

CL-MW
The Development of a

Master/Worker Framework in
Common Lisp

By:
Peter Keller

(pkeller@sift.net)

March 5th, 2012
TC Lispers

mailto:pkeller@sift.net

CL-MW
● Rapid prototyping of master/worker style distributed algorithms.

● Scales to ~10K slaves, uses nonblocking network I/O.

● Management API to bound memory consumption while
generating tasks.

● Easy integration with well known high throughput batch
processing systems such as Condor, PBS, etc.

● Production of a single application binary.

● Robust task execution during slave failure such as unexpected
slave death or hang.

● Well documented with manual and example programs.

● SBCL only (for now), but available in Quicklisp.

A CL-MW Application
● N Task Algorithms
● One Master Algorithm.
● One Slave Algorithm (Optional).
● Tasks and results are Common Lisp forms.
● Task flow.

● Master send tasks to slaves.
● Slaves convert them to results.
● Slaves send results back.

● Only available network topology at this time is star.

The Task Algorithm
● (define-mw-task-algorithm XXX lambda-list

&body body-forms)

● Creates:
● Function: XXX
● Macro: mw-funcall-XXX
● Function: mw-set-target-number-for-XXX
● Function: mw-get-target-number-for-XXX
● Function: mw-pending-tasks-for-XXX
● Function: mw-upto-target-number-XXX

Example
(define-mw-algorithm hello (str)

 (concatenate 'string “Hello world: “ str))

Adding a Task
(mw-funcall-hello (str)

 (&key sid tag do-it-anyway (retry t))

● Specify a Task Policy per task
● sid: Either a SlaveID or NIL.
● tag: User defined form associated with task.
● do-it-anyway: T or NIL. If this was an ordered task, it might

be ok to run it in an unordered fashion anyway.
● retry: If the slave failed when it had the task, redo the task.

The Master Algorithm
● What does it do?

● Process argv.
● Partition problem space.
● Create tasks.
● Acquire/manage ordered slaves.
● Call CL-MW master event loop function.
● Process results.
● Figure out what to do with tasks that can't run.
● Compute final answer.

● (define-mw-master (argv) &body body-forms)

Example
(define-mw-master (argv)

 (mw-funcall-hello (“ABC”))

 (mw-master-loop)

 (let* ((result (mw-get-results)))

 (answer (mw-result-packet result)))

 (format t “[answer]: ~A~%” answer)))

=> [answer]: Hello World: ABC

● Usually one puts a loop around (mw-master-loop)!

The Slave Algorithm
● What does it do?

● Setup/Tear down of computing environment.
● Allow arbitrary work to be done in between the

processing of tasks.

● (define-mw-slave (argv) &body body-forms)
● Example:

(define-mw-slave (argv)

 (slave-loop-simple))
● Optional!

Producing a Binary
● sbcl --disable-debugger
● (mw-dump-exec)
● Parses ldconfig -p to find all libraries.
● sb-sys:*shared-objects*

● Copies any found libraries from original location to cwd.
● Changes in-memory paths to point to cwd version.

● cffi:*foreign-library-directories*
● Push cwd onto it.

● (save-lisp-and-die …)

Running It
● Decouple resource management from execution.
● The Grid is a hostile place.

● Machine problems.
● Poor availability of installed lisp versions.
● Network timeouts.
● Authentication/Method to execute on machine.
● Many more!

● Use tools that already exist: Condor, PBS, etc.
● Use a Resource File!

A Resource File
(:computation-status :in-progress)

(:timestamp 3488766071)

(:member-id "default-member-id")

(:update-interval 300)

(:slaves-needed 1000)

(:slave-executable
 ("/home/psilord/bin/a.out"
 ("/home/psilord/bin/libiolib-syscalls.so")))

(:slave-arguments
 ("--mw-slave" "--mw-master-host" "black"
 "--mw-master-port" "47416"))

Batch Systems
● “Glue Scripts” read the resource file.
● Knows where to find slaves, how many the master

needs, how to invoke the slaves.
● Get features for free:

● Starting executables, Managing user identity.
● File movement, Secure credential management.
● Detecting and killing runaway processes.
● Managed Slave resource consumption in pools.
● Access to other resources through other batch systems like

Amazon EC2, Globus, etc.
● Many more!

Supplied Examples
● Hello World
● Ping
● Monte-Carlo Computation of PI
● Argument Processing
● Higher Order

Internals: Network I/O
● Built on top of IOLib's multiplexing I/O.
● Layered read/write packet buffers on top.
● Example packet:

Schema

0x00

Number of bytes
to represent payload

length

0x04 0x00 0x00 0x00 0x10 16 bytes

Payload Length MSB to LSB

Serialized Payload

Internals: Network I/O
● Efficient reading and data buffer reuse:

Static 128K Data Buffer Per Slave

Packet 1

Consumed

Packet
Start

Packet 2 Packet 3

(part 1) (part 2)

Packet 3

One receive-from call

Data Start Data End

Packet
End

Buffer
End

Buffer
Start

Unused

In Flight

Internals: Scaling
● Asynchronous network protocols on top of nonblocking calls.

● IDs are strings instead of interned keywords

(loop :repeat (expt 10 10) :do

 (intern (symbol-name (gensym)) :keyword))

;; BOOM!

● One object per task or slave, many references to them.

● Hash tables everywhere, so far it has been sufficient.

● Graham's queue implementation is space efficient enough.

● Hard limits on read buffers.

● No complex statistics

● Task target numbers.

Limitations
● No security mechanisms.
● No check-pointing.
● Hard network port limits.
● No proxy masters.
● Slaves can't find a new Master.
● Task/Result batching not dependent on task

algorithm needs, but hard coded.

Future Work
● Check-pointing (user API?)
● Task Speculation (almost done).
● Control connection to Master Process.
● Audit log in lisp format.
● Libraries of useful parallel algorithms.
● Functional form of task submission.
● Higher order task flow descriptions:

● Asynchronous/nonblocking large data/file transfer.
● Formalization of task/result data flow across multiple task

algorithms.

Thank you!
● You can find CL-MW at:

http://pages.cs.wisc.edu/~psilord/lisp-public/cl-mw.html

● Questions?

http://pages.cs.wisc.edu/~psilord/lisp-public/cl-mw.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

