB. When 
connecting the header from the PCB, choose the “bottom” holes when soldering them into 
place. The “upper” holes will be used for connecting the header to the components on the 
face plate.

HEADER 
PIN ASSIGNMENT
1 +9V
2 GND
3 + Power Light
4 - Power Light
5 Serial TX
6 Serial RX
7 + IRLED
8 - IRLED
9 + Beam Status Light

10 - Beam Status Light
11 + Reset Switch
12 - Reset Switch
13 Not Connected
14 + Detector Input
15 - Detector Input

The PCB Placement Table describes where each piece is placed onto the specified PC 
Board. Note that the Serial TX/RX lines must be twisted both from the PIC16F688 to the 
MAX233A and also from the MAX233A to the header connection. Before attaching the 
LM7805, ensure to connect the heat sink such that when the LM7805 is placed onto the PC 
board, the tines of the heat sink point to the inside of the board.

PCB PLACEMENT TABLE
Part Placement

220 Ohm, 1/4 W 3,B3 - 7,B3
1 KOhm, 1/4 W 9,E4 - 13,E4
1 KOhm, 1/4 W 2,D2 - 6,D2
1 KOhm, 1/4 W 24,B3 - 28,B3
10 KOhm, 1/4 W 3,C4 - 7,C4

10 Ohm, 1 W 5,C2 - 12,C2
10 Ohm, 1W 13,C2 - 20,C2
10 Ohm, 1W 21,C2 - 28,C2

220 Ohm, 1/4 W 8,B3 - 12,B3
1N4004  (cathode) 2,A4 - 2,B3 (anode)
2N2222 C[2,C3] B[3,C3] E[4,C4]

11



14-pin IC Holder Pin 1: 10,D4
20-pin IC Holder Pin 1: 19,D4

10uF 50V Electrolytic (plus) 27,C5 - 29,D1 (minus)
.1uF 50V Ceramic 9,D3 - 10,D3
.1uF 50V Ceramic 24,D3 - 25,D3
.1uF 50V Ceramic 7,D2 - 8,D2
.1uF 50V Ceramic 22,B3 - 23,B3

2200uF 35V Electrolytic (plus) 2,A3 - 18,A3 (minus)
LM7805 IN[26,A2] GND[25,A2] OUT[24,A2]

Jumper Power Supply H1 - 2,B4
Jumper Power Supply 2,A2 - 26,A3
Jumper Power Supply H2 - 18,A2
Jumper Power Supply 18,A4 - 25,A3
Jumper Power Supply 24,A3 - 22,B2
Jumper Power Supply 25,A4 - 23,B2
Jumper Power Supply 22,B4 - 24,B2
Jumper Power Supply 23,B4 - 28,B2
Jumper Power Supply 24,B4 - 24,B5 (+5V rail)
Jumper Power Supply 28,B4 - 28,C1 (GND rail)
Jumper Power Light 7,B5 - 7,B4
Jumper Power Light 3,B4 - H3
Jumper Power Light H4 - 1,B3
Jumper PIC Supply 10,D2 - 10,C5
Jumper PIC Supply 10,E3 - 9,D4
Jumper PIC Supply 9,D2 - 9,D1

Jumper MAX233A Supply 25,D2 - 25,C5
Jumper MAX233A Supply 28,D3 - 23,E3
Jumper MAX233A Supply 28,E3 - 24,E3
Jumper MAX233A Supply 27,E3 - 22,E3
Jumper MAX233A Supply 24,D2 - 24,D1
Jumper MAX233A Supply 27,D2 - 27,D1

Jumper IR Emitter 29,B5 - 28,C3
Jumper IR Emitter 21,C3 - 20,C3
Jumper IR Emitter 18,C3 - 17,C3
Jumper IR Emitter 5,C3 - H7
Jumper IR Emitter H8 - 2,C2
Jumper IR Emitter 4,C2 - 4,C1
Jumper IR Emitter 12,D3 - 7,C3

Jumper Beam Status Light 11,D3 - 12,B4
Jumper Beam Status Light 8,B4 - H9
Jumper Beam Status Light H10 - 1,C5

Jumper IR Detector 13,E3 - H14
Jumper IR Detector H15 - 1,E1
Jumper IR Detector 9,E3 - 9,F1

Jumper Reset Switch 2,D3 - 2,D5
Jumper Reset Switch 7,D3 - 6,D3
Jumper Reset Switch 8,D3 - 8,E1
Jumper Reset Switch 7,D4 - 13,D3
Jumper Reset Switch 6,D4 - H11
Jumper Reset Switch H12 - 1,D3

12



Jumper Serial Data Path 15,D3 - 20,D3
Jumper Serial Data Path 14,D3 - 21,D3
Jumper Serial Data Path 22,D3 - H5
Jumper Serial Data Path 23,D3 - H6

Once the PCB is finished being populated, you must now drill the holes and mount the face 
plate components as in Figure 7. When that is finished, then connect the PCB header to the 
components according to this table. Be sure to twist every pair of wires coming from the 
PCB to a component, and ensure the detector signal lines are far away from anything else, 
and that the serial signal lines are also far away from anything else. This will help prevent 
crosstalk, especially for the detector signal lines.

Component Connection 
Table
Part Connection

Power Jack
(plus) TIP - DPDT Switch 

(in)
Power Jack (minus) Shield - H2

DPDT Switch DPDT Switch (out) - H1
DB-25 4 - 5
DB-25 6 - 8 - 20
DB-25 7 - Power Jack Shield
DB-25 3 - H6
DB-25 2 - H5

Power Light LED H3 - Anode
Power Light LED H4 - Cathode

IR Emitter H7 - Anode
IR Emitter H8 - Cathode

Beam Status Light H9 - Anode
Beam Status Light H10 - Cathode

Reset Switch H11 - Reset Switch
Reset Switch H12 - Reset Switch
IR Detector H14 - Anode
IR Detector H15 - Cathode

Constructing the IR Emitter Lead
Take three feet of the two conductor twisted/shielded wire and prepare both ends for 

soldering. Connect one end to 1/8 inch red plug being careful when soldering and connect 
the other to the IR LED itself. Be very sure to honor the anode and cathode requirements. 
Seal all connections with heat shrink tubing. For this circuit, the shield is currently ignored.

Constructing the IR Detector Lead
Take three feet of the two conductor twisted/shielded wire and prepare both ends for 

soldering. Connect one end to 1/8 inch black plug being careful when soldering and 
connect the other to the photodiode itself. Be very sure to honor the anode and cathode 
requirements. Seal all connections with heat shrink tubing. For this circuit, the shield is 
currently ignored.

APPENDIX C

13



Serial Protocol
The device is configured to use 19200 baud with 8-bit data, 1 start bit, 1 stop bit, and no 

parity bits. With the current programming, the device only sends data out and does not 
accept any incoming data.

When the device is powered on, it performs a calibration phase and sends this 
calibration information to the host computer.

If the calibration is successful, then this 7-byte packet of data is sent:
 

Byte Value
1 0x43 – C
2 0x4f – O
3 MSB 8 bits of ADC when beam is turned on
4 0x46 – F
5 MSB 8 bits of ADC when beam is turned off
6 0x41 – A
7 Average of byte 3 and 5

If the calibration is not successful, then this 7-byte packet of data is sent:

Byte Value
1 0x4e - N
2 0x4f - O
3 MSB 8 bits of ADC when beam is turned on
4 0x46 - F
5 MSB 8 bits of ADC when beam is turned off
6 0x41 - A
7 Average of byte 3 and 5

If the device fails to calibrate, it will immediately retry the calibration phase again. This 
means the host computer will see multiple failed calibration packets in a row until 
conditions arise that allow a good calibration.

Once the device has successfully calibrated, the implicit state of the beam is that it is in an 
unbroken state.

If the device detects a beam occlusion, then it sends a “break” event:

Byte Value
1 0x42 - B

If the device detects that the beam integrity has been restored, it sends a “resume” event:

Byte Value
1 0x52 - R

Appendix D

14



PIC16F688 Source Code

; This file implements the IR timer code base for Sean Petzold.
; Copyright 2007 Peter K. Keller (psilord@cs.wisc.edu)

; Using the 4MHz internal oscillator means each instruction takes 1 microsecond,
; except for gotos and other branching instructions, which take two.

list p=16f688 ; list directive to define processor
#include <P16F688.inc> ; processor specific variable definitions
errorlevel -302

__CONFIG    _CP_OFF & _CPD_OFF & _BOD_OFF & _PWRTE_ON & 
_WDT_OFF & _INTRC_OSC_NOCLKOUT & _MCLRE_ON & _FCMEN_OFF & 
_IESO_OFF

; VARIABLE DEFINITIONS
w_temp EQU 0x71 ; variable used for context saving
status_tempEQU 0x72 ; variable used for context saving
pclath_temp EQU 0x73 ; variable used for context saving

spbrg_val EQU d'12' ; 19.2k baud
;spbrg_val EQU d'25' ; 9600 baud
;spbrg_val EQU d'207' ; 1200 baud

; Bit values for beam_status
BROKEN EQU 0 ; is the beam currently broken, set of true
PREVIOUSEQU 1 ; the previous beam state, set if previously broken

; Bit values for irled_status
ACTIVE EQU 0 ; set if IRLED is on

; User defined variables and their needed sizes
cblock 0x20

dvar:1 ; used for Delay Loop
dvar2:1 ; used for Delay Loop
tmp0:1
tmp1:1
adc_hi:1 ; storage for ADC high byte
adc_lo:1 ; storage for ADC low byte
irled_status:1 ; 0 for off, 1 for on
beam_status:1 ; various bit values for things about the beam
calib_on:1 ; MSB 8-bits of the calibration ADC value for irled on

15



calib_off:1 ; MSB 8-bits of the calibration ADC value for irled off
calib_val:1 ; calib value which, when an adc sample is compared to it,

; it denotes the beam is present or broken.
endc

;**********************************************************************
ORG 0x000 ; processor reset vector

  goto main ; go to beginning of program

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
ORG 0x005 ; part of the interrupt vector
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register
movf PCLATH,w ; move pclath register into W register
movwf pclath_temp ; save off contents of PCLATH register

; for now, just ignore any interrupts we get

movf pclath_temp,w ; retrieve copy of PCLATH register
movwf PCLATH ; restore pre-isr PCLATH register contents
movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapfw_temp,f
swapfw_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

main:
bcf STATUS, RP0; Bank 0
call InitVariables ; set up the state of various variables
call InitIO ; set up all of my digital/analog pins and init the ADC
call CalibrateIRBeam ; Try over and over to calibrate the beam, telling the

; PC what it is doing.
Loop

call DebounceBeamState
call IsBeamBroken
call NotifyBeamChange
call DisplayADCResult
goto Loop ; infinite loop

; A simple delay function for ~1.4 milliseconds
Delay_1ms:

movlw 0x01 ; set outer delay loop
movwf dvar2

Delay0

16



movlw 0xFF
movwf dvar ; set inner delay loop

Delay1
decfsz dvar, F
goto Delay1

decfsz dvar2, F
goto Delay0

return

; Initialize various variables.
InitVariables

bcf STATUS, RP0
clrf beam_status
bcf beam_status, BROKEN ; the beam is not broken
bcf beam_status, PREVIOUS ; the previous state is not broken either.
return

; Initialize the IO pins to be what I need them to be
InitIO:

bcf STATUS, RP0 ; select bank 0
movlw 0x07 ; turn off the comparators leaving the pins digital
movwf CMCON0
call InitPortA
call InitPortC
call InitSerial
call InitADC
bcf STATUS, RP0 ; back to bank 0
return

; For this function, we initialize PortA to have RA2/AN2 be configured as an
; analog input for ADC. RA3 is also a *mandatory* digital input pin.
InitPortA:

bcf STATUS, RP0 ; Bank 0 for PORTA register
clrf PORTA ; mark all lines as zero
bsf STATUS, RP0 ; Bank 1 for ANSEL/TRISA registers
movlw b'00000100' ; ansel<2> is marked as analog input
movwf ANSEL
movlw b'00001100' ; ra3, ra2 are inputs. ra2 is now an analog input
movwf TRISA
return

; For this function, all pins of PortC are configured as digital except rc5, which
; will be the serial rx port.
InitPortC:

17



bcf STATUS, RP0; Bank 0 for PORTC reg
clrf PORTC ; mark all lines as zero
bsf STATUS, RP0; Bank 1 for TRISC reg
movlw b'00110000' ; rc5:4 tristate for serial port, rest are outputs
movwf TRISC
bcf STATUS, RP0; Back to bank 0
return

; This function sets up and turns on the ADC. It assumes the InitPortX functions
; have already set up the correct inputs as analog
InitADC:

bsf STATUS, RP0; Bank 1
movlw b'0001000' ; set ADC Fosc/8 clock
movwf ADCON1
bcf STATUS, RP0; Bank 0
movlw b'0001001' ; left justified, Vdd, AN2, not in progress, enabled
movwf ADCON0
call ADCDelay ; wait for the ADC to stabalize
return

; set up the serial port for communications...
InitSerial:

bcf STATUS, RP0; Bank 0

; set up the baud rate
movlw spbrg_val ; the baud I'm going to use
movwf SPBRG

; set up the transmit & control register
bcf STATUS, RP0; Bank 0
movlw b'00100110' ; don't care, 8-bit, xmit enable, async,

; sync break xmit compl., high speed, TSR empty, 9th bit
movwf TXSTA

; set up the receive & control register
bcf STATUS, RP0; Bank 0
movlw b'10010000' ; serial port enable, 8 bit, don't care, en recv

; don't care, no frame err, no overrun err, no 9th bit
movwf RCSTA
call Delay_1ms ; make sure it stabalizes
movf RCREG, W ; clean out the usart recv buffer
bcf RCSTA, CREN ; clear any errors if there were any
bsf RCSTA, CREN
return

18



; This function does a polling sample of the ADC, then leaves the values in 
; adc_hi and adc_lo.
SampleADC:

bcf STATUS, RP0; Bank 0
bsf ADCON0, GO; Start the acquisition

btfsc ADCON0, GO ; Poll for completion
goto $-1

; Grab the result out
bcf STATUS, RP0; Bank 0
movf ADRESH, W ; Grab the high part
movwf adc_hi
bsf STATUS, RP0; Bank 1
movf ADRESL, W ; Grab the low part
movwf adc_lo

return

; This function assumes that the ADC has just been sampled. It sets beam_status
; to zero if, according to the ADC the beam has not been broken, and one if
; according to the ADC, the beam has been broken.
IsBeamBroken:

bcf STATUS, RP0 ; Bank 0
bcf beam_status, BROKEN ; assume no it isn't
movf adc_hi, W
subwfcalib_val, W ; Perform: calib_val - W

; If W is eq/smaller than calib_val, then 
; beam is *not* broken.
; C is one if W <= calib_val

btfss STATUS, C ; is C zero (so W > calib_val)
bsf beam_status, BROKEN ; yes, set broken bit

return

; This function samples the ADC with a delay in the middle and only if both
; samples agree is the beam considered stable
DebounceBeamState:

bcf STATUS, RP0 ; bank 0
movf beam_status, W ; save previous beam status
movwf tmp0
call SampleADC ; get the first reading
call IsBeamBroken ; check it
movf beam_status, W
andlw1<<BROKEN ; look only at the broken/present bit
movwf tmp1 ; save the beam state
call Delay_1ms ; wait ~1 millisecond

19



call SampleADC ; get the second reading
call IsBeamBroken ; check it
movf beam_status, W
andlw1<<BROKEN ; look only at the broken/present bit
subwftmp1, W ; check beam stability
btfsc STATUS, Z ; Is Z one (for the borrow)?

; 0 - 0 = 0; 1 - 1 = 0
goto DBS_debounced ; yup, state is debounced
movf tmp0, W ; nope, so restore original beam state
movwf beam_status
return

DBS_debounced
movf tmp0, W ; grab old beam state
movwf beam_status
andlw1<<PREVIOUS ; keep whatever the previous bit was
iorwf tmp1, W ; mix it with new beam status
movwf beam_status ; fix it up nice for IsBeamBroken
return

; Wait a minimum of 6 microseconds for the ADC to stabilize
ADCDelay:

nop
nop
nop
nop
nop
nop
return

; This function performs some averaging for an ADC sample when the beam is off
; and when the beam is on. This will give us voltage brackets which dictate
; the state of the beam given ambient IR conditions. If the beam cannot be
; calibrated, info concerning such will be output to the serial port and the
; calibration retried. Notice that when the irled is off, the ADC will read a high
; value due to the circuit design. When the irled is on, a low adc value will be
; read.
CalibrateIRBeam:

bcf STATUS, RP0; Bank 0
movlw b'00000000' ; turn irled off (RA4)
movwf PORTA
call Delay_1ms ; Wait for transistor & photodiode to stabilize
call SampleADC ; grab a sample
bcf STATUS, RP0; Bank 0
movf adc_hi, W
movwf calib_off ; store it in the irled off calibration value, the

; voltage, and therefore the bit pattern is high 

20



; in the case of an off irled

movlw b'00010000' ; turn beam on (RA4)
movwf PORTA
call Delay_1ms ; wait for the transistor & photodiode to stabilize
call SampleADC ; grab a sample
bcf STATUS, RP0; Bank 0
movf adc_hi, W
movwf calib_on ; store it in the irled on calibration value, the

; voltage, and therefore the bit pattern is low 
; in the case of an on irled

; make sure the irled is left turned on for the rest of the execution
clrf irled_status
incf irled_status, F

; now perform the average of the two to get a "zero" that when the ADC sample
; crosses, it means the beam is on or off.
; This next piece of code implements an average as:
; calib_on/2 + calib_off/2 = calib_val

; calib_on/2
movf calib_on, W
movwf tmp0
bcf STATUS, C
rrf tmp0, F

; calib_off/2
movf calib_off, W
movwf tmp1
bcf STATUS, C
rrf tmp1, F

; Add them (this will fit into an 8 bit value)
bcf STATUS, C ; Get rid of polluted carry bit
movf tmp0, W
addwf tmp1, W ; complete the average

; store the calibrated value for later use
movwf calib_val

; check the validity of the calibration data and retry if bad.
; This is done by subtracting the low from the high and seeing
; if there is enough "room" to have a good reading. Room is 
; defined as the result of the subtraction being more than 25% 
; of the total range. This implies a %12.5 range in the "on/off"

21



; region around the average, which is only decimal number 13, a tight
; but meaningful range. In this case it would be 256 * .25, which is
; ~64. So, if the subtraction results in a number less than 64, we
; know the calibration probably doesn't make sense
movf calib_on, W
subwfcalib_off, W
btfss STATUS, C ; was calib_on(low voltage) > calib_off(high voltage)?
goto CIRB_retry ; yes, retry
movwf tmp0 ; nope, so do range check
; check it against 64
movlw d'64'
subwftmp0, W
btfss STATUS, C ; did the subtraction result in a borrow?
goto CIRB_retry ; yes, so retry
call SendGoodCalib ; nope, so there is enough room so use the calibration
call SendCalibData
return

CIRB_retry ; we lose, tell the pc what happened and try again.
call SendBadCalib
call SendCalibData
call Delay_1ms ; let things change a bit before retrying
goto main ; retry

return

; This function displays the ADC highest 4-bits, the pin format is:
; MSB RC3 RC2 RC1 RC0 LSB
; RA5 is beam broken/unbroken light
; RA4 is IR LED on/off
DisplayADCResult:

bcf STATUS, RP0 ; Bank 0

clrw

; now, we ior in the beam broken/present bit
iorlw b'00100000' ; assume beam is unbroken, turn on ra5
btfsc beam_status, BROKEN ; is the beam broken?
andlwb'11011111' ; yes, then turn off ra5

; Or in whether or not the IR emittor is turned on or not
; since the pin which controls the IR LED is also on this port.
btfsc irled_status, ACTIVE
iorlw b'00010000' ; turn on RA4 if irled is turned on

22



movwf PORTA ; Shove it out to PORTA<1:0>

; Display the most significant 4 bits
swapfadc_hi, W ; shove the high nibble into the low nibble spot
andlw0x0F ; Only want the LSB 4 bits
movwf PORTC ; Shove it out to PORTC<3:0>

return

; If the calibration succeeded, then this must appear before the calibration data
; is written.
SendGoodCalib:

movlw 0x43 ; C
call TransmitSerial ; Send the fact I calibrated successfully
return

; If, for whatever reason, the calibration, failed, this tells the PC about it.
SendBadCalib:

movlw 0x4E ; N
call TransmitSerial ; Send the fact I did not calibrate successfully
return

; Send a packet of calibration data (good or bad) to the PC
SendCalibData:

movlw 0x4F ; O for "on"
call TransmitSerial
bcf STATUS, RP0; bank 0
movf calib_on, W ; The on calibration byte
call TransmitSerial
movlw 0x46 ; F for "off"
call TransmitSerial
bcf STATUS, RP0; bank 0
movf calib_off, W ; The off calibration byte
call TransmitSerial
movlw 0x41 ; A for "average"
call TransmitSerial
bcf STATUS, RP0; bank 0
movf calib_val, W ; The calibration value
call TransmitSerial
return

SendBeamResumeEvent:
movlw 0x52 ; R for beam restore event
call TransmitSerial

23



return

SendBeamBreakEvent:
movlw 0x42 ; B for beam break event
call TransmitSerial
return

NotifyBeamChange:
btfsc beam_status, BROKEN ; is beam broken?
goto NBC_is_prev_broken ; yes, check if previous was broken
goto NBC_is_prev_resume ; nope, check if previous was present

NBC_is_prev_broken
btfsc beam_status, PREVIOUS ; was the beam previously broken?
return ; yes, no event happened
goto NBC_beam_break_event ; nope, so a break event happened

NBC_is_prev_resume
btfsc beam_status, PREVIOUS ; was the beam previously broken?
goto NBC_beam_resume_event ; yes, so a resume event happend
return ; no, so nothing happened

NBC_beam_break_event
call SendBeamBreakEvent
bsf beam_status, PREVIOUS ; make previous match current
return

NBC_beam_resume_event
call SendBeamResumeEvent
bcf beam_status, PREVIOUS ; make previous match current
return

; ----------------------------------------------------------------------------------

ReceiveSerial:
bcf STATUS, RP0 ; bank 0
btfss PIR1, RCIF ; check if data
return ; if none then return
btfsc RCSTA, OERR ; if overrun happened
goto ErrSerialOverr
btfsc RCSTA, FERR ; if framing error happend
goto ErrSerialFrame
movf RCREG, W
return

24



ErrSerialOverr:
bcf RCSTA, CREN ; clear the error
bsf RCSTA, CREN
return

ErrSerialFrame:
movf RCREG, W ; dump it
return

TransmitSerial:
bcf STATUS, RP0 ; bank 0
btfss PIR1, TXIF
goto $-1
movwf TXREG
return

ORG 0x2100 ; data EEPROM location
DT "Version 1.0"
DE 0
DT "Created by: Peter K. Keller (psilord@cs.wisc.edu)"
DT 0

END

25



APPENDIX E

Example Host Computer Client Program

The function of the client program is to suitably configure the host computer’s serial 
port and then read the calibration and beam break/resume events from the device. The 
provided client program merely computes the time difference between every successive 
byte the device sends the host computer. This computes the time difference between break 
and resume events of the beam.

/* Copyright 2007 by Peter K. Keller */

#include <stdio.h> 
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <ctype.h>
#include <sys/time.h>

/*
'open_port()' - Open serial port 1.
Returns the file descriptor on success or -1 on error.
*/

int open_port(char *file)
{

int fd; /* File descriptor for the port */
struct termios options;

fd = open(file, O_RDWR | O_NOCTTY | O_NDELAY);

if (fd == -1) {
printf("open_port: Unable to open %s %d(%s)\n", 

file, errno, strerror(errno));
exit(EXIT_FAILURE);

}

/* In this case, we want it read only */
if (fcntl(fd, F_SETFL, O_RDONLY) < 0) {

perror("fcntl -");
exit(EXIT_FAILURE);

}

26



if (tcgetattr(fd, &options) < 0) {
perror("tcsetattr -");
exit(EXIT_FAILURE);

}

/* set baud rate */
if (cfsetispeed(&options, B19200) < 0) {

perror("cfsetispeed() - ");
exit(EXIT_FAILURE);

}

if (cfsetospeed(&options, B19200) < 0) {
perror("cfsetospeed() - ");
exit(EXIT_FAILURE);

}

/* raw in and out */
cfmakeraw(&options);

/* enable the receiver and set local mode */
options.c_cflag |= (CLOCAL | CREAD);

/* 8-bit, 1 start bit, 1 stop bit, no parity bit */
options.c_cflag &= ~PARENB;
options.c_cflag &= ~CSTOPB;
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS8;

/* disable hardware flow control */
options.c_cflag &= ~CRTSCTS;

/* disable software flow control too */
options.c_iflag &= ~(IXON | IXOFF | IXANY);

if (tcsetattr(fd, TCSANOW, &options) < 0) {
perror("tcsetattr -");
exit(EXIT_FAILURE);

}

printf("Opened serial port!\n");
return (fd);

}

/* calculate elapsed time between now and then, now is assumed to be
more recent than then. It returns the difference in milliseconds. */

27



double event_time(struct timeval *now, struct timeval *then)
{

struct timeval a, b;

/* structure copy */
a = *now;
b = *then;

/* translate the seconds elapsed into microseconds */
while(a.tv_sec > b.tv_sec) {

a.tv_usec += 1000000;
a.tv_sec--;

}

/* calculate microsecond resolution */
return (a.tv_usec - b.tv_usec) / 1000.0;

}

int main(int argc, char *argv[])
{

int fd;
unsigned char read_byte;
struct timeval timestamp;
struct timeval previous = {0,0};
int once = 0;

if (argc != 2) {
printf("Usage:\n");
printf("%s /dev/ttyS[0-9]+\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Opening serial port: %s\n", argv[1]);
fd = open_port(argv[1]);
if (fd < 0) {

printf("Could not open serial port!\n");
exit(EXIT_FAILURE);

}

printf("Reading data from PIC\n");

/* while there is data, read it. */
while (read(fd, &read_byte, 1) > 0) {

gettimeofday(&timestamp, NULL);

printf("Read: 0x%02x : '%c' @ %lu sec : %lu usec", 

28



read_byte, isprint(read_byte)?read_byte:' ',
timestamp.tv_sec, timestamp.tv_usec);

if (once == 0) {
once = 1;
previous = timestamp;
printf("\n");

} else {
printf(" : %lf ms\n", event_time(&timestamp, &previous));

previous = timestamp;
}

}
printf("Done!\n");

printf("Closed serial port!\n");
close(fd);

return 0;
}

29



APPENDIX F

Verification of the Device

This section describes the experiment which will determine the validity of the device. 
Since the function of the device is to time the event changes of an infrared beam, the 
experiment will be designed to find an analytical solution to a beam breakage/resumption 
scenario and then the device will be tested to see how well it conforms to the analytical 
solution. Figure 8 describes the physical scene of the experiment. The purpose of this setup 
is to time how long the beam is broken by the rod during its fall.

Figure 9 shows the mathematical reasoning which analytically computes how long the 
beam should be occluded by the ½” (1.27cm) diameter opaque rod as it falls through the 
beam from a height of 10 cm.

30



If we let R =  .0127m and h0 = .10m, then dt = 8.8 msec. So, when we set up the physical 
experiment, we will see how well the device measures the 8.8 msec occlusion of the beam.

31



APPENDIX G

Experimental Data for Verification of Device

Drop Trial Beam Occlusion Time (ms)
1 8
2 8
3 7
4 7
5 8
6 7
7 8
8 10
9 8

10 7
11 8
12 7
13 7
14 8
15 8
16 8
17 8
18 8
19 8
20 7
21 7
22 13
23 8
24 8
25 8
26 7
27 8
28 7
29 8
30 7
31 8
32 8
33 7
34 8
35 8
36 8
37 8
38 7
39 8
40 7
41 8
42 8
43 8
44 8
45 8

32



46 8
47 9
48 10
49 9
50 10
51 9
52 10
53 9
54 10
55 34
56 10
57 10
58 10
59 8
60 8
61 8
62 8
63 7
64 8
65 8
66 8
67 8
68 8
69 8
70 8
71 8
72 8
73 8
74 8
75 8
76 8
77 48
78 8
79 8
80 8
81 8
82 8
83 8
84 8
85 8
86 8
87 8
88 8
89 8
90 8
91 8
92 7
93 8
94 8
95 8

33



96 8
97 8
98 7
99 8
100 7

Average 8.73
Standard 
Deviation 4.82

Analytical Value 8.8
% Error 0.80%

Analysis of Data

Here we see that the device measured pretty closely to the accepted analytically 
computed value of 8.8ms. The standard deviation is a little higher than expected due to the 
outliers in the occlusion time data.

Sources of Error

1) The rod was released each time by hand. Through observation, all of the outliers were 
because the rod hadn’t been aligned properly on the test platform before release and had 
fallen crookedly through the beam causing a bad time read. I believe this specific source of 
error contributed significantly to the wider than expected standard deviation.

2) If the host computer suddenly became busy during the time the beam was occluded, 
then since the device itself does not compute the time difference of the beam events, the 
computer might have been delayed in determining the time differential.

3) If during the use of the device, the emitter and detector shift and become slightly 
misaligned. This would cause a variation as to when the device thinks the beam is broken 
or not and would contribute to an error in reading.

34



Bibliography

Hayes, Thomas C. and Horowitz, Paul. Student Manual for The Art of Electronics 2  nd   ed.  
New York: Cambridge University Press, 1989.

Hayes, Thomas C. and Horowitz, Paul. The Art of Electronics 2  nd   ed.  
New York: Cambridge University Press, 1989.

Katzen, Sid. The Quintessential PIC Microcontroller.
Great Britain: Springer, 2001.

Garbutt, Mike. Asynchronous Communications with the PICmicro USART.
U.S.A.: Microchip Technology Inc, 2003.

Microchip. PIC16f688 Data Sheet 14-pin flash based , 8-bit CMOS Microcontrollers with 
nanoWatt Technology.

U.S.A: Microchip Technology Inc, 2007

Transistor Circuits. Online. 27 December 2007.
<http://www.kpsec.freeuk.com/trancirc.htm> 

Transistor 2N2222 Specifications. Online. 27 December 2007.
<http://www.ciphersbyritter.com/NOISE/SPEC2222.HTM> 

Johns, W. E. Notes on LEDs. Online. 27 December 2007.
<http://www.ciphersbyritter.com/NOISE/SPEC2222.HTM>

  
Voltage Regulators. Online. 27 December 2007.

<http://www.teachers.ash.org.au/jfuller/electronics/regulators.htm>

How long will take for a stone freely dropped from a height of 39.2m to hit the ground?. 
Online. 27 December 2007.

<http://answers.yahoo.com/question/index?qid=20071103235046AAxZWdZ>

Martel, Mike. Using Transistors as Switches. Online. 27 December 2007.
<http://www.rason.org/Projects/transwit/transwit.htm>

SparkFun Electronics. Online. 27 December 2007.
<http://www.sparkfun.com/commerce/present.php?p=BEE-1-PowerSupply>

Express, Electronix. Electronics Tips: Contact Bounce and De-bouncing. Online. 27 
December 2007.

<http://www.elexp.com/t_bounc.htm>

Ganssle, Jack G. A Guide to Debouncing. Online. 27 December 2007.
<http://www.ganssle.com/debouncing.pdf>

35


