
CL-MW
A Master-Slave Library for Distributed

Programming in Common Lisp
Version 0.3

Peter Keller
psilord@cs.wisc.edu

March 27, 2012

ii

Contents

License v

1 Overview 1

1.1 Background . 1

1.2 CL-MW . 2

1.2.1 Task Algorithms . 2

1.2.2 The Master Algorithm 7

1.2.3 The Slave Algorithm 9

1.2.4 Running a CL-MW Application 10

1.2.5 Network I/O and Task/Result Size 10

2 Downloading and Installing 13

2.1 Compatibility and Versioning 13

2.2 Supported Implementations 13

2.3 Official Release Tarballs . 13

2.4 Installation Using a Tarball 14

3 Writing Applications 15

3.1 Example: Hello World . 15

3.2 Running Hello-World in the REPL 18

3.3 Producing an Executable . 20

3.4 The Audit File . 23

4 Interfacing with Existing Batch Systems 25

4.1 Condor . 26

4.1.1 Interfacing CL-MW with Condor 26

4.1.2 Environmental Requirements 33

iii

iv CONTENTS

5 Technical Specification 35
5.1 Command Line Arguments . 35
5.2 The API . 37
5.3 Resource File . 47

A Example Application Descriptions 51
A.1 Hello-World . 51
A.2 Ping . 51
A.3 Monte-Carlo-Pi . 51
A.4 Higher-Order . 52
A.5 Argument-Processing . 52

B Version History 53

C Acknowledgements 55

License

The source code to CL-MW, the example programs, and the documentation
source and contents are under the Apache 2 license:

Copyright 2010-2012 Peter K. Keller (psilord@cs.wisc.edu)

Licensed under the Apache License, Version 2.0 (the “License”); you
may not use this file except in compliance with the License. You may
obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, ei-
ther express or implied. See the License for the specific language
governing permissions and limitations under the License.

v

http://www.apache.org/licenses/LICENSE-2.0

vi LICENSE

Chapter 1

Overview

1.1 Background

Master-Slave is a distributed computing paradigm where a master process
partitions work to one or more slave processes, collects the results, and pro-
duces the required end solution from those partial results. The work is usually
of a fine to medium grained nature. The work request, called a task, and the
slave’s response, called a result, do not individually require large amounts of
disk space, memory space, or network resources. The tasks may be ordered
or unordered. Ordered tasks must be assigned to a slave which may addition-
ally hold persistent information. Unordered tasks run on any available slave
and are often the only kind of tasks supported by Master-Slave systems. Ex-
amples of problems applicable to the Master-Slave paradigm are: numerical
optimization, exploring game search trees, web-crawling, and Monte-Carlo
simulations.

In many Master-Slave execution environments, it is an unavoidable real-
ity that execute nodes asynchronously connect and unexpectedly disconnect
from the computation. This is called slave churn. Many Master-Slave sys-
tems accept this reality and provide task scheduling algorithms such that
when a slave disconnects, times out, or otherwise is deemed unusable, tasks
assigned to that slave are recycled back into the task pool to be distributed
out to a different slave at a later time. If the master process exits prematurely,
then the slaves all die as soon as they notice, as to not consume computing
resources.

Master-Slave systems may be coupled with an external batch scheduling

1

2 CHAPTER 1. OVERVIEW

system. The batch system can manage resource acquisitions for the slave
processes and provide an environment to restart the computation in the face
of machine or other environmental failure.

1.2 CL-MW

CL-MW is a Master-Slave implementation written in, and for, Common Lisp.
The design of the library’s API was designed for ease of use and rapid pro-
totyping of Master-Slave applications. The library decouples management
of the task/result flow through the slaves from the act of spawning slaves to
simplify interaction with pre-existing batch systems. CL-MW has three main
parts to be specified by the application author: one or more task algorithms,
a master algorithm, and optionally a slave algorithm. CL-MW implements
a single binary executable containing both the master and slave code.

The master algorithm produces tasks and inserts them into CL-MW.
Tasks are data packets destined for a specific task algorithm (and poten-
tially a specific slave as well) and which are stored in the master process.
Task algorithms are pieces of code in the slave which process the tasks into
results which are sent back to the master process for consumption by the
master algorithm. CL-MW maintains a pool of tasks running and waiting to
be run. While all of the tasks can be created during the master algorithm ini-
tialization, tasks can also be added dynamically. Tasks may be dynamically
added based on results from earlier tasks, or they may be dynamically added
to limit memory used to store them. Tasks have meta-data associated with
them that can dictate where or in what manner the task should be processed.
This is known as a task policy .

An optional slave algorithm allows arbitrary computation to happen in
the slave in between processing one or more task. An example of such a slave
computation is downloading a database upon slave startup which is used by
the task algorithms and then removing it when the slave shuts down.

1.2.1 Task Algorithms

A task algorithm is a piece of code written by the application author which
converts tasks into results in the slave. The macro define-mw-algorithm

defines a task algorithm. The parameter list of this macro is similar to defun.
You specify a name and a lambda list. The lambda list keywords: &key,
&rest, and &optional are supported, but only in a basic manner. Only one

1.2. CL-MW 3

lambda list keyword may be used at a time in a lambda list. Supplied-p-
parameters are not supported. The task algorithm body cannot return a set
of values with values. There must only be one value that is returned. These
limitations will be removed in future versions of CL-MW.

Here is an example definition of a task algorithm which echos back its ar-
gument unchanged. Note: The arguments accepted and the result returned
are that which you would have done had the task algorithm been defined
with defun.

Listing 1.1: The echo Task Algorithm

(define-mw-algorithm echo (val)
val)

The result of expanding define-mw-algorithm is a collection of functions
and a macro as defined in table 1.1.

Symbol Kind
echo Function
mw-funcall-echo Macro
mw-with-task-policy-for-echo Macro
mw-set-target-number-for-echo Function
mw-get-target-number-for-echo Function
mw-pending-tasks-for-echo Function
mw-upto-target-number-echo Function

Table 1.1: Expansion of define-mw-algorithm for the echo task algorithm.

The functions and macro created in expansion of the echo task algorithm

are grouped into three sets: the echo function itself–which is the body of the
define-mw-algorithm macro, the task creation macros mw-funcall-echo

and mw-with-task-policy-for-echo, and a set of functions which allow
one to manage how many pending tasks for this task algorithm are queued.

The mw-funcall-echo Macro

The macro mw-funcall-echo creates a new task and separates the arguments
to the echo function–ultimately called with those arguments in the slave
process, from the task policy associated with the task.

The signature of mw-funcall-echo is:

4 CHAPTER 1. OVERVIEW

(mw-funcall-echo (str)
(&key sid tag do-it-anyway (retry t)))

This example call of mw-funcall-echo shows the creation of a new echo

task with an argument of "Hello World". All task arguments to the task

algorithm must occur within the first set of parentheses and in the order
specified for the specific task algorithm’s parameter list. Processing this task
will result in a result structure given back to the master algorithm which
contains the echoed string "Hello World".

(mw-funcall-echo ("Hello World"))

Task Policy

The task policy associated with a task describes how and where a task should
be executed. The task policy for a task is defined when a task is created via
the my-funcall-* macro. Part of the default task policy for a task to be
considered unordered and to run on any available slave. Another part of
the default is that if the task running on an arbitrary slave—which then
disconnects without providing an answer, the task is reassigned to a different
slave for processing and this can happen many times. The full default task
policy is specified on page 38 as well as what each portion of the policy
means.

Through the task policy , one may assign tasks to run on previously ac-
quired ordered slaves. These ordered tasks will be run in the order inserted
by the master algorithm. The task policy is directly responsible for a ordered
task possibly becoming unrunnable. This happens when the ordered slave
which is processing the task disconnects. The default task policy for ordered
tasks is that any tasks being processed on the disconnected slave or queued

waiting to run on the slave become unrunnable and the task structures are
given back to the master algorithm.

This example call of mw-funcall-echo is the same as above with respect
to the task generated and the result expected. However, when the result
structure associated with this task is presented to the master algorithm, the
result will have in it the associated tag of 1234. The tag of a task may be
any Lisp form.

(mw-funcall-echo ("Hello World") : tag 1234)

1.2. CL-MW 5

The mw-with-task-policy-for-echo Macro

This destructuring macro creates a lexical environment for its body in which
a function is bound that will submit tasks into CL-MW for the task algorithm
with the specified task policy . If no task policy keywords are used, then the
default values are chosen as specified on page 38. This allows mapping a
task creation function across a list or using it in other higher order contexts.

This example creates a function called add-echo-task which will add tasks
for the echo task algorithm. Each added task follows the default task policy .

(mw-with-task-policy-for-echo (add-echo-task)
(mapc #’add-echo-task ’ ("one" "two" "three")))

This next example creates a function which will add tasks for the echo

task algorithm that do not required to be retried if they fail to be executed.

(mw-with-task-policy-for-echo (add-echo-task : retry nil)
(mapc #’add-echo-task ’ ("one" "two" "three")))

Task Algorithm Target Numbers

Target numbers are values recorded by CL-MW and set by the master algo-

rithm which represent the number of pending to run tasks for a task algorithm
that should be kept in memory at all times. It is useful when a task generator
in the master algorithm can produce many more tasks than can fit into the
master process’s memory or disk on the resource where the master process
is running.

An analogy to the CL-MW concept of target numbers is the temperature
setting of a thermostat. If one sets a thermostat to 70°F then when the
temperature falls below that, the furnace kicks in and injects heat into the
room until the target number is reached. As the furnace heats up the room
it may overheat it, but it generally shouldn’t since the goal is to keep the
temperature stable at the thermostat’s setting.

In the same manner as the furnace, the master algorithm can use the
target number for a task algorithm to create the required number of tasks
(which could be zero if no new tasks are needed) into CL-MW until the target
number is reached. The master algorithm can run millions or billions of tasks
through without having to have all of them in existence at once. The tasks
may be lazily generated as needed.

6 CHAPTER 1. OVERVIEW

The target numbers themselves have no behavior on how CL-MW pro-
cesses the tasks or enforces restricting the number of created tasks. All target
numbers do are provide a means so that the master algorithm can police itself
when creating tasks. The master is free to create more tasks than specified
in a target number without restriction (other than running out of memory
or other resources in the process).

Continuing the example of the echo task algorithm, here is a description
of the signatures and meaning of this set of generated functions:

(mw-set-target-number-for-echo value) Function

A target number of echo tasks the master algorithm would
like to keep in CL-MW. Initially 0.

(mw-get-target-number-for-echo) Function

Return the number of in memory tasks that exist for this task
algorithm.

(mw-pending-tasks-for-echo) Function

Return the number of tasks (both currently running and pend-
ing to run) for this task algorithm that are currently known about
by CL-MW.

(mw-upto-target-number-echo) Function

A number of tasks which must be created by the master al-

gorithm in order to reach the target number for this task algo-

rithm. This function could return zero if the return value of
mw-get-target-number-for-echo is equal to or less than the
return value of mw-pending-tasks-for-echo.

The General Target Number

If an application author wishes to manage only the total number of created
tasks in memory independent of which task algorithm they represent, then
they can use the general target number API as defined in section 5.2 on
page 40. The number of tasks up to the general target number is the general
target number minus all pending tasks from any task algorithm.

1.2. CL-MW 7

1.2.2 The Master Algorithm

The macro define-mw-master defines the master algorithm for a CL-MW

application. There is only be one master algorithm per application. The
master algorithm is responsible for:

� Parsing non-CL-MW command line arguments passed to the applica-
tion process

� Partitioning the main problem into sub-problems and creating tasks

� Acquiring and managing ordered slaves

� Calling the master algorithm’s event loop function

� Processing the results returned by the slaves

� Determining what to do when some tasks become unrunnable

� Computing the final answer of the application from all results

The parameter list of this macro is:

(define-mw-master (argv) &body body)

where argv is a variable–arbitrarily named and available in the body,
which will be bound to the command line argument list. Any arguments
destined to the CL-MW library will have been removed from the list before
the master algorithm is invoked. The arguments not stripped out are left
in the order specified on the command line. The return value of the master

algorithm must be an integer in the range of 0 and 255 (inclusive) and this
value becomes the Unix return value for the master process. If the return
value is any other Lisp form other than an integer between 0 and 255, the
returned result will be 255.

Driving the CL-MW master event loop is one of the main functions of
the master algorithm. The master algorithm accomplishes this by calling
the function mw-master-loop (or a variant of this function–see page 40).
This function blocks and performs network I/O to all slaves or any other
background work in the CL-MW library. This function returns with a set
of values that specify what is available for the master algorithm to process
(such as new results, arrival or disconnection of ordered slaves, etc) only when
there is some event for the master algorithm to process.

8 CHAPTER 1. OVERVIEW

Slave Categorization

The master algorithm can use the function mw-allocate-slaves to cate-
gorize connecting slaves into the groups: :ordered, :intermingle, and
:unordered. A connecting slave is first used to satisfy the needs of the group
:ordered, then :intermingle. If enough slaves connect as to satisfy the
needs for both the :ordered and :intermingle groups, then they are placed
into the :unordered group. Initially the :ordered and :intermingle groups
need 0 slaves and all slaves will default to being placed in the :unordered

group.

The :ordered group means that the slave will only run ordered tasks
dedicated to that slave. The :intermingle group means that a slave may
run unordered tasks in addition to ordered tasks dedicated to that slave but
the ordered tasks are given priority over any unordered tasks which could
run on that slave. Slaves in the :unordered group only run unordered tasks.

When :intermingle or :ordered slaves are needed and new slaves placed
into those groups, the mw-master-loop notifies the master algorithm (or
variant–see page 40) that there are ordered slaves ready for use. This noti-
fication happens with one of the values returned by mw-master-loop. The
CL-MW application author can use the function
mw-get-connected-ordered-slaves to retrieve the list of connected slaves.

The function mw-get-connected-ordered-slaves returns a list of
SLAVE-IDs which can be used as the :sid field with the macro mw-funcall-*.
If no ready ordered slaves are available, then NIL is returned. Connected or-
dered slaves accumulate in that list until the master algorithm uses
mw-get-connected-ordered-slave to retrieve them. If at any time ordered
slaves disconnect, the function mw-master-loop will notify the master algo-

rithm of the change via one of its returned values. The master algorithm

can use the function mw-get-disconnected-ordered-slaves to learn the
SLAVE-IDs of the disconnected ordered slaves. A slave may be in both lists
at once if it connected and then disconnected before the master algorithm

was able to retrieve either of the lists. There is no notification when an
:unordered slave connects or disconnects.

Themaster algorithm can free a slave from the :ordered or :intermingle
groups be using mw-deallocate-slaves and mw-free-slave. These will
move ordered slaves to the :unordered group but only after they have com-
pleted processing any assigned :ordered tasks. Note: When a freed ordered
slave finishes processing the tasks assigned, it will move to the :unordered

1.2. CL-MW 9

group even though there may actually be more tasks destined for that slave.
In this case, the tasks will follow the task policy dictated by the master

algorithm when it created the task.

Membership

The membership token–an arbitrary string, is a token known between the
master and the slave. It must match for the master to accept the slave and
have it perform work. This is not a security measure. This keeps the mas-
ter and slave processes synchronized in heavy churn situations where many
masters and slaves from different computations could be going up and down
quickly. The major risk in high master churn situations is port reuse of the
master process. A port may have master 1 bind to it, write a resource file, die,
then later master 2 from a different computation binds to the port, meanwhile
a slave using the original master 1 resource file tries to connect to master 1
but actually connects to master 2. Membership tokens must be unique across
CL-MW application master processes running concurrently on one machine.
Unless otherwise specified with the --mw-resource-file filename command
line option, the membership token will default to "default-member-id".

1.2.3 The Slave Algorithm

The slave algorithm is defined with define-mw-slave. The parameter list
of this macro is similar to define-mw-master. This macro must return an
integer from 0 to 255 inclusive. This portion of a CL-MW application is
optional and may be left out entirely in an application.

(define-mw-slave (argv) &body body)

The body of a slave algorithm is usually a simple call to mw-slave-loop-simple.
mw-slave-loop-simple will wait for tasks to arrive from the master, pro-
cess them, send the results back, and will repeat until the master sends a
shutdown command. mw-slave-loop-simple returns 0 if the shutdown was
explicitly requested by the master and happened normally or 255 otherwise.

There are other slave looping function variants which allow the slave
loop function to return after a single, or group, of tasks is finished. These
variants are used when the slave needs to set up or tear down some files while
it is working or otherwise manipulate the environment around it in-between
processing tasks. Please see page 43 for these other variants.

10 CHAPTER 1. OVERVIEW

If no slave algorithm is specified in a CL-MW application, then this de-
fault slave algorithm is automatically defined and used.

Listing 1.2: Default Slave Algorithm

(define-mw-slave (argv)
(mw-slave-loop-simple))

1.2.4 Running a CL-MW Application

A CL-MW application can be executed in two ways: interactively at a REPL
or as a dumped binary from the command line. When running in the REPL,
there should be a REPL for the master process and one each for the slave
processes. It is not recommended to start different threads where one is the
master and the rest are slaves. From the REPL, the CL-MW entry point is
the function mw-initialize which takes a list of strings that represent the
command line arguments of the application. Running in the REPL is useful
for debugging or incremental development.

The recommended means of doing production runs with a CL-MW appli-
cation is via a dumped binary created with the CL-MW function mw-dump-exec.
When this function is called, the entire Lisp image will be written into a bi-
nary and the Lisp image will exit and any shared libraries which mw-dump-exec
finds as being local to the installation to SBCL or any used CL libraries will
be written to the current working directory. The entry point will be an imple-
mentation specific function which does some bookkeeping and then invokes
mw-initialize with the command line arguments supplied. In this form,
the binary acts like any other client/server application and you can easily
run as many as you need. If for some reason the process gets an uncaught
signal or other terminating error, a stack trace created by SBCL’s runtime
will be emitted from the program to facilitate debugging.

CL-MW has a collection of settings which are adjusted via command line
options as described on page 35.

1.2.5 Network I/O and Task/Result Size

The underlying network implementation of CL-MW is nonblocking and fully
asynchronous. A connection to a client is handled by a packet buffer that
is split into two pieces: a read buffer and a write buffer. The initial size of
each buffer is controllable. The read buffer can grow to a specified maximum

1.2. CL-MW 11

size before the connection is cut to the other side on account of the packet
being too big. The write buffer size is advisory at this time and only limit
how much can be written at one time instead of how large the write buffer
actually can be. This will be addressed in a future revision of CL-MW.

The master process will internally group tasks into a whole network packet
and subsequently tell the slave how many results to group into the network
packet back to the master. The grouping of tasks and results amortizes the
cost of sending data over TCP and increases network utilization efficiency–at
the cost of memory, of network communication. It is up to the application
author to understand enough of their task and result size requirements to
pick good groupings so grouped tasks or results don’t overflow the packet
buffer sizes. Understanding the scale of how many slaves will be connecting
to the master process will determine how big to make the initial network
buffer sizes and to what they should be capped as they grow.

12 CHAPTER 1. OVERVIEW

Chapter 2

Downloading and Installing

2.1 Compatibility and Versioning

CL-MW will be considered in beta until it reaches the 1.0 version number.
During this phase, the APIs or feature sets of CL-MW may change in a non-
compatible ways with previous versions of CL-MW. Such compatibility or
feature changes will be detailed in the version history section of this document
located in appendix B on page 53.

2.2 Supported Implementations

CL-MW is currently supported on/with:

� SBCL 1.0.39.16 or later.

� Stable releases of IOLib such as 0.7.0, 0.7.1, 0.7.2, 0.7.3 or later.

2.3 Official Release Tarballs

This web page contains all official releases of CL-MW in addition to a live
git repository of the HEAD of CL-MW.

http://pages.cs.wisc.edu/~psilord/lisp-public/index.html

Manuals in PDF and HTML forms corresponding to each release exist
next to the release tarball.

13

http://pages.cs.wisc.edu/~psilord/lisp-public/index.html

14 CHAPTER 2. DOWNLOADING AND INSTALLING

2.4 Installation Using a Tarball

1. Unpack the tarball, e.g., tar zxf cl-mw-0.1.tar.gz.

2. Configure SBCL to know about the *.asd files. This may entail making
symlinks in your $HOME/.sbcl/systems (or appropriate) directory to
the *.asd files in the CL-MW directory.

3. In the unpacked CL-MW directory:

� make will make all of the examples.

� make clean will remove all generated files.

� make docs will make the PDF and html manual output in doc/.

� make SBCL=/path/to/sbcl target will use a specific sbcl instal-
lation instead of the one in your path. By using this mechanism,
you can specify things like clbuild lisp if that is how you start
SBCL. If you specify SBCL for the toplevel Makefile, it will prop-
agate to the Makefiles in the examples/* directory

Chapter 3

Writing Applications

A CL-MW application uses the :CL-MW package and exists in its own arbitrar-
ily named package determined by the application author. There exist three
parts to a CL-MW application: one or more task algorithms, a single master

algorithm, and a single slave algorithm.

3.1 Example: Hello World

The purpose of this minimal example is to show how to create a task algo-

rithm, a master algorithm, and a slave algorithm. The master algorithm will
create tasks and process the results from one or more slaves which connect
to the master process. The task algorithm we describe simply concatenates
the string arguments with another string and returns it. Both the master
and the slave processes are assumed to be on the same machine with both
binding to the localhost interface.

We start with the unsurprising ASDF file for the hello-world CL-MW

application.

Listing 3.1: cl-mw.examples.hello-world.asd

(asdf : defsystem #:cl-mw . examples . hello-world
: depends-on (#:alexandria #:cl-mw)
: components ((: file "package")

(: file "hello-world"

: depends-on ("package"))))

15

16 CHAPTER 3. WRITING APPLICATIONS

For this next listing we see that mw-master and mw-slave are functions
which are used for testing or debugging in the REPL. Notice we re-export
the :CL-MW package symbol mw-dump-exec from our application package which
helps us easily save the lisp image into a binary at a later time.

Listing 3.2: package.lisp

(defpackage #:cl-mw . examples . hello-world
(: use #:cl #:alexandria #:cl-mw)
(: export #:mw-master

#:mw-slave
#:mw-dump-exec))

(in-package : cl-mw . examples . hello-world)

For documentation purposes, we partition the main single file of the imple-
mentation into parts which contain the task algorithm, the master algorithm,
and the slave algorithm.

The task algorithm accepts a regular Lisp string and also returns one.

Listing 3.3: hello-world.lisp: Part 1 of 4

(in-package : cl-mw . examples . hello-world)

(define-mw-algorithm hello (str)
(concatenate ’ string "Hello World: " str))

The master algorithm creates 10 tasks into CL-MW and then contin-
ues to call mw-master-loop until 10 results have been processed. When
mw-master-loop returns, one or more of these CL-MW functions will return
meaningful data, depending upon the application: mw-get-unrunnable-tasks,
mw-get-results, mw-get-connected-ordered-slaves,
mw-get-disconnected-ordered-slaves.

Listing 3.4: hello-world.lisp: Part 2 of 4

(in-package : cl-mw . examples . hello-world)
(define-mw-master (argv)

(unwind-protect
(let ((num-tasks 10)

(num-results 0))
(dotimes (x num-tasks)

(let ((str (format nil "Task ~A" x)))

3.1. EXAMPLE: HELLO WORLD 17

(mw-funcall-hello (str))))
(while (/= num-results num-tasks)

(mw-master-loop)
(when-let ((results (mw-get-results)))

(dolist (result results)
(let ((payload (mw-result-packet result)))

(incf num-results)
(format t "Got result from slave: ~S~%"

payload)))))
0)

(format t "Master algo cleanup form.~%")))

The slave algorithm is very simple in our case. The function
mw-slave-loop-simple simply loops inside of CL-MW processing tasks un-
til the master tells the slave to shut down, at which point mw-slave-loop-simple
returns 0 and the slave exits with that return code. We could have left off
this definition of a slave algorithm altogether and used the default slave al-
gorithm in a CL-MW application. We included it here as demonstration of
how to write one.

Listing 3.5: hello-world.lisp: Part 3 of 4

(define-mw-slave (argv)
(unwind-protect

(mw-slave-loop-simple)
(format t "Slave algo cleanup form.~%")))

We additionally specify two helper functions which are not part of CL-

MW, nor technically the application, but allow us ease of debugging and
testing the application in the REPL.

Listing 3.6: hello-world.lisp: Part 4 of 4

(defun mw-master ()
(mw-initialize

’ ("--mw-master" "--mw-slave-task-group" "10"

"--mw-master-host" "localhost"

"--mw-slave-result-group" "10")))

(defun mw-slave (port)
(mw-initialize

‘ ("--mw-slave" "--mw-master-host" "localhost"

18 CHAPTER 3. WRITING APPLICATIONS

"--mw-master-port"

, (format nil "~D" port))))

3.2 Running Hello-World in the REPL

Now, let’s run this example in the REPL so we can see how it works. First,
we’ll set up and run the master process. We call our master helper function
to start the master process. We’re packaging together 10 tasks to an idle
slave and expecting 10 results back from any particular slave. Otherwise 1
task will be sent and 1 result sent back from the slave. Grouping the tasks
or results together makes the network communication more efficient. The
master is told to start up on the localhost interface. There is no method
to start the master bound to all interfaces.

In the log output below, the member id token of the master and slave is
“default-member-id”. In normal use, this should probably be changed to
be unique to the specific master/slave computation. Please see the section
on command line arguments on page 35 for how to do this.

> sbcl

This is SBCL 1.0.39.16, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

* (require :cl-mw.examples.hello-world)

[Lots of output on compiling and loading libraries]

* (use-package :cl-mw.examples.hello-world)

T

* (mw-master)

07/20/2010 23:15:42 [A] INIT MASTER "default-member-id"

07/20/2010 23:15:42 [A] MASTER READY 127.0.0.1:52942

At this point, the master process has already created some hello world
tasks and is waiting for some slaves to connect. The output lines with [A]

3.2. RUNNING HELLO-WORLD IN THE REPL 19

in them are emitted as an audit trail by the CL-MW library. The “default-
member-id” is the membership token of the master which the slave must
match. Let’s start up a slave with our helper slave initialization function and
pass in the port number of the master process—because for this example the
helper slave function assumes localhost.

> sbcl

This is SBCL 1.0.39.16, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

* (require :cl-mw.examples.hello-world)

[Lots of output on compiling and loading libraries]

* (use-package :cl-mw.examples.hello-world)

T

* (mw-slave 52942)

07/20/2010 23:23:46 [A] INIT SLAVE "default-member-id"

07/20/2010 23:23:47 [A] MASTER <- CONNECTED TO 127.0.0.1:52942 \

FROM 127.0.0.1:47768

07/20/2010 23:23:47 [A] MASTER -> ID SLAVE-0

07/20/2010 23:23:47 [A] MASTER -> 10 tasks (10 grouping)

07/20/2010 23:23:47 [A] MASTER <- 10 results

07/20/2010 23:23:47 [A] MASTER -> SHUTDOWN

Slave algo cleanup form.

07/20/2010 23:23:47 [A] FINI SHUTDOWN "default-member-id"

0

*

The last number is the return code of the slave function.
Meanwhile, let’s see what the master emitted:

07/20/2010 23:23:47 [A] NEW-CLIENT -> 127.0.0.1:47768

07/20/2010 23:23:47 [A] SLAVE-0 127.0.0.1:47768 -> \

["default-member-id"] \

20 CHAPTER 3. WRITING APPLICATIONS

:connecting [:unordered]

07/20/2010 23:23:47 [A] SLAVE-0 -> :idle

07/20/2010 23:23:47 [A] SLAVE-0 <- 10 tasks

07/20/2010 23:23:47 [A] SLAVE-0 -> :busy

07/20/2010 23:23:47 [A] SLAVE-0 -> 10 results

07/20/2010 23:23:47 [A] SLAVE-0 -> :idle

Got result from slave: "Hello World: Task 0"

Got result from slave: "Hello World: Task 1"

Got result from slave: "Hello World: Task 2"

Got result from slave: "Hello World: Task 3"

Got result from slave: "Hello World: Task 4"

Got result from slave: "Hello World: Task 5"

Got result from slave: "Hello World: Task 6"

Got result from slave: "Hello World: Task 7"

Got result from slave: "Hello World: Task 8"

Got result from slave: "Hello World: Task 9"

Master algo cleanup form.

07/20/2010 23:23:47 [A] SLAVE-0 <- TRY-SHUTDOWN

07/20/2010 23:23:47 [A] SLAVE-0 -> :shutting-down

07/20/2010 23:23:47 [A] SLAVE-0 -> :disconnected

07/20/2010 23:23:47 [A] EOF -> 127.0.0.1:47768

07/20/2010 23:23:47 [A] FINI SHUTDOWN "default-member-id"

0

*

Note: The audit lines have been reformatted slightly to fit. They do not
have the traditional shell line continuation characters in them.

We see that the master had packaged all ten tasks into one packet and
sent it to the slave. After getting the results–also in one packet, back, it
printed them out. At this point the results have equaled the tasks in the
master algorithm and it returns. CL-MW enters the shutdown phase where
it actively tried to shut off all known slaves and then exit with the return code
the master algorithm generated. If a severe problem arose during shutdown,
then the return code will be set to 255.

3.3 Producing an Executable

The :CL-MW package exports the function mw-dump-exec which saves the Lisp
image as an executable to the current working directory. We recommend

3.3. PRODUCING AN EXECUTABLE 21

that this function be re-exported from the application package built on top
of the :CL-MW package as shown previously in the ASDF file for this example.
Exporting this function makes it trivial to produce an executable—one just
require s the package, then use-package s it, and then calls mw-dump-exec
to produce the binary.

mw-dump-exec simplifies collecting required libraries that may not be
present on the slave system. mw-dump-exec will copy any currently loaded
libraries with an absolute path into the current working directory. For li-
braries without any path, it will approximate the search algorithm used by
dlopen() to find an absolute path for the library and then copy it to the
current working directory. mw-dump-exec, with the :ignore-libs keyword
argument, can be told to ignore specific libraries loaded by the lisp image.
One would supply a list of strings representing unqualified library names to
be ignored. Libraries can also be remapped, with the :remap-libs keyword
argument, from their unqualified name to a specific path. An association list
should be supplied with :remap-libs which maps unqualified library names
to absolute paths. Ignoring a library overrides a remap of a library, and a
remap of a library overrides the auto detection of the library’s absolute path.
mu-dump-exec will update the Lisp image to look for the dumped libraries
in the path ./ when the saved executable is started.

How the lisp image is started before the executable is produced is impor-
tant. We start SBCL up with the --disable-debugger option which tells
SBCL to dump a stack trace and exit when something has gone wrong in
the executable—such as the signaling of an unhandled condition. Otherwise,
SBCL will drop into an interactive debugging session and wait for input to
arrive. Disabling the debugger prevents the executable from having a prob-
lem and then consuming valuable compute time on a resource waiting for
input which will never come.

Dropping into the debugger is one of a few things in the execution en-
vironment that can be altered with various command line options to SBCL.
Another common adjustment to set is how big the heap is in the Lisp image
runtime. The default runtime heap size is operating system specific. On the
Linux machine upon which I developed CL-MW, it was 512MB and so for
each invocation of the master and slave executable, about 512MB of memory
will be requested from the operating system—even if it isn’t all used by the
application. Depending upon your master algorithm and task algorithms,
you may need to tune the runtime heap size to fit the computation require-
ments. Please see the SBCL manual for more tunable options as needed by

22 CHAPTER 3. WRITING APPLICATIONS

your computation.

> sbcl --disable-debugger

This is SBCL 1.0.39.16, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

* (require :cl-mw.examples.hello-world)

[Lots of output on compiling and loading libraries]

* (use-package :cl-mw.examples.hello-world)

T

* (mw-dump-exec)

######################################

Processing loaded shared libraries

######################################

Shared-library: /home/psilord/content/code/lisp/clbuild/source\

/iolib/src/syscalls/libiolib-syscalls.so...\

dumping...fixating.

Shared-library: librt.so...looking up...found \

/usr/lib/librt.so...dumping...fixating.

##

Please package these libraries with your executable

##

./librt.so

./libiolib-syscalls.so

####################################

Writing Master/Slave executable

####################################

[undoing binding stack and other enclosing state... done]

[saving current Lisp image into ./a.out:

writing 3512 bytes from the read-only space at 0x01000000

3.4. THE AUDIT FILE 23

writing 2256 bytes from the static space at 0x01100000

writing 38322176 bytes from the dynamic space at 0x09000000

done]

mw-dump-exec iterated over all of the shared libraries being used by the
Lisp image. mw-dump-exec determined that the shared library libio-syscalls.so
used by IOLib (a package needed by CL-MW) must be included and the ac-
tual library file is copied into the current working directory. Then the Lisp im-
age is adjusted to look in the path ./ for libio-syscalls.so. mw-dump-exec
noticed that librt.so didn’t have an absolute path but had a successful
search for an absolute path to the library. This library is also copied to
the current working directory and the lisp image adjusted to find it. If
mw-dump-exec isn’t told otherwise, the name of the binary it dumps is a.out.
You can supply a different executable name to mw-dump-exec, see page 47
for details.

If this executable is supplied with the same arguments to mw-initialize
as defined in the helper function mw-master and another invocation started
with the same arguments to mw-initialize as defined in the helper function
mw-slave (adjusting for the master’s host and port!), then you will see similar
output as the slave executes the master’s tasks.

Here we see the executable and the shared libraries with which it should
be bundled when moved to another machine for execution:

> ls a.out *.so

-rwxr-xr-x 1 psilord psilord 38948892 Jul 20 23:44 a.out*

-rw------- 1 psilord psilord 7235 Jul 20 23:44 libiolib-syscalls.so

-rw------- 1 psilord psilord 30684 Jul 20 23:44 librt.so

Important: Any dumped shared librariesmust exist in the current work-
ing directory when the main binary is invoked for them to be found by the
restarting binary. Relative paths and the environment variable LD LIBRARY PATH

do not work properly.

3.4 The Audit File

The master and slave process both can write their audit trail to a specified
file. This is done with the --mw-audit-file file-name command line option.
When this option is used, every written line above with an [A] in it will

24 CHAPTER 3. WRITING APPLICATIONS

be written to the specified audit file. Any other output that the master

algorithm or slave algorithm creates will go to *standard-output* or to
wherever that is bound.

Limitation: The audit files do not rotate and can grow unboundedly.
The audit file will be appended to if it exists upon start of the master or
slave process.

CL-MW does minimal statistics bookkeeping. The audit files can be
used to answer questions about the application’s run. For example, how
many slaves are connected, what is the slave churn rate, on what subnet are
the slaves, or how many tasks were processed for a given time interval.

Note: The format of the audit file may change in a future revision of
CL-MW.

Chapter 4

Interfacing with Existing Batch
Systems

CL-MW is designed to work with existing batch systems. CL-MW has no
provision for starting up slaves on remote machines, moving files between ma-
chines, detecting and killing run away slaves, managing user identity, storing
or transmitting credentials, or enforcing authorization policies for resource
use. These, and many other features, are general features which batch sys-
tems usually provide. In general, batch systems provide very robust mecha-
nisms for each of these features and are well suited to handle many edge cases
which show up in practice. Usually a CL-MW application will be sharing
resources with other applications across a common cluster of machines.

What CL-MW does provide is a means for communicating to a batch
system called the resource file. The master process, when configured to do
so, periodically writes information into the resource file, including liveness of
the master process, if the computation is still in progress, how many slaves the
master desires, and how to start up those slaves. The master process adjusts
the resource requirement information in the file based upon the outstanding
workload and the slaves successfully started by the batch system.

The resource file is written when the command line option
--mw-resource-file file-name is used with the master process. By default
the master will rewrite it every 300 seconds (5 minutes) with new information.
This can be controlled by the command line option
--mw-resource-file-update-interval integral-seconds.

The resource file contains information in Lisp form and is intended to be
read by another process specific to the batch scheduler whose responsibility

25

26 CHAPTER 4. INTERFACING WITH EXISTING BATCH SYSTEMS

it is to acquire resources from said batch scheduler. The batch scheduler is
directly notified in the resource file if the master algorithm’s computation is
in progress or finished.

The slave process can also read the resource file in order to determine
the master host, port, and member-id to which it should connect and if
the computation is still in progress or finished. Depending upon the batch
scheduler, having the slave read the resource file directly can be a very helpful
because the dynamic connection information needed by the slave is available
in the file. There is no requirement to adjust meta-information for the slave
(e.g., its command line arguments which may specify a new master ip:port
combination) through the batch system itself.

The internals of the resource file are described on page 47.

4.1 Condor

Condor is a versatile, robust, and free batch scheduling system available from
http://www.cs.wisc.edu/condor. It can maintain high job throughput
for tens of thousands of jobs on tens of thousands of resources. Condor’s
built in mechanisms for file transfer, job execution policies, and robustness
mechanisms make it a good distributed computing platform on which to run
CL-MW applications. We describe a simple application of Condor which
provides a reliable execution platform for a CL-MW application.

4.1.1 Interfacing CL-MW with Condor

Condor can be told to transfer the job’s input files to the remote execute
node just before the job is about to start. Condor will do this each time a
job tries to run when it has been sitting idle in the queue. We use this fact
to copy over the resource file written by the master over to the slave so the
slave knows where to connect.

We use a Condor feature that can control when a terminated job is to
removed from the queue. We forbid the slave job to be removed from the
queue unless the slave gets told to shutdown by the master or otherwise
exits with the return code of zero. If the master dies without producing
a completed answer, the slaves, having noticed that the master closed the
connection without having been told to explicitly shut down, will exit with
a non-zero status. The slave jobs will remain in the job queue due to the

http://www.cs.wisc.edu/condor

4.1. CONDOR 27

Condor enforced job policy. If the slave runs again and tries to connect using
a stale resource file (due to the master not running for an extended period of
time), the slave will again exit with a non-zero status value, again remaining
in the queue.

We also submit the master process itself as a job into the Condor system.
The master will always run on the submit node as opposed to being shipped
to an execute node. This allows the master access to the needed input files or
other resources usually only found on the submission machine and owned by
the submitter of the job. We do not perform the same type of job policy for
the master as we did for the slaves. If the master exits with any return code,
it will be removed from the job queue. However, in the event of machine
reboot (or many other types of failures), Condor will, when it starts running
again, know that the master and slave processes were present in the job queue.
It will restart the master and again find more resources for the slave jobs.
When the master restarts it will write a new resource file. When a slave runs
again, the new resource file gets moved to it and it will connect with the
currently running master. Finally, if the master has finished and written the
final update into the resource file stating the computation is finished, then
any slaves that start up with that particular resource file will immediately
exit with a status zero. This allows the slaves to be removed from the queue.
If a slave is told to shutdown properly by the master, and does so, then it
will exit with an exit code of 0 and also be removed from the queue.

The combination of the slave job policy and the restart robustness of the
master makes CL-MW jobs reliable. In the event of a restart of the master
process, the entire computation will restart. However, the entire computation
will reliably restart and run until it finally completes.

The particular interface described in this section is: simple, doesn’t make
full use of the information the resource file, and wastes compute time on
the execution nodes during the time the master process is down. It could be
extended with an actual process outside of CL-MW and managed by Condor
which watches the resource file and actively submits and removes slaves from
Condor based on the master’s current resource needs.

A Simple Interface to Condor

This example describes the Condor interface for the ping example supplied
with CL-MW.

There are two Condor submit files, one for a single master process, and

28 CHAPTER 4. INTERFACING WITH EXISTING BATCH SYSTEMS

one for a static cluster of slave processes. The master will write a resource

file and the slaves, using file transfer, will read it and know where to connect.
No dynamic adjustment of resource acquisition is done in this example.

The Master Process

The following submit file details how the master process is to be run. This
file is given to Condor’s condor submit which submits the job into Condor’s
job queue on the local machine.

Begin master.sub

universe = scheduler

executable = ./ping

arguments = --mw-master \

--mw-slave-task-group 100 \

--mw-slave-result-group 100 \

--mw-resource-file resource-file.rsc \

--mw-slave-executable ping \

--mw-audit-file master.$(CLUSTER).$(PROCESS).audit \

--mw-member-id $(CLUSTER).$(PROCESS)

output = master.$(CLUSTER).$(PROCESS).out

error = master.$(CLUSTER).$(PROCESS).err

log = master.$(CLUSTER).$(PROCESS).log

notification = NEVER

queue 1

End master.sub

Each line will be described as to its effect on the job submission.

universe = scheduler

The job is marked to be a scheduler universe job. It will start
immediately and only on the machine where this job is submitted.

executable = ./ping

4.1. CONDOR 29

The executable Condor will use when executing this job. Con-
dor and the ping executable will assume the needed libraries, if
any, associated with the ping program are present in the same
directory as the executable.

arguments = --mw-master \
--mw-slave-task-group 100 \
--mw-slave-result-group 100 \
--mw-resource-file resource-file.rsc \
--mw-slave-executable ping \
--mw-audit-file master.$(CLUSTER).$(PROCESS).audit \
--mw-member-id $(CLUSTER).$(PROCESS)

This is the complete list of command line arguments supplied
to the master process when it is executed by Condor.

The meaning of the --mw-* arguments in numerical order are:

1. Must be first and specifies that this invocation of the ping

binary is the master process.

2. Number of tasks that the master will pack into one network
packet to a slave.

3. Number of results that the slave will pack into one network
packet to the master.

4. Specify the resource file. The resource file path must be
unique to each CL-MW computation submitted to the same
scheduler daemon in Condor. The path must match between
the master’s submit file and the slave’s submit file.

5. We explicitly specify the slave executable name. Otherwise,
the master would try to determine the name of itself when
it is running in order to find its own executable to use as
the slave executable in the resource file. The explicit speci-
fication of the slave executable is necessary because Condor
specifies a different name for the executable when executing
it.

6. An audit file is specified based upon the cluster and process
id of the job. It will be filled with information about who
and how the slaves connect and what work is given to them.
We use Condor’s $(CLUSTER) and $(PROCESS) macros,

30 CHAPTER 4. INTERFACING WITH EXISTING BATCH SYSTEMS

which are unique per job submitted, to assign a unique iden-
tifier to this file.

7. Using Condor’s $(CLUSTER) and $(PROCESS) mechanism,
we assign a unique identifier to the master. This identifier
will be written into the resource file so that the slaves can
authenticate themselves to the master.

output = master.$(CLUSTER).$(PROCESS).out

Any standard output written by the master algorithm will be
written here.

output = master.$(CLUSTER).$(PROCESS).out

Any standard error output written by the master algorithm

will be written here.

log = master.$(CLUSTER).$(PROCESS).log

This file is written by Condor and is a sequential record of
a job’s lifetime in Condor. A sample of the events which can
happen to a job are: submission, execution, termination, held,
released, etc. This file is a very useful debugging and tracking
tool to find out the state in which a job may be.

notification = NEVER

No matter how this job completes, do not send an email to the
account which submitted this job. Valid options are ALWAYS,
COMPLETE (the default if notification is not specified),
ERROR, and NEVER.

queue 1

This will submit one cluster of jobs into Condor with only one
job in the cluster.

When this job is submitted, it should start immediately and create the
resource file resource.rsc. After this file is in existence, the slaves can be
submitted.

4.1. CONDOR 31

The Slave Processes

The following submit file submits a static cluster of vanilla jobs which are
the slaves.

Begin slaves.sub

universe = vanilla

executable = ./ping

arguments = --mw-slave \

--mw-resource-file resource-file.rsc

output = slaves.$(PROCESS).out

error = slaves.$(PROCESS).err

All slaves will share a log file.

log = slaves.log

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = libiolib-syscalls.so,resource-file.rsc

notification = NEVER

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

queue 1000

End slaves.sub

We describe the interesting lines in this submit file.

universe = vanilla

This fixates a set of features for this job in the Condor system
which state that the job can run on any suitable execute machine
in the pool.

arguments = --mw-slave \
--mw-resource-file resource-file.rsc

The meaning of the --mw-* arguments in numerical order are:

32 CHAPTER 4. INTERFACING WITH EXISTING BATCH SYSTEMS

1. Must be first and specifies that this invocation of the ping

binary is a slave process.

2. Specifies a resource file the slave will use to contact the mas-
ter process and identify itself.

should transfer files = YES

This states that Condor is responsible for moving any files
the job needs or produces during its execution. If not specified it
means there is a common file system between the submit machine
and the execute machine that the job can access.

when to transfer output = ON EXIT

This specifies that Condor only cares about the output a job
produces when a job completes.

transfer input files = libiolib-syscalls.so,resource-file.rsc

Any input files needed by the job are specified here. We spec-
ify the shared libraries the slave executable needs in addition to
the resource file. Condor will transfer the most recent versions of
these input files each time the job starts.

on exit remove = (ExitBySignal == False) && (ExitCode == 0)

This implements the job policy previously mentioned. Only
allow the job be removed from the queue when it hasn’t exited by
a signal and the exit code of the job is zero. If the job exits for any
other reason, it will remain in the job queue and be eventually
restarted.

queue 1000

Submit one cluster with 1000 jobs in it into Condor.

In summary, one thousand jobs will be submitted into this cluster. The
:slaves-needed setting in the resource file is ignored, as there is no over-
seer watching the resource file and managing resource acquisition on behalf
of the master algorithm. The resource file is transmitted as an input file
and under Condor this means to transmit it anew every time the job is re-
run. Condor also send over any shared libraries or other files the executable

4.1. CONDOR 33

needs. These slaves will stay in the queue until they either connect to a
master and the master tells it to shut down, or because the master wrote
:computation-status :finished into the resource file and the slave reads
the file. In addition, we specify the on exit remove policy for the job; the
slave will only be removed from the queue if the slave had not exited with
a signal and the exit code was zero as requested by the master. The output
of the slaves will be the standard out of the slave algorithm. Since no audit
file is specified, the auditing information will go to the standard out of the
process.

4.1.2 Environmental Requirements

Running binaries across a host of machines which differ in OS revisions,
physical capabilities, and network will bring to the forefront scalability and
binary compatibility problems. Here we describe a few common problems
and their solutions.

Memory Requirements

Depending upon the memory capabilities of the resource slots in the pool
(suppose they only have 384MB each), a slave may run once, consume 512MB
which Condor records as the memory usage for the job, be preempted for some
reason, and then never run again because no slot in the pool will accept a
512MB job anymore.

This is fixed by either adding Requirements = Memory > 0 (or whatever
fits your needs) to the slave’s submit file or adjusting the fixed runtime heap
size with command line arguments to SBCL when you create the executable.
The latter choice is safer since it models the true resource requirements your
application needs and does a better job of preventing thrashing. The former
is more useful for testing purposes.

Network or Disk Bandwidth

Another environmental concern is the network or disk bandwidth of the sub-
mit machine as potentially thousands of slaves simultaneously have their
executables, shared libraries, and other files transferred from the submit ma-
chine and onto the execute slots. In practice this often isn’t a problem, but
it is good to know what to do if it becomes one.

34 CHAPTER 4. INTERFACING WITH EXISTING BATCH SYSTEMS

The condor schedd config file entries JOB START DELAY and
JOB START COUNT can be used to limit the job start rate to restrict network
and disk bandwidth when bursts of jobs begin running.

Dynamic Linking

Since a CL-MW application is a dynamically linked binary, it will need to find
and load its required libraries at run time. When the binary is moved from
the submit host to the execute host, the execute host may not have a required
dynamic library available, or more rarely, a required kernel syscall interface
the job needs. In this event, the job (in our case, the slave) will (often) die
with a SIGKILL and go back to idle (due to our on exit remove policy). It
could be possible for a slave to continuously match to a machine upon which
it cannot run. In this situation the slave will accumulate runtime but make
no forward progress. The preferred solution is to package your libraries with
your job. In the rare cases where this will not be sufficient, you may have to
restrict the set of machine upon which your job runs. Please read section 2.5
in the Condor manual for how to specify this kind of a requirement for your
job.

Chapter 5

Technical Specification

5.1 Command Line Arguments

These are the command line arguments the CL-MW library accepts. These
command line arguments are stripped from the argv before the argv is handed
to the master algorithm.

--mw-help Emit the usage and exit.

--mw-version-string Emit the version string and exit.

--mw-master Run the executable in Master Mode. Required if --mw-slave
is not set and must be first on the command line.

--mw-slave Run the executable in Slave Mode. Required if --mw-master is
not set and must be first on the command line.

--mw-master-host ip-address-or-hostname When in Master Mode, it
is the interface (either the hostname or the ip address) to which the
master should bind and is emitted to the resource file if any such file
is written. When in Slave Mode, it is the hostname, or ip address, to
which the slave process should connect and get work.

--mw-master-port port To which port should the slave connect for work.

--mw-max-write-buffer-size size-in-bytes How big the network writing
buffer should be before rejecting the write.

35

36 CHAPTER 5. TECHNICAL SPECIFICATION

--mw-max-read-buffer-size size-in-bytes How big the network reading
buffer should be before rejecting the read.

--mw-client-timeout seconds How many seconds should the master wait
for a client to respond when the master is expecting a response.

--mw-audit-file filename A file in which the audit trail of the process is
stored.

--mw-resource-file filename Describes the resources needed by the mas-
ter for a higher level batch system to honor.
When in master mode this file contains information concerning:

� The time stamp of when the file was written.

� The member id of the master group.

� The update interval of when this file will be written again.

� How many slave processes are needed by the master.

� The full path to the slave executable.

� The complete arguments to the slave in order for it to connect to
the currently running master process which produced this file.

When in slave mode:

Determine the master-host, master-port, and member-
id to which the slave should connect by reading it from
the resource file. The ordering of this command line op-
tion in relation to --mw-master-host, --mw-master-port,
and --mw-member-id is important. If --mw-master-host,
--mw-master-port, and/or --mw-member-id are specified be-
fore this argument then the resource file will overwrite the
command line specification, and vice versa. If the resource
file does not exist, then this knowledge is ignored (but warned
about) if --mw-master-host and --mw-master-port are present.

--mw-resource-file-update-interval seconds Howmany seconds between
updating the resource file with current information.

5.2. THE API 37

--mw-slave-task-group positive-integer How many tasks are grouped
into a network packet being sent to a slave process. If the packet is
larger than the maximum size of the read buffer of the slave, the slave
will abort the read. Defaults to 1.

--mw-slave-result-group positive-integer How many completed results
should be grouped into a network packet being sent from the slave to
the master. If the packet is larger than the maximum size of the read
buffer for the master, then the master will abort the connection to the
slave. Defaults to 1.

--mw-member-id string This is a token which must match between the
slave and the master. It is used to insecurely identify a working group
of masters and slave. In a harsh environment with many masters and
slaves going up and down, this acts as a simple sanity check that the
correct slaves are connected to the correct master process. Default is
the string ”default-member-id”.

--mw-slave-executable path-to-executable This specifies the absolute
path to a slave executable. It is used when writing the resource file
only.

5.2 The API

The CL-MW library is in the :CL-MW package and it is used by the application
package built on top of CL-MW. The exported symbols in the :CL-MW package
are:

The Task Algorithm

(define-mw-algorithm name (parameters*) &body body) Macro

Defines a task algorithm with name name. The arguments
passed to this call are those which were passed into the mw-funcall-name
form for the task algorithm.

Limitation: The parameters list is restricted to having zero
or more required parameters and one additional and optional
lambda list keyword. There may be any number of parameters
and their init-forms associated with the lambda list keyword.

38 CHAPTER 5. TECHNICAL SPECIFICATION

Limitation: Supplied-p-parameters are not supported in the
lambda list.

Limitation: A task algorithm may not return multiple val-
ues or a function or closure. The latter restriction is due to the
inability to serialize a closure from the slave to the master.

Task Computation Function Generated by define-mw-algorithm

(name parameters*) Function

This is the function which actually performs the work of the
task algorithm. It accepts the parameters specified and returns
the last expression in the body supplied to the task algorithm

macro.

Task Submission Macro Generated by define-mw-algorithm

(mw-funcall-name (parameters) &key

sid tag do-it-anyway (retry t)) Macro

This is a destructuring macro which will insert a single new
task of the task algorithm named by name into CL-MW. The
parameters are in the same order as the parameter list for the
defined task algorithm and are evaluated before being packed into
the task structure. The other parameters describe a behavior
which together constitute the task policy for a submitted task.

sid SLAVE-ID Send the task to a specific slave denoted by
SLAVE-ID. If NIL, this task is considered :unordered, oth-
erwise it is a :ordered task.

tag FORM A form which will appear unchanged in the result
structure associated with the computed task. The default is
NIL.

do-it-anyway [T or NIL] If the task was a :ordered task and
the slave disconnected, then should this task be moved into
the :unordered group (yes if T), or become unrunnable (yes
if NIL)? By default :ordered tasks become unrunnable if the
associated slave is disconnected.

5.2. THE API 39

retry [T or NIL] If an unordered task was assigned to a slave
and the slave went away, then this controls if we should
retry on a different slave or if the task becomes unrunnable.
If this test passes then :do-it-anyway is consulted in the case
of :ordered tasks.

Task Policy Specification Macro Generated by define-mw-algorithm

(mw-with-task-policy-for-name (task-adder-func-symbol

&key sid tag do-it-anyway (retry t))

&body) Macro

This destructuring macro binds a task submitter function that
honors the task policy specified by the optional keyword argu-
ments to the symbol task-adder-func-symbol. The symbol task-
adder-func-symbol is lexically available in the body of the macro.
This function is used to add tasks with the task policy specified
to CL-MW.

Task policy keywords which are not specified default to their
values as defined for mw-funcall-name on page 38.

Specific Target Number API Generated by define-mw-algorithm

(mw-set-target-number-for-name value) Function

Sets the target number for the task algorithm specific to name

to value, which is clamped to zero or greater. This represents the
maximum number of pending tasks for this task algorithm that
the master algorithm would like to keep in memory at once. This
target number is advisory and the master algorithm can insert
more tasks than indicated by the target number. The default
target number for any specific task algorithm is 0.

(mw-get-target-number-for-name) Function

Returns the target number for the number of desired tasks to
keep in memory for the task algorithm specific to name.

(mw-pending-tasks-for-name) Function

40 CHAPTER 5. TECHNICAL SPECIFICATION

Return how many tasks are in memory (and not running on
any slaves) specific to the task algorithm name.

(mw-upto-target-number-name) Function

Returns the number of tasks the master algorithm would have
to create in order to reach the desired target number for task

algorithm name.

The General Target Number API

(mw-set-target-number value) Function

Sets the general target number for all tasks regardless of task
algorithm. This is only advisory and more tasks could be created
into CL-MW by the master algorithm.

(mw-get-target-number) Function

Return the current value of the general task target number.
The default value for the general target number is 0.

(mw-pending-tasks) Function

Return how many tasks of any kind are waiting to be sched-
uled to slaves.

(mw-upto-target-number) Function

Return how many tasks of any kind should be created by the
master in order to reach the general target number for all tasks.

The Master Algorithm

(define-mw-master (argv) &body body) Macro

Defines the master algorithm for the application of which
there may only be one. When the master algorithm has finished
computation, it must return an integer from 0 to 255 which will
become the return code of the process. If this doesn’t happen,
the return integer will be 255.

5.2. THE API 41

Note: If no master algorithm is specified in a CL-MW appli-
cation. An audit line will be emitted stating this fact and the
master computation will shut down immediately. A return code
of 255 will happen in this case.

Parameter argv will be the command line arguments passed
to the executable or to mw-initialize with the CL-MW specific
arguments stripped out.

(mw-master-loop &key (timeout .05)) Function

Enter the CL-MW system loop processing I/O and other li-
brary tasks until one or more of these events happen:

� Some tasks become unrunnable.

� There are pending results from slaves.

� Sequential slaves have connected to the computation.

� Sequential slaves have disconnected from the computation.

When one or more of these events happen the function will
return the 4 values:

1. Number of unrunnable tasks

2. Number of ready results

3. Number of newly connected and unprocessed ordered slaves

4. Number of newly disconnected and unprocessed ordered slaves

Parameter timeout is a time unit in real seconds which should
be waited in the Network IO multiplexing library before timing
out due to inactivity. In the case of this function, it means we
perform bookkeeping work inside of the CL-MW library and enter
back into the loop if no meaningful events occurred. Setting this
value too low will result in excessive CPU usage by the master
process.

(mw-master-loop-iterate &key (timeout .05)) Function

Enter the CL-MW system loop processing a single pass of
network I/O and other library tasks. After this call one or more
of the same events as described in mw-master-loop may have
happened.

42 CHAPTER 5. TECHNICAL SPECIFICATION

Parameter timeout is a time unit in real seconds which should
be waited in the Network IO multiplexing library before timing
out due to inactivity. In the case of this function, it means we
return the 4 values as described in mw-master-loop. Setting this
value too low could result in excessive CPU utilization.

(mw-get-unrunnable-tasks) Function

Return all currently unrunnable task structures in a list or
NIL if none.

(mw-get-results) Function

Return all currently finished result structures in a list or NIL
if none.

(mw-get-connected-ordered-slaves) Function

If there are any connected ordered slaves ready for use, this
will retrieve the list of slave ids or NIL if none. In practice each
slave id is a string, but generally they are an opaque data struc-
ture used to uniquely identify a slave. You should use equal to
check quality between slave ids.

(mw-get-disconnected-ordered-slaves) Function

If any ordered slaves have become disconnected, return a list
of their slave ids. You may use equal to compare against other
slave ids.

(mw-allocate-slaves &key (amount 1000) (kind :unordered)) Function

There are three kinds of groups for which slaves can be al-
located: :ordered, :intermingle, :unordered. When a slave
initially connects for work, it is placed into one of the three groups.
The order of group fulfillment is :ordered, :intermingle, :unordered.
If both :ordered and :intermingle are full, then any connect-
ing slaves go over to the :unordered group. The total number
of desired slaves for all groups is written into the resource file as
the number of needed slaves. This function can cause slaves in
the :unordered group to move to the groups desired.

It is valid for the :unordered group to contain more than the
allocation for it. The default allocation for all groups is 0.

5.2. THE API 43

(mw-deallocate-slaves &key (amount 0) (kind :unordered)) Function

This does not stop any slaves from processing any tasks, but
it does lower the number of slaves desired, clamped to zero, of
any of the of group :unordered, :intermingle, or :ordered as
specified. This relates to what is written in the resource file by
the master process.

(mw-free-slave slave-id) Function

Move the slave specified by slave-id into the :unordered
group after it completes whatever tasks it may be running and
adjust the desired slave amounts for the group the slave was in.
This does not evict or otherwise stop currently allocated tasks
from running on that slave. The slave’s group is only changed
once all of the tasks it is currently running are computed.

(mw-num-runnable-tasks) Function

Returns the number of runnable tasks which includes tasks
that were sent out and currently executing on slaves.

(mw-num-unrunnable-tasks) Function

Returns the number of unrunnable tasks in waiting to be con-
sumed out of CL-MW with mw-get-unrunnable-tasks.

The Slave Algorithm

(define-mw-slave (argv) &body body) Macro

Defines the slave algorithm for the application of which there
may only be one. When the slave algorithm has finished compu-
tation, it must return an integer from 0 to 255 which will become
the return code of the process. If this doesn’t happen, the return
integer will be 255.

Parameter argv will be the command line arguments passed
to the executable or to mw-initialize with the CL-MW specific
arguments stripped out.

Note: If no slave algorithm is specified in a CL-MW applica-
tion, then the default slave algorithm defined in listing 5.1 is used.
An audit line entry will occur stating that the CL-MW default
slave algorithm is being used.

44 CHAPTER 5. TECHNICAL SPECIFICATION

Listing 5.1: Default Slave Algorithm

(define-mw-slave (argv)
(mw-slave-loop-simple))

(mw-slave-loop &key (timeout .05)) Function

Process all pending tasks and return control to the slave algo-

rithm.
This function will return 6 values in this order:

master-disconnect Did the master close the connection to the
client (or under some conditions CL-MW wanted to imme-
diately exit due to some problem in the environment). T if
the master cut the connection or the library wanted to exit,
NIL otherwise.

explicit-shutdown Did the master send a shutdown command
to the slave according to the master/slave protocol? T if it
did and NIL if it didn’t.

total-results-completed The number of total results which have
been completely processed by the slave.

num-tasks A number which is how many tasks are yet to be
processed.

num-results The number of results that are currently waiting
to be sent back. This is affected by the master process with
the command line parameter --mw-slave-result-group.

result-grouping The number of results which must be grouped
together before being sent back (or if there are no more tasks
to compute whatever results are pending to go back get sent
back).

Parameter timeout is a time unit in real seconds which should
be waited in the Network IO multiplexing library before timing
out due to inactivity. In the case of this function, it means we
perform bookkeeping work inside of the CL-MW library and then
return into the slave algorithm. Setting this value too low will
result in excessive CPU usage by the master process.

(mw-slave-loop-iterate &key (timeout .0001)) Function

5.2. THE API 45

Process a single pending task, inspect the network buffers for
more work to do, and return control to the slave algorithm. This
will generally be extremely slow and hence has a short timeout.
It returns the same values as mw-slave-loop and there may or
may not have been any new tasks sent by the master in that time.

Parameter timeout is a time unit in real seconds which should
be waited in the Network IO multiplexing library before timing
out due to inactivity.

(mw-slave-loop-simple &key (timeout .05)) Function

Process all pending tasks form the master and wait for more.
Only return when the master says to shutdown or there was a
bad error and return 0 or 255 respectively.

Parameter timeout is a time unit in real seconds which should
be waited in the Network IO multiplexing library before timing
out. In the case of this function, it means we perform bookkeeping
work inside of the CL-MW library and begin waiting again for
more tasks from the master, or a shutdown command. Setting
this value too low will result in excessive CPU usage by the slave
process.

The Task Structure

(mw-task-sid task-structure) Function

Returns the slave-id for which the task-structure was destined.
If the task is :unordered, then NIL is returned.

(mw-task-tag task-structure) Function

Return the associated tag object for this task-structure, or NIL
if not set.

(mw-task-packet task-structure) Function

Retrieve, as a list, the arguments specific to the algorithm for
which this task-structure was created.

The Result Structure

46 CHAPTER 5. TECHNICAL SPECIFICATION

(mw-result-algorithm result-structure) Function

Return an uppercase string which is the name of the task

algorithm that produced this result-structure.

(mw-result-sid result-structure) Function

Return the slave id of the slave which produced this result-

structure.

(mw-result-tag result-structure) Function

Retrieve the unmodified tag associated with the original task-
structure for this result-structure.

(mw-result-compute-time result-structure) Function

Return the length of time in seconds which represents how
long it took to compute this result-structure.

(mw-result-packet result-structure) Function

Retrieve the actual returned form of the task algorithm which
produced this result-structure.

Miscellaneous API

(mw-initialize (argv

&key (system-argv sb-ext:*posix-argv*))) Function

The entry point into CL-MW. The parameter argv is a list of
strings which represent the argument list to the library. Anything
not a CL-MW specific argument will be passed to the master

algorithm or the slave algorithm in the same order as it was on
the command line.

(mw-version-string) Function

Return a string which represents the version number for this
library.

Note: The format and meaning of this string may change in
the future.

5.3. RESOURCE FILE 47

(mw-zero-clamp value) Function

If the value is less than zero, then return 0, otherwise return
the value.

(mw-dump-exec &key (exec-name "a.out")

ignore-libs remap-libs) Function

Produce an executable named exec-name, which is a.out by
default, and copy any shared libraries needed by the application
into the current working directory.

Any shared libraries loaded in the lisp image which are already
an absolute path will be copied verbatim to the current working
directory. Any unqualified libraries will be transformed by an
algorithm approximating the search algorithm of dlopen() into
absolute paths and then copied to the current working directory.
The dumped shared libraries must be shipped with the executable
to the target machine.

The parameter ignore-libs is a list of strings where each string
is an unqualified library name. These libraries will be ignored
by mw-dump-exec. If this parameter is NIL, the default, then no
libraries are ignored.

The parameter remap-libs is an association list of strings where
the first string is an unqualified library name and the second an
absolute path to a library that will be copied to the current work-
ing directory in place of what is found in the lisp image. If this
parameter is NIL, the default, then no libraries are remapped.

This interface may change in the future.
Limitation: The dumped libraries must exist in the current

working directory when the executable is run.

(while test-expr &body body) Macro

A ubiquitous macro which implements the usual “while” loop
control flow.

5.3 Resource File

Each form in the resource file is a two item list where the first item is the
attribute name as a keyword, and the second an arbitrary Lisp form whose

48 CHAPTER 5. TECHNICAL SPECIFICATION

schema depends upon the specific attribute. They take the form of:

(keyword form)

The current attributes for the resource file in this version of CL-MW are:

:computation-status The value is either the keyword :in-progress or the
keyword :finished. It represents if the master algorithm thinks the
computation is finished or not. If a slave reads a resource file with
:computation-status being :finished, it will exit immediately with
a status of zero.

:timestamp The value is an integer which represents the universal time
when the file was written.

:member-id The value is a string which must match in the master and
slave.

:update-interval The value is an integer which represents the number of
seconds since the timestamp after which the resource file will be re-
written. The default is 300 seconds.

:slaves-needed This value represents the raw number of slaves the master

algorithm has requested in order to complete its task.

:slave-executable This value is a list where the first element is a string rep-
resenting the full path to the executable which is the slave executable,
and the second element is a list of strings representing full paths to any
shared libraries that have to be moved along with the executable.

:slave-arguments This value is a list of strings which are the command line
arguments, in order, with which the slave is to be spawned.

An example file:

Listing 5.2: Contents of a sample resource file

;; Status of the computation

(: computation-status : in-progress)
;; Time Stamp of Resource File

(: timestamp 3488766071)

5.3. RESOURCE FILE 49

;; Member ID

(: member-id "default-member-id")
;; Update Interval (sec) of Resource File

(: update-interval 300)
;; Slaves Needed

(: slaves-needed 1000)
;; Slave Executable and Shared Libs

(: slave-executable
("/home/psilord/bin/a.out"

("/home/psilord/bin/libiolib-syscalls.so")))
;; Slave Arguments

(: slave-arguments ("--mw-slave" "--mw-master-host" "black"

"--mw-master-port" "47416"))

50 CHAPTER 5. TECHNICAL SPECIFICATION

Appendix A

Example Application
Descriptions

A.1 Hello-World

The canonical example detailed in this manual.

A.2 Ping

The task algorithm for this example returns :ping-ok if presented with a
:ping argument, or otherwise :ping-not-ok. The interesting aspect of this
example is the use of the general target number API for the in memory tasks.
Billions of tasks can be run through this application, but only a small number
are kept in memory at any give time to prevent memory exhaustion.

A.3 Monte-Carlo-Pi

This example implements the Monte Carlo algorithm to compute pi. Each
task runs N trials and returns N and the number of trials in the circle. The
master keeps a running sum of the total trials and the total number of trials in
the circle. At the end of the maximum number of iterations, the approxima-
tion algorithm is performed with the computed ratio and the approximation
to pi is produced. You may specify ----max-trial-sets integer to the mas-
ter process to state the total number of trial sets that must be performed.

51

52 APPENDIX A. EXAMPLE APPLICATION DESCRIPTIONS

The number of trials performed by each trial-set is non-configurable.

A.4 Higher-Order

This example shows that task algorithms can be quite versatile. Here the
horder task algorithm compiles a function presented to it as an argument
and applies it to the data also presented to it returning the result of the
application. The master algorithm creates a unique function for each task
and associates it with the data for that task. All results are printed out
when gotten back from the slaves. While this example shows the fundamental
sketch of producing higher order task algorithms, more work would be needed
to handle signaled errors or other problems that could show up in the task

algorithm.

A.5 Argument-Processing

This example shows how to define task algorithms that use the optional and
available lambda list keywords. The returned result from each task shows
the values of the parameters passed to the task algorithm.

Appendix B

Version History

Version 0.3
(Released 03/27/2012)

� NewFeature: The macro define-mw-algorithm now generates an
additional macro named mw-with-task-policy-for-name . This new
macro allows one to name a task adder function for the task algorithm

which honors a specific task policy. This named function can be used
as a regular Common Lisp function (mapped across a list, etc) in the
body of the macro.

Version 0.2
(Released 04/12/2011)

� NewFeature: Added basic support for the lambda list keywords of
&rest, &optional, and &key for use by the task algorithms.

� NewFeature: Added a new example, Argument-Processing, demon-
strating the use of the &rest, &optional, and &key lambda list key-
words in a task algorithm.

� BugFix: Fixed various warnings in the examples.

� BugFix: Fixed broken navigation icon links in html manual.

Version 0.1
(Released 11/02/2010)

� Info: Initial release of CL-MW.

53

54 APPENDIX B. VERSION HISTORY

Appendix C

Acknowledgements

I would like to graciously thank: my wife Stephanie–who often put up with
me vanishing for hours on end to write and test CL-MW, Greg Thain, Mick
Beaver, and Alan De Smet, whom acted as sounding boards for the imple-
mentation and gave great feedback in the design of the system, manual, and
how a user other than me would want to interact with it. In addition, I
would like to thank the various denizens at comp.lang.lisp and #lisp for
answering my many questions about Lisp.

CL-MW is not an official product from the Condor Project. It is written
by me in my free time. If you would like to use a C++ version of the Master-
Slave paradigm then check out Condor-MW from Condor’s website.

55

56 APPENDIX C. ACKNOWLEDGEMENTS

	License
	Overview
	Background
	CL-MW
	Task Algorithms
	The Master Algorithm
	The Slave Algorithm
	Running a CL-MW Application
	Network I/O and Task/Result Size

	Downloading and Installing
	Compatibility and Versioning
	Supported Implementations
	Official Release Tarballs
	Installation Using a Tarball

	Writing Applications
	Example: Hello World
	Running Hello-World in the REPL
	Producing an Executable
	The Audit File

	Interfacing with Existing Batch Systems
	Condor
	Interfacing CL-MW with Condor
	Environmental Requirements

	Technical Specification
	Command Line Arguments
	The API
	Resource File

	Example Application Descriptions
	Hello-World
	Ping
	Monte-Carlo-Pi
	Higher-Order
	Argument-Processing

	Version History
	Acknowledgements

