CL-MW

The Development of a
Master/\Worker Framework In
Common Lisp

By:
Peter Keller
(pkeller@sift.net)

March 5th, 2012
TC Lispers

mailto:pkeller@sift.net

CL-MW

« Rapid prototyping of master/worker style distributed algorithms.
« Scales to ~10K slaves, uses nonblocking network 1/O.

« Management API to bound memory consumption while
generating tasks.

Easy integration with well known high throughput batch
processing systems such as Condor, PBS, etc.

Production of a single application binary.

Robust task execution during slave failure such as unexpected
slave death or hang.

Well documented with manual and example programs.
« SBCL only (for now), but available in Quicklisp.

A CL-MW Application

« N Task Algorithms

* One Master Algorithm.

* One Slave Algorithm (Optional).

« Tasks and results are Common Lisp forms.
e Task flow.

« Master send tasks to slaves.
e Slaves convert them to results.
« Slaves send results back.

* Only available network topology at this time is star.

The Task Algorithm

» (define-mw-task-algorithm XXX lambda-list
&body body-forms)
e Creates:

* Function: XXX

 Macro: mw-funcall-XXX

* Function: mw-set-target-number-for-XXX
* Function: mw-get-target-number-for-XXX
* Function: mw-pending-tasks-for-XxXX

* Function: mw-upto-target-number-XXX

Example

(define-mw-algorithm hello (str)
(concatenate 'string “Hello world: “ str))

Adding a Task

(mw-funcall-hello (str)
(&key sid tag do-it-anyway (retry t))

« Specify a Task Policy per task

« sid: Either a SlavelD or NIL.
« tag: User defined form associated with task.

« do-it-anyway: T or NIL. If this was an ordered task, it might
be ok to run it in an unordered fashion anyway.

« retry: If the slave failed when it had the task, redo the task.

The Master Algorithm

 \What does it do”?

* Process argv.

« Partition problem space.

* Create tasks.

« Acquire/manage ordered slaves.

o Call CL-MW master event loop function.

* Process results.

* Figure out what to do with tasks that can't run.
« Compute final answer.

e (define-mw-master (argv) &body body-forms)

Example

(define-mw-master (argv)
(mw-funcall-hello ("*ABC”))
(mw-master-loop)

(let* ((result (mw-get-results)))
(answer (mw-result-packet result)))
(format t “[answer]: ~A~%" answer)))

=> [answer]: Hello World: ABC

« Usually one puts a loop around (mw-master-loop)!

The Slave Algorithm

« \What does it do?

« Setup/Tear down of computing environment.

» Allow arbitrary work to be done in between the
processing of tasks.

 (define-mw-slave (argv) &body body-forms)
 Example:
(define-mw-slave (argv)
(slave-loop-simple))
* Optional!

Producing a Binary

sbcl --disable-debugger
(mw-dump-exec)

Parses Idconfig -p to find all libraries.
sb-sys:*shared-objects*

« Copies any found libraries from original location to cwd.
« Changes in-memory paths to point to cwd version.

cffi:*foreign-library-directories*
 Push cwd onto it.
(save-lisp-and-die ...)

Running It

Decouple resource management from execution.
The Grid is a hostile place.

 Machine problems.

Poor availability of installed lisp versions.
Network timeouts.

Authentication/Method to execute on machine.

 Many more!
Use tools that already exist: Condor, PBS, etc.

Use a Resource File!

A Resource File

(:computation-status :in-progress)

(:timestamp 3488766071)

(:member-id "default-member-id")

(:update-interval 300)

(:slaves-needed 1000)

(:slave-executable
("/home/psilord/bin/a.out"
("/home/psilord/bin/libiolib-syscalls.so0")))

(:slave-arguments

("--mw-slave" "--mw-master-host" "black"
"--mw-master-port" "47416"))

Batch Systems

« “Glue Scripts” read the resource file.

 Knows where to find slaves, how many the master
needs, how to invoke the slaves.

o Get features for free:

« Starting executables, Managing user identity.
File movement, Secure credential management.
Detecting and killing runaway processes.
Managed Slave resource consumption in pools.

Access to other resources through other batch systems like
Amazon EC2, Globus, etc.

Many more!

Supplied Examples

* Hello World
* Ping
* Monte-Carlo Computation of PI

 Argument Processing
* Higher Order

Internals: Network |/O

 Built on top of IOLib's multiplexing 1/O.
» | ayered read/write packet buffers on top.
 Example packet:

Schema Payload Length MSB to LSB

T i

0x00 | 0x04 | 0x00 | Ox00 | 0x00 | 0x10 16 bytes
Number of bytes Serialized Payload

to represent payload
length

Internals: Network |/O

» Efficient reading and data buffer reuse:

Consumed One receive-from call Unused

Data Start Data End In Flight

T | (
Packet 1 ‘ Packet 2 ‘ PacketB‘ - féa@/gé ‘
% (part 1) | (part 2)

Buffer Packet Packet Buffer
Start Start End End

Static 128K Data Buffer Per Slave

Internals: Scaling

« Asynchronous network protocols on top of nonblocking calls.
 |Ds are strings instead of interned keywords
(loop :repeat (expt 10 10) :do
(intern (symbol-name (gensym)) :keyword))
: BOOM!
« One object per task or slave, many references to them.

Hash tables everywhere, so far it has been sufficient.

Graham's queue implementation is space efficient enough.
Hard limits on read buffers.

No complex statistics
e Task target numbers.

Limitations

* No security mechanisms.

* No check-pointing.

* Hard network port limits.

 No proxy masters.

» Slaves can't find a new Master.

» Task/Result batching not dependent on task
algorithm needs, but hard coded.

Future Work

« Check-pointing (user API?)
« Task Speculation (almost done).
o Control connection to Master Process.

Audit log in lisp format.

Libraries of useful parallel algorithms.
Functional form of task submission.

Higher order task flow descriptions:

« Asynchronous/nonblocking large data/file transfer.

« Formalization of task/result data flow across multiple task
algorithms.

Thank yout!

* You can find CL-MW at:
http://pages.cs.wisc.edu/~psilord/lisp-public/cl-mw.html

e Questions?

http://pages.cs.wisc.edu/~psilord/lisp-public/cl-mw.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

