
Dynamic Heterogeneity and the Need

for Multicore Virtualization

Philip M. Wells

Google, Inc.

pwells@google.com

Koushik Chakraborty

Electrical and Computer Engineering

Utah State University

kchak@engineering.usu.edu

Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin, Madison

sohi@cs.wisc.edu

Abstract

As the computing industry enters the multicore era, expo-

nential growth in the number of transistors on a chip con-

tinues to present challenges and opportunities for computer

architects and system designers. We examine one emerg-

ing issue in particular: that of dynamic heterogeneity, which

can arise, even among physically homogeneous cores, from

changing reliability, power, or thermal conditions, or dif-

ferent cache and TLB contents. This heterogeneity results

in a constantly varying pool of hardware resources, which

greatly complicates software’s traditional task of assigning

computation to cores.

In part to address dynamic heterogeneity, we argue that

hardware should take a more active role in the management

of its computation resources. We propose hardware tech-

niques to virtualize the cores of a multicore processor, al-

lowing hardware to flexibly reassign any number of the vir-

tual processors that are exposed to a single operating sys-

tem to any subset of the physical cores. We show that multi-

core virtualization operates with minimal overhead, and that

it enables several novel resource management applications

for improving both performance and reliability.

1. Introduction

Advances in technology are continuing to drive Moore’s

Law and double the number of transistors available on a chip

every two years. This exponential growth, however, presents

several challenges in determining how to use those transis-

tors effectively. In past decades, computer architects were

able to take these additional transistors and use them for

creative purposes, such as out-of-order execution and deep

speculation, transparently improving the performance of un-

modified applications. However, a multitude of issues have

come to prevent large, monolithic uniprocessors from con-

tinuing as a viable design, leading the way for the rapid

emergence of multicore processors [10, 21]. Instead of try-

ing to create one large, complex core to use all of the avail-

able transistors, multicore processors integrate several cores

across the chip, allowing the performance of certain appli-

cations to continue to scale with Moore’s Law without re-

quiring frequent, slow, power-hungry cross-chip communi-

cation.

Though perhaps inevitable, multicore processors have

presented numerous new challenges to architects, system de-

signers, and application programmers alike. As widely noted

in the research community, software (including the Hypervi-

sor/VMM, OS, compiler, and application), must now extract

enough concurrency to keep all the cores busy. This is prov-

ing to be an incredibly challenging task, but even that is not

enough: In a traditional multicore processor, software must

also explicitly manage the use of those cores in order to ex-

press its concurrency to the hardware.

We argue that efficiently managing the use of all on-chip

cores will soon become equally as challenging for software

as extracting concurrency. The reason is due to the emer-

gence of dynamic heterogeneity among on-chip cores, aris-

ing from rapidly changing characteristics and requirements,

such as reliability, power, or thermal conditions, or different

cache and TLB contents. Such dynamic heterogeneity can

exist even if the cores are physically homogenous in their

design. Dynamic heterogeneity creates a constantly vary-

ing pool of resources, whose configurations and capabilities

change more rapidly than software can adapt. In addition,

we argue that for many types of layered systems, software

should not have to understand and adapt to such low-level

hardware uncertainty, even if it were able.

In the spirit of dynamically scheduled out-of-order pro-

cessors, which remove software’s burden of directly man-

aging the functional units of a single core, we propose

to virtualize the multiple on-chip cores, enabling hard-

ware/firmware to flexibly map computation onto the most

appropriate core at any given time. Our proposed Multicore

Virtualization allows the hardware designer to abstract the

low-level details of the cores, such as their dynamic hetero-

geneity, in order to alleviate software from the burden and

inefficiency of managing these resources directly.

2. Dynamic Heterogeneity and Implications

Several proposals have exalted the benefits of designing pro-

cessors with statically heterogeneous cores — cores that are



designed to have different physical characteristics in order to

capitalize on different engineering trade-offs (e.g., [13, 18]).

Future multicore chips will similarly contain dynamically

heterogeneous cores as well — cores which exhibit different,

and rapidly changing, execution characteristics, even though

they may be physically homogeneous in design.

2.1 Why Dynamic Heterogeneity?

Dynamic heterogeneity arise from a variety of sources, in-

cluding varying reliability, power, or thermal constraints of

the circuits, or changing contents of cache, TLB, or other mi-

croarchitectural structures. Dynamic heterogeneity can also

refer to the varying configurations of hardware resources,

particularly as they relate to changing software requirements

such as the need for extra reliability or instruction-level par-

allelism. Dynamic heterogeneity is a result of two byprod-

ucts of Moore’s Law: less reliable transistors, and increased

complexity coming from the use of those transistors.

In the first case, as individual transistors become smaller

and closer together, they begin to suffer from a number of

problems. For example, smaller transistors become more

susceptible to transient, permanent, and intermittent hard-

ware faults [4, 5, 9, 29, 31], which can impact an individual

core’s ability to perform reliable computation. Components

such as register files can suffer from power density prob-

lems, as power-hunger transistors in a small area struggle to

dissipate the heat from their heavy utilization. Global (chip-

wide) power distribution and dissipation limitations can pre-

vent all cores from operating at peak performance at the

same time. A number of techniques to tackle these problems

have been proposed, such as dynamically adjusting voltage

and/or frequency [6, 32, 45], or temporarily stopping the use

of an affected core altogether [8, 14, 27, 42]. Though these

solutions are effective in many cases at mitigating transis-

tor issues, these solutions themselves create dynamic het-

erogeneity that becomes software-visible.

In the second case, as transistors become more numer-

ous, microarchitects and circuit designers hook them up

in increasingly complex ways. One source of complexity

arises from predictive microarchitectural structures within

each core, including branch predictors, caches, and TLB ar-

rays. As a program executes, these structures become dy-

namically tailored for running a particular fragment of code

efficiently. Such dynamic specialization is desirable, but it

mandates an additional level of complexity to exploit its per-

formance benefits. In Section 6, we explore two examples of

how such heterogeneity can be purposefully created and ex-

ploited through careful assignment of computation to cores.

Another source of complexity arises due to the new pro-

posed capabilities among multiple cores, including the abil-

ity to join two or more cores together for reliability or ex-

tracting concurrency. As one example, an applications may

have certain components that require Dual-Modular Redun-

dancy (DMR) (e.g., [3, 34]) to maintain sufficient levels of

reliability in future systems, while other portions of the same

application can tolerate higher rates of hardware faults and

avoid the power and performance penalty of DMR. We dis-

cuss this example in more detail in Section 5.2. As another

example, software has changing levels of parallelism. Some-

times, task- or instruction-level parallelism of a single thread

can be exploited via multiple conjoined cores through spec-

ulative multithreading (e.g., [35]) or dynamic Core Fusion

(e.g. [17]). At other times, those cores can be reconfigured to

take advantage of data-level parallelism (e.g., [28]), or used

to exploit thread-level parallelism by independently execut-

ing multiple threads. The dynamic coupling of cores not only

creates different capabilities of each logical core, but also a

varying number of logical cores, capable of concurrently ex-

ecuting a varying number of software threads.

The end result is that dynamic heterogeneity creates a

system where frequent changes in the characteristics, con-

figuration and number of available or appropriate cores, are

the expectation, not the exception.

2.2 Software Implications

These emerging opportunities and challenges of dynamic

heterogeneity share two distinct traits. First, the details cre-

ate a new layer of complexity between the computation and

the physical hardware performing that computation. This

complexity in turn creates uncertainty in how computa-

tion should be efficiently mapped onto the hardware at any

given moment. Unraveling this uncertainty requires detailed

knowledge of the current configuration and capabilities of

each core — information that modern system and applica-

tion software does not posses, and cannot easily acquire due

to the relatively static interfaces present in layered systems.

Second, the capabilities and configurations of the hardware

can change rapidly, yet the cost of trapping into the OS to

perform and implement a scheduling decision has actually

increased over the years, relative to the cost of computa-

tion [25]. As a result, system and application software often

cannot implement policies to address dynamic heterogeneity

with sufficient timeliness, even if interfaces was modified to

provide appropriate information [42].

2.3 The Need for Multicore Virtualization

Given these two issues, we argue that hardware should take

a more active role in the management of its resources, in

particular, the on-chip cores. By abstracting the details of

the on-chip cores using a thin multicore virtualization layer,

simple homogeneous virtual processors (VCPUs) can be

exposed to the OS via the hardware/software interface (i.e.,

ISA), while innovations in multicore hardware adapt to the

opportunities and challenges of dynamic heterogeneity of

the underlying physical cores. In this way, the lowest level of

system software (e.g., the OS or traditional software VMM)

can remain completely unmodified.

Figure 1 illustrates multicore virtualization and its two

basic abilities. First, it supports the ability to move a

software-visible VCPU from one core to another, and the



Figure 1. Multicore Virtualization. Four VCPUs are ex-

posed the software, only three cores are actually present.

VCPUs V0, V1, and V3 have been transparently migrated,

while VCPU V2 has been transparently suspended.

ability to temporarily suspend execution of a VCPU when

there are no appropriate cores on which it can run. Second,

is preserves the illusion that all VCPUs are simultaneously

executing, even if a subset of them are suspended.

3. Experimental Methodology

In the following sections, we present a number of experi-

ments to examine the effectiveness of multicore virtualiza-

tion, and four examples of applications which use this vir-

tualization to adapt to, or take advantage of, dynamic het-

erogeneity. Our primary mode of experimentation is though

full-system simulation using Virtutech Simics [23]. Simics

is an execution driven simulator which functionally models

a SunFire 6800 server in sufficient detail to boot unmodified

operating systems. We use Simics as a functional simulator

only, and model the timing of our target multicore microar-

chitecture using Simics MAI and our own cycle-accurate

processor and memory hierarchy module.

We model each core as having an 8-stage pipeline, with

an out-of-order, 2-wide issue, a 128-entry instruction win-

dow, and operating at 3 GHz. The chip consists of 8 cores

(16 for Section 5.2). Located with each core are split I&D

caches, and a unified private L2. We also model a shared

L3 that is exclusive with the L2s, and has a 55-cycle load

to use latency. To evaluate multicore virtualization, we sim-

ulate a thin virtual-machine layer implemented primarily in

hardware. We do model the overhead of maintaining VCPU

state, and its effect on caches and TLBs.

We use several workloads for these experiments, all of

which are running on Solaris 9. For experiments in Section

5.2 and 6.2, we use consolidated server workloads, which

combine two guest VMs each running a single application.

Each guest VM is configured with its own I/O devices and

physical memory space, but VMs dynamically share the pro-

cessors and caches. We are assuming the use of a software

VMM, similar to VMWare ESX Server, which virtualizes

I/O, memory, and privileged instructions. We do not model

the overhead of virtualizing memory or I/O. The two guest

OSs are allocated enough physical memory so that the VMM

does not need to swap real memory.

Simulations run for 100 million to 1 billion cycles. Due

to workload variability, we simulate multiple runs and re-

port average results with 95% confidence intervals on most

graphs. We use committed user instructions as our metric

for ’work’ in all experiments. Additional methodology de-

tails are provided in the papers from which these results are

extracted [7, 41–43].

4. Multicore Virtualization

This section discusses our proposed techniques for multi-

core virtualization, which can enable hardware innovation,

while remaining transparent to the system and application

software. Virtualization of an entire system involves many

complex tasks, especially for running multiple VMs on a sin-

gle machine. Our goal, however, is much simpler: to create

a framework for supporting applications which address dy-

namic heterogeneity. These applications suggest two main

requirements, as outlined in Section 2: 1) the need for mov-

ing a VCPU from one core to another, and suspending the

VCPU when there are no appropriate cores on which it can

run, and 2) the need for presenting an illusion that the OS is

executing on an unvirtualized multicore.

VCPU Context Switch and Migration To enable context

switch, migration, and suspension of VCPUs, our proposal

virtualizes the processor state, TLBs, and interrupts. To ef-

ficiently handle VCPU state, we propose a simple mecha-

nism with limited hardware support, and no special-purpose

storage, by simply storing the VCPU state in the memory

hierarchy on a VCPU context switch. This task can be per-

formed using either a hardware state machine or microcode.

This proposal allows state to be transparently migrated from

one core to another using the existing cache coherence pro-

tocol. The latency of a simple VCPU context switch is de-

termined by the available memory read (and write) ports and

the cache bandwidth, while a migration to another core is

limited by on-chip cache-to-cache bandwidth. The state of a

suspended core is placed in the caches, and can be evicted

to main memory. For the UltraSPARC IIICu architecture we

functionally model, this state is 2.2KB per VCPU.

SPARC V9 uses a software managed TLB, which means

that most storage and operational aspects of the TLB are

architected and OS-visible. TLB control registers are mi-

grated as part of the VCPU state, but we make the obser-

vation, at least for Solaris and Linux, that most TLB entries

can be shared among VCPUs. Sharing is possible because

these OSs tags each entry with a context ID for each pro-

cess address space, but share these context IDs across VC-

PUs. Sharing reduces the amount of VCPU state that much

be managed, but also allows constructive and destructive in-

terference among VCPUs.

To properly handle both hardware and software initiated

interrupts, we use a centralized controller, implemented in

hardware. A table is used to map an incoming interrupt from

the proper VCPU to the core currently executing that VCPU.



msec
0 2 4 6 8 10 12 14

C
or

es
 P

er
fo

rm
in

g 
U

se
fu

l W
or

k

0

1

2

3

4

5

6

7

8
���

Pause one VCPU

vortexMIX

artOMP

OLTP

pmake

Zeus

Apache

Figure 2. Livelock of Naive Overcommitting

If the VCPU is currently executing, the interrupt is then

delivered to the physical core. If the table reports that the

VCPU is currently paused, then the interrupt is buffered until

the VCPU is run again.

The final step is control logic, called the Virtualization

Controller (VC), to oversee the mechanisms at each core.

Our evaluation assumes the VC is implemented as a hard-

ware state machine, but it would also be possible to imple-

ment it using microcode on an auxiliary core, or even one of

the main cores. The VC implements the logic necessary for

the applications discussed in Sections 5 and 6.

Overcommitted Virtual Machines Many examples of dy-

namic heterogeneity from Section 2 create a varying num-

ber of physical cores that are available, or appropriate, for

a given set of VCPUs. During times when fewer cores are

available than the number of VCPUs that are exposed to the

OS, the cores are said to be overcommitted. Current software

VMMs, such as VMware, do not allow the VCPUs of a sin-

gle VM to run on cores that are overcommitted. Instead all

VCPUs of a guest VM must be co-scheduled, i.e., all are

run or none are. The reason is simple: the synchronization

primitives in modern OSs rely on the fact that all VCPUs are

executing simultaneously. This assumption can lead to live-

lock and/or severe performance loss when a paused VCPU

is holding a kernel lock, or is the recipient of a software in-

terrupt (CPU cross call) [38, 41].

Figure 2 demonstrates an example of this problem aris-

ing in multithreaded workloads. This figure shows the num-

ber of cores performing useful work after one of eight VC-

PUs was paused, and the system became overcommitted. For

all workloads, the number of cores performing useful work

immediately drops to seven (or lower). Vortex, a multi-

programmed workload with eight independent processes, re-

mains at seven for the duration of the fault. For artOMP,

a second core stops performing work after 2ms because it

has blocked waiting on a TLB shootdown request sent to

the VCPU formerly executing on the paused core. The other

four workloads have much more frequent interaction among

Apache Zeus OLTP pgbench pmake barnes barnes/U

C
yc

le
s 

(R
el

at
iv

e 
to

 3
µ

s)

0

0.5

1

1.5

2

2.5

OS

User

3.2 5.5

Figure 3. Normalized Runtime for Various Timeslices. Five

bars for each benchmark (from left to right) represent results

for 3µs, 6µs, 17µs, 33µs and 66µs timeslices. Results are

normalized to the 3µs timeslice.

cores, causing rapid degeneration of the entire system’s for-

ward progress. For Apache and Zeus, nearly half of the VC-

PUs in the system stop making forward progress within 1ms.

Rapidly context switching VCPUs when overcommitted

can mitigate the effects of OS synchronization. Figure 3

demonstrates the runtime of frequent VCPU context switch-

ing for a highly overcommitted system (24 VCPUs on the

same 8 core system). As timeslices increase, running VCPUs

spend more and more time spinning while waiting on paused

VCPUs. As the figure shows, very short timeslices, such

as 10µs (3 orders of magnitude shorter than a typical OS

scheduling quanta), are effective at reducing these spins. Yet

such frequent switching destroys cache, TLB, and branch

predictor locality within each core, and even with hardware

support, incurs significant overhead managing VCPU state.

Hardware Spin Detection Instead of overly frequent

VCPU context switching, we propose to only perform a

switch when it is necessary: when a running VCPU is spin-

ning waiting on a VCPU that is paused. In order to avoid

making any modifications to the OS, we propose a sim-

ple yet effective heuristic to identify spin loops in hardware

by observing the dynamic instruction stream. The proposed

heuristic relies on the observation that a program executing

in a spin loop has a distinctive execution pattern: While wait-

ing for certain events and not making any forward progress, a

thread typically makes very few, if any, modifications to the

program state. We can infer this lack of program state mod-

ifications from the absence of store instructions that change

values in memory. Consequently, this execution pattern can

be easily recognized by observing few unique stores com-

mitted by the program in a given interval, where the unique-

ness of a store is determined by having an address or value

different from other stores. To avoid false positive spin de-

tections while searching through an array, for example, we



Apache Zeus OLTP pgbench pmake barnes barnes/U

C
yc

le
s 

(R
el

at
iv

e 
to

 3
µ

s)

0

0.5

1

1.5

2
OS

User

Figure 4. Normalized Runtime using the SDB. Bars repre-

sent the same timeslices as Figure 3, and are normalized to

the 3µs timeslice without the SDB.

also check for unique load instructions (uniqueness deter-

mined by the load address only) when executing user code.

Thus, a kernel spin is detected when the number of unique

stores executed within N committed instructions is less than

some pre-defined threshold. On the other hand, a user spin

will be detected when both unique stores and loads are less

than that threshold. Sensitivity experiments demonstrate that

for a period of N=1024 committed instructions, a threshold

value of eight is effective to detect all known spin loops in

all examined workloads with near-zero false positives.

We propose a simple hardware structure, the Spin Detec-

tion Buffer (SDB), to implement spin detection functional-

ity. It employs two fully associative, eight entry content-

addressable memory (CAM) structures to hold the unique

stores and loads, respectively. During a given period of N

instruction (N=1024 for the experiments here), each com-

mitted store (and load when in user mode) searches the ap-

propriate CAM to determine if its address/value is unique.

A unique load or store then inserts its address/value into the

appropriate CAM array. Once either array becomes full, sub-

sequent instructions need not search the CAM.

At the end of the period of committed instructions, the

SDB simply checks the number of entries in each array.

If there are less than eight valid entries in the store array

and the VCPU is executing in the OS, the SDB indicates a

spin. If there are less than eight entries in both arrays and

the VCPU is executing user code, the SDB again indicates

a spin. Otherwise, the arrays are flushed and it is assumed

that the VCPU is making forward progress. If a user/OS

mode change occurs within the period, forward progress is

assumed regardless of the number of entries in the arrays.

Figure 4 shows a similar experiment as Figure 3, except

that the SDB is used and the timeslice now represents a max-

imum. Should the SDB detect a spin, it will preempt and con-

text switch VCPUs more frequently. As shown in this figure,

increasing the timeslice while using the SDB does not cause

the explosion in runtime that occurs without the SDB. Fur-

thermore, increasing the timeslice improves cache locality

and reduces virtualization overheads, providing runtime re-

ductions of 10–20% for many benchmarks.

Overall, the proposed SDB technique works well for vir-

tualized environments as it automatically detects other cases

where a VCPU is not doing useful work, such as the OS idle

loop and spins in user code. Together, these multicore virtu-

alization techniques enable a multitude of applications that

can adapt to, or take advantage of, dynamic heterogeneity.

5. Managing Reliability

For the past 50 years or more, software has maintained the

notion that hardware is reliable. Our algorithms and software

infrastructure are dependent upon reliable hardware, and

the hardware we use has largely delivered on this promise.

Yet maintaining hardware reliability is rapidly becoming a

source of new challenges to architects and system design-

ers, in addition to the challenges it has traditionally placed

on circuit and manufacturing experts. These challenges arise

as technology scales, because individual devices are increas-

ingly susceptible to a variety of hardware faults caused by a

multitude of factors, including high-energy particle strikes,

manufacturing process variation, device wear-out, and tem-

perature and voltage fluctuations [4, 5, 9, 29, 31].

These faults, and the mechanisms used to build reliable

components despite them, give cores a varying ability to per-

form computation. Together with the rapidly changing reli-

ability requirements of the software, these issues lead to a

constantly varying pool of underlying resources. Multicore

virtualization goes a long way toward increasing the effec-

tiveness of existing reliability techniques in the presence of

these changing resources, while preserving the illusion of

continuous, reliable operation to the software. We now dis-

cuss how these two forms of dynamic heterogeneity arise,

and how our proposed multicore virtualization can help.

5.1 Intermittent Faults

Hardware faults may manifest as transient faults, affecting

a single transistor or wire for one cycle or less, as perma-

nent faults, after irreversible wear-out damage has occurred,

or as intermittent faults, which can occur frequently and ir-

regularly for several cycles to several seconds or more, and

then disappear for a period of time. Intermittent faults exhibit

some of the worst properties of both transient and permanent

faults, in that they cannot be relied upon to either go away, as

required by most techniques to tolerate transient faults, or to

consistently stay, as assumed by several techniques to toler-

ate permanent faults. Despite these challenges, several hard-

ware schemes appear capable (with minor modifications) of

detecting and recovering from a variety of intermittent faults

(e.g., [11, 15, 19, 34]).

We argue that suspending the use of a core when one of

these mechanisms detects that a burst of faults is beginning

(or is expected to occur) can improve the overall reliability

of the system by reducing the opportunity for one or more

faults within a burst to go undetected. Yet naively suspend-

ing a single core while it is executing software, even for



Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e 
T

hr
ou

gh
pu

t

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 5. Throughput of Overcommitting During a Fault

a few milliseconds, can have significant performance con-

sequences. Figure 2 illustrates one example of this conse-

quence: cascading livelock as the software running on other

cores attempts to synchronize with the paused core.

Traditionally, system software is responsible for deter-

mining which cores are actively running software threads.

Instead of simply pausing execution, another viable option

to suspend the use of a core is to interrupt the OS (or hy-

pervisor), and ask it to reconfigure itself to only use the re-

maining fault-free cores. Some current OSs (such as Solaris)

and hypervisors (such as those that run on the IBM zSeries)

already contain this functionality [2, 37]. However, software

reconfiguration can take several milliseconds, and can cause

high overheads for frequent intermittent faults of short dura-

tion [42].

Multicore virtualization offers a way to quickly adapt to

a varying number of usable cores. By using hardware-based

checkpoints (e.g., [36]), the state of the VCPU running on a

temporarily unusable core can be recovered and migrated to

a different core. Since two VCPUs are likely to be sharing

one of the remaining cores, the system becomes overcom-

mitted. Figure 5 shows the throughput of the overcommit-

ted system during faults of various durations, compared to

a fault free machine. This technique does incur some over-

head for the shortest duration faults, due to checkpoint re-

covery, VCPU migration, and cold cache misses. But that

overhead is small and is quickly amortized for longer fault

durations. Overall, the throughput is within a few percent of

the expected performance of a seven core system, despite

the fact that the OS still believes it is running on eight cores.

In addition to good throughput results, multicore virtualiza-

tion allows us to adapt to the effects of intermittent faults,

while maintaining fairness among VCPUs, preserving low

software transaction latency, incurring essentially zero fault-

free cost, and gracefully handling multiple concurrent fail-

ures [42].

5.2 Mixed-Mode Reliability

Suspending cores to tolerate intermittent faults is one cause

of changing resource configurations. We observe that the re-

liability requirements of code can change dynamically as

well, leading to another cause of varying configurations. For

example, certain applications and users already desire high

reliability and the peace of mind that comes with the use

of Dual-Modular Redundancy (DMR), where two cores are

(loosely) joined together to redundantly execute a software

thread from one VCPU [1, 3, 24, 33]. Trends in hardware re-

liability are likely to encourage more and more users to seek

such levels of reliability in future generations of processors.

Yet the reliability of DMR comes with significant penal-

ties (2–4X) in terms of per-thread performance, throughput

and power efficiency, and many applications which are less

sensitive to moderate levels of hardware faults are unwill-

ing to pay this price. Running both types of software on the

same machine at the same time results in a system where the

number of cores required to execute a single VCPU changes

dynamically depending on what software the OS schedules

onto that VCPU.

To support such changing requirements, we propose a

Mixed-Mode Multicore (MMM) system, where certain ap-

plications (or portions of applications) run in high perfor-

mance mode using a single core, while other applications

(including the system software) run in a highly reliable mode

using DMR [43]. Media applications, for example, tend to

be insensitive to moderate levels of hardware faults [30], but

a user may be willing to sacrifice a certain degree of per-

formance to ensure the integrity of their financial data. An

MMM can allow a desktop user to run both types of appli-

cations at the same time.

Conceptually, an MMM is simple: use DMR for software

that needs it, and turn off DMR for software that prefers to

execute in performance mode. The required software inter-

face is a single register per VCPU specifying whether relia-

bility is needed or not. When the privileged software is about

to context switch to an application which requires high per-

formance, it writes this register to indicate the requirements

of the software running on that VCPU.

In practice, an MMM introduces a number of challenges,

but one in particular exposes the need for multicore virtual-

ization: the desire to use both cores of a redundant pair to

execute independent VCPUs when running in high perfor-

mance mode. Independent use of these cores is necessary to

improve throughput during performance mode. The problem

is that VCPUs dynamically and independently switch modes

depending on what software the OS has scheduled onto that

core.

Multicore virtualization can address this issue by allow-

ing the chip to flexibly assign VCPUs to cores. The chip

exposes as many VCPUs as there are cores, and then oper-

ates in an overcommitted manner when one or more VCPUs

enter reliable mode. An overcommitted mixed-mode system

is depicted in Figure 6. Here, one VCPU (V2) is executing

a software threads that requires reliability, and is executing

redundantly on cores C2 and C3. V3 is paused since there

are no cores available to execute it. The other VCPUs are all

executing threads that require performance.

Figure 7 demonstrates the ability of a mixed-mode multi-

core server to provide differentiated service to different ap-



Figure 6. Improving Throughput in a Mixed-Mode Multi-

core by Overcommitting Cores

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.5

1

1.5

2

2.5

MMM TP 

DMR

MMM IPC

DMR

DMR Base

DMR

Figure 7. Throughput of Mixed-Mode Execution

plications. In this experiment, we are modeling an MMM

running consolidated server workloads, where one guest vir-

tual machine (VM) requires reliability, and a second guest

VM requires performance mode. The striped bars at the bot-

tom represent the normalized throughput of the guest VM

that requires the high reliability of DMR. The solid, top bars

represent the guest VM that does not require such high reli-

ability. Unlike the other experiments in this paper, our target

multicore has 16 cores.

In a traditional consolidated server, if one guest VM re-

quired reliability, then all guests would need to run with

DMR to protect the integrity of the reliable VM and the

VMM itself. The left set of bars (labeled DMR Base) thus

represents the baseline, where reliable, DMR mode is used

for both VMs. The second set of bars, labeled MMM-IPC,

represents a MMM where multicore virtualization is not

used and the unused redundant cores are allowed to idle.

Due to the IPC overhead of DMR execution, the high-

performance guest VM observes 25–85% speedup over the

full DMR configuration. The third set of bars, labeled MMM-

TP, represents the an MMM system designed to improve

throughput by using multicore virtualization to better uti-

lize all available cores to execute additional VCPUs dur-

ing performance mode. For scalable applications, such as

these commercial workloads, improvements in throughput

can be significant using MMM-TP, where the first VM now

independently executes twice as many VCPUs. This high-

performance VM observes speedups of 2.4–3.6 due to the

combined effect of per-VCPU IPC increase, and additional

throughput from more VCPUs. Speedups of this VM over

the static MMM configuration are 1.8–1.9. The throughput

of the machine overall increases by 1.7-2.3X.

6. Enhancing Locality

The two examples of the previous section address the chal-

lenges of adapting to dynamic heterogeneity created either

by the varying capabilities or configurations of the cores. In

this section, we discuss two proposals which actively create

dynamic heterogeneity, and then use it to an advantage.

6.1 Computation Spreading

In the traditional mode of assigning computation from multi-

ple threads to multiple processors, an entire software thread

— including any operating system calls it makes — is as-

signed to a single processor for execution. This was, per-

haps, the only practical approach for traditional multipro-

cessors built from multiple chips. But since there is com-

monality among the computation performed by the differ-

ent threads, this distribution leads to inefficient use of the

microarchitectural structures of the individual processing

cores, such as private instruction caches and branch predic-

tors. With support for multicore virtualization, ample op-

portunities exist for alternate solutions, without requiring

changes to software. We propose Computation Spreading

(CSP) as a method for distributing different fragments of a

thread’s computation across multiple processing cores [7].

We define a computation fragment as an arbitrary portion

of a dynamic instruction stream. Conceptually, CSP aims

to collocate similar computation fragments from different

threads on the same core while distributing the dissimilar

computation fragments from the same thread across multi-

ple cores. Each core thus becomes dynamically and tempo-

rally specialized for executing a set of specific computation

fragments by retaining the states (such as instruction cache

contents and branch predictor entries) necessary to perform

each computation efficiently.

After examining the code reuse characteristics of four

multithreaded server workloads, we find that most instruc-

tion blocks are accessed by many, if not all, cores on a chip.

This fact implies that they all execute similar computation

fragments (albeit at different times), and the canonical model

of work distribution leads to inefficient use of the aggregate

cache space.

As a specific application of CSP, targeting server work-

loads, we propose two assignment policies which separate

the execution of system calls and interrupt handlers from

the execution of user code, and distribute these two dissimi-

lar computation fragments to different cores. Thread Assign-

ment Policy (TAP) prefers to run the OS (or user) portion of

a thread on the same core repeatedly, aiming to reduce OS



Apache OLTP pgbench Zeus pmake

S
pe

ed
up

0.8

0.9

1

1.1

1.2

1.3

2
.4

%

1
.4

%

0
.9

% 1
.9

%

1
.2

%

2
.4

%

1
.5

%

0
.9

%

1
.9

%

1
.2

%

Base TAP SAP Split Cache & BP

Figure 8. Performance Comparison. Labels on TAP and

SAP bars represent the overhead of multicore virtualization.

and user interference while maintaining data and instruction

locality for each software thread; Syscall Assignment Policy

(SAP) prefers to run a particular system call (e.g., read()) on

the same core repeatedly, regardless of which thread made

the call, aiming to further improve instruction locality and

take advantage of any data structures shared among multiple

dynamic instances of the same system call. Both provision a

subset of the processing cores for executing user code, and

the remainder for the OS.

Unlike previous research on separating OS and user exe-

cution, which primarily considered one or more single-core

processors [22], TAP and SAP are able to alleviate the inter-

ference of separating dissimilar tasks and benefit from the

symbiosis of collocating similar tasks. The two specific as-

signment policies (TAP and SAP) we propose both spread

user and OS execution across different cores. For four work-

loads, TAP and SAP reduce L2 instruction misses by 27–

58%, L2 load misses by 0–19%, and branch mispredictions

by 9–25%, resulting in a performance improvement of 1–

20%, as seen in Figure 8. The results for pmake, a fifth, non-

server benchmark, are not as favorable.

As a comparison, the fourth bar of Figure 8 shows a con-

figuration where we separate each private cache and branch

predictor into separate structures used by the OS and user

code, while keeping the aggregate sizes the same. As evident

from this figure, simply separation to eliminate interference

leads to worse performance.

While separating user and OS execution is interesting for

OS-intensive workloads, Computation Spreading has much

potential for further improvement for these and other classes

of workloads by more intelligently spreading independent

computation within user or OS execution. We leave an ex-

amination of these ideas for future work.

6.2 Dynamic Core Partitioning

Server consolidation refers to the process of moving two

or more services from multiple, separate machines onto

one physical machine [2, 40]. A Virtual Machine Monitor

(VMM) is responsible for sharing the physical resources

of the consolidated server, including the processing cores,

among multiple VMs. While economically sound, this act

can create significant interference in the per-core predictive

structures. In the same vein as Computation Spreading, con-

solidated servers can also benefit from preserving locality by

mapping similar types of computation onto the same cores.

Conflicting Objectives Providing the performance expec-

tations are met, maximizing efficiency is the major goal of a

consolidated server. It requires the VMM to adapt to varying

demand on the services of each guest VM, but also maintain

the locality of per-core predictive structures, such as caches,

TLBs, and branch predictors — in effect, creating dynamic

heterogeneity by specializing these predictive structures for

a particular type of task. However, adapting to demand and

maximizing locality are at odds due to the need of most

VMMs to gang schedule the VCPUs belonging to each VM.

Gang scheduling, or co-scheduling [26], simply refers to the

policy of either concurrently running all VCPUs of a given

VM, or none of them. Gang scheduling is used by VMware

ESX server [39] and Cellular Disco [12], among others, in

order to avoid the serious synchronization issues that arise

when not all of the VCPUs of a given guest VM are concur-

rently executing (see Section 4).

In order to adapt to changes in demand, a consolidated

server can time partition the cores of the machine among

guest VMs, and adjust the timeslices of each VM according

to demand. The problem with gang scheduling, however, is

that by timesharing each core among unrelated operations,

cache, TLB, and branch predictor locality is destroyed. As

an alternative, statically partitioning the cores between mul-

tiple VMs achieves the desired locality, and dynamic hetero-

geneity, but prevents a single VM from using all of the cores

of the chip during periods of high demand.

Overcommitting and Dynamically Partitioning To re-

solve the conflicting objectives that plague gang schedul-

ing, we propose to use dynamic partitioning with multicore

virtualization to enable the ability to respond to changes in

both workload demand and the changing characteristics of

the underlying chip, as well as the ability to optimize perfor-

mance, efficiency, and isolation, and quickly adapt to other

dynamically changing characteristics of the chip. To do this,

a number of VCPUs equal to the number of cores is exposed

to each guest VM, allowing it to execute those VCPUs on

the entire machine when necessary during peaks in demand.

Then, during periods of normal demand, the physical cores

are dynamically partitioned among guest VMs, allowing the

VMM to only execute a subset of each VM’s VCPUs at a

time. Since guest VMs are allocated fewer cores than VC-

PUs, the guest VMs becomes overcommitted.

Results Figure 9 shows the overall performance of each

VM for the consolidated workloads for the four scheduling



A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

R
el

at
iv

e 
P

er
fo

rm
an

ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Partition VM 2

Partition VM 1

Gang 10ms VM 2

Gang 10ms VM 1

Gang 1ms VM 2

Gang 1ms VM 1

Gang 100µs VM 2

Gang 100µs VM 1

︸ ︷︷ ︸ ︸ ︷︷ ︸

100% Utilization ∼50-80% Util.

Figure 9. Performance of Different Scheduling Policies.

Results are normalized to gang scheduling with a 100µs

timeslice (higher is better).

policies. Total performance is normalized to gang scheduling

at 100µs. Speedup is simply the average speedup of the two

VMs, though the graph breaks down the speedup component

from each VM. Striped bars represent VM 1, and solid bars,

VM 2. Error bars represent the 95% confidence interval,

which is calculated independently for each VM.

As expected from improving cache, TLB and branch pre-

diction locality, overcommitting and dynamic partitioning

(the rightmost bar) provides speedups from 10–20% for all

but one full utilization workloads, and a slightly higher 18–

25% for the lower utilization workloads, where it can recover

some of the time VCPUs spend idle. Using a 1ms timeslice

for gang scheduling (second bar) improves performance in

all experiments by 5–19%, although this comes at the price

of additional latency on each request. In many cases, gang

scheduling with a 10ms timeslice (third bar) does not con-

tinue to improve performance compared to a 1ms timeslice.

Although the speedups for dynamic partitioning are

modest, these experiments demonstrates that more flexible

scheduling algorithms can be important by providing the

throughput of a long gang scheduling timeslice, while de-

livering the expected transaction latency of a short timeslice.

6.3 Hardware or Software Support?

Both Computation Spreading and dynamic partitioning of

consolidated servers can be performed with an unmodified,

traditional software VMM, by implementing the multicore

virtualization underneath the ISA. But unlike the reliability

examples in Section 5, both of these ideas are alternately

very amenable to software support similar to, for example,

Cohort Scheduling [20], SEDA [44], and STEPS [16]. All of

these alternate projects use additional software complexity

to create and exploit dynamic heterogeneity.

Similarly, using a para-virtual VMM environment, the

hardware/software interface can be changed to support virtu-

alization. With para-virtualization, a VMM could be created

to allow the cores used by a single guest VM to be over-

committed relative to that VM’s VCPUs, and hence gain the

benefits of the proposed dynamic partitioning.

7. Conclusions

The continued exponential growth in the number of transis-

tors on a chip presents several challenges to computer archi-

tects. In order to simplify the problem for hardware design-

ers, most computer manufacturers have switched to building

multicore processors. However, multicores greatly compli-

cate software’s traditional task of assigning computation to

cores.

Of particular concern, this paper identifies dynamic het-

erogeneity as a growing trend for multicore designs. Dy-

namic heterogeneity can occur, even among physically ho-

mogeneous cores, from reliability, power, or thermal condi-

tions, different cache and TLB contents, or even changing

resource configurations. This heterogeneity creates a rapidly

varying pool of resources, resulting in uncertainty about

which cores are available or most appropriate for running

a given computation at a particular time. Current multicore

processors, and many proposed designs for future multicore

systems, simply pass this uncertainty up to the software. Yet

software’s need for extracting concurrency in the first place

is a big enough challenge in the multicore era. Continuing to

require software to explicitly manage the use of all cores in

order to express that concurrency to the hardware is an addi-

tional burden which is both undesirable and unattainable.

In this paper, we argue for hardware taking a more ac-

tive role in the management of its own resources, enabled by

our proposed hardware techniques to virtualize the cores of

a multicore processor. Multicore virtualization allows hard-

ware to transparently remap the virtual processors (VCPUs)

exposed even to a single operating system (OS) to any sub-

set of physical cores. We demonstrate that by using these

techniques, a processor can manage the changing resource

configurations created by hardware faults and software’s re-

quirements, and can improve locality of per-core predic-

tive structures through flexible assignment of computation

to cores. We further believe that multicore virtualization can

be useful for many other applications as well.

By decoupling decoupling the tasks of low-level core

management and high-level concurrency extraction, we be-

lieve multicore virtualization will have a substantial impact

on system design, facilitating the evolution of future “many-

core” systems.

Acknowledgments

This work is supported in part by National Science Founda-

tion (NSF) grants CCF-0702313 and CNS-0551401, funds

from the John P. Morgridge Chair in Computer Sciences and

the University of Wisconsin Graduate School. Sohi has a sig-

nificant financial interest in Sun Microsystems. The views



expressed herein are not necessarily those of the NSF, Sun

Microsystems or the University of Wisconsin.

References

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.

Configurable isolation: building high availability systems with

commodity multi-core processors. In Proc. of 34th ISCA, 2007.
[2] W. Armstrong, R. Arndt, D. Boutcher, R. Kovacs, D. Larson,

K. Lucke, N. Nayar, and R. Swanberg. Advanced virtualization

capabilities of POWER5 systems. IBM J. Res. & Dev., 49(4/5), 2005.
[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,

and J. Smullen. Nonstop advanced architecture. In Proc. of 2005

DSN, 2005.
[4] S. Borkar, T. Karnik, J. Tschanz, A. Keshavarzi, and V. De. Parameter

variations and impact on circuits and microarchitecture. In Proc. of

40th DAC, 2003.
[5] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and

within-die parameter fluctuations on the maximum clock frequency

distribution for gigascale integration. J. of Solid-State Circuits,

37(2):183–190, Feb 2002.
[6] D. Brooks and M. Martonosi. Dynamic thermal management for

high-performance microprocessors. In Proc. of 7th HPCA, 2001.
[7] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading:

Employing hardware migration to specialize CMP cores on-the-fly.

In Proc. of 12th ASPLOS, 2006.
[8] K. Chakraborty, P. M. Wells, and G. S. Sohi. A case for an

over-provisioned multicore system: Energy efficient processing

of multithreaded programs. Technical Report CS-TR-2007-1607,

University of Wisconsin-Madison, Aug 2007.
[9] C. Constantinescu. Trends and challenges in VLSI circuit reliability.

IEEE Micro, 23(4):14–19, 2003.
[10] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,

M. Braganza, S. Meyers, E. Fang, and R. Kumar. An integrated

quad-core Opteron processor. pages 102–103, Feb. 2007.
[11] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-

power pipeline based on circuit-level timing speculation. In Proc. of

36th MICRO, 2003.
[12] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco:

Resource management using virtual clusters on shared-memory

multiprocessors. In Proc. of 16th SOSP, 1999.
[13] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and

T. Yamazaki. A novel SIMD architecture for the Cell heterogeneous

chip-multiprocessor. In Proc. of 17th Hot Chips, 2005.
[14] S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing

the impact of increasing microprocessor power consumption. Intel

Tech. J., Q1, 2001.
[15] S. N. Hamilton and A. Orailoglu. Transient and intermittent fault

recovery without rollback. In Proc. of 13th Defect and Fault-

Tolerance in VLSI Sys., 1998.
[16] S. Harizopoulos and A. Ailamaki. STEPS towards cache-resident

transaction processing. In Proc. of 30th VLDB, 2004.
[17] E. Ípek, M. Kirman, N. Kirman, and J. F. Martı́nez. Core fusion:

accommodating software diversity in chip multiprocessors. In Proc.

of 34th ISCA, 2007.
[18] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.

Farkas. Single-ISA heterogeneous multi-core architectures for

multithreaded workload performance. In Proc. of 31st ISCA, 2004.
[19] C. LaFrieda, E. Ípek, J. F. Martı́nez, and R. Manohar. Utilizing

dynamically coupled cores to form a resilient chip multiprocessor. In

Proc. of 2007 DSN, 2007.
[20] J. R. Larus and M. Parkes. Using cohort-scheduling to enhance

server performance. In Proceedings of the General Track USENIX

Annual Technical Conference, 2002.
[21] J. Laudon. Performance/watt: the new server focus. Comp. Arch.

News, 33(4):5–13, 2005.
[22] T. Li, L. K. John, A. Sivasubramaniam, N. Vijaykrishnan, and

J. Rubio. Understanding and improving operating system effects

in control flow prediction. In Proc. of 10th ASPLOS, 2002.

[23] P. Magnusson et al. Simics: A full system simulation platform. IEEE

Comp., 35(2):50–58, Feb 2002.
[24] D. McEvoy. The architecture of tandem’s nonstop system. In Proc.

of ACM 1981 Conf., 1981.
[25] D. Nellans, R. Balasubramonian, and E. Brunvand. A case for

increased operating system support in chip multi-processors. In

Proc. of 2nd IBM Watson P=ac2, 2005.
[26] J. K. Ousterhout. Scheduling techniques for concurrent systems. In

Distributed Computing Systems, 1982.
[27] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-run:

leveraging SMT and CMP to manage power density through the

operating system. In Proc. of 11th ASPLOS, 2004.
[28] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S. W. Keckler, and C. R. Moore. Exploiting ilp, tlp, and dlp with the

polymorphous trips architecture. In Proc. of 30th ISCA, 2003.
[29] Semiconductor Industry Association. International technology

roadmap for semiconductors: Executive summary, 2005.
[30] J. W. Sheaffer, D. P. Luebke, and K. Skadron. The visual vulnerability

spectrum: characterizing architectural vulnerability for graphics

hardware. In Proc. of 21st Eurographics GH, 2006.
[31] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.

Modeling the effect of technology trends on the soft error rate of

combinational logic. In Proc. of 2002 DSN, 2002.
[32] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-

narayanan, and D. Tarjan. Temperature-aware microarchitecture.

In Proc. of 30th ISCA, 2003.
[33] T. J. Slegel et al. IBM’s S/390 G5 microprocessor design. IEEE

Micro, 19(2):12–23, 1999.
[34] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:

Complexity-effective multicore redundancy. In Proc. of 39th MICRO,

2006.
[35] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar

processors. In Proc. of 22nd ISCA, pages 414–425, 1995.
[36] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet:

improving the availability of shared memory multiprocessors with

global checkpoint/recovery. In Proc. of 29th ISCA, 2002.
[37] Sun Microsystems, Inc. Sun fire high-end and midrange systems

dynamic reconfiguration user’s guide. Viewed 12/19/2007.
[38] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards

scalable multiprocessor virtual machines. In Proc. of 3rd Virt. Mach.

Research and Tech. Symp., 2004.
[39] VMware. ESX Server - best practices using VMware virtual SMP.

Viewed 5/03/2006.
[40] C. A. Waldspurger. Memory resource management in VMware ESX

Server. In Proc. of 5th Symposium on OSDI, 2002.
[41] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware support for

spin management in overcommitted virtual machines. In Proc. of

15th PACT, 2006.
[42] P. M. Wells, K. Chakraborty, and G. S. Sohi. Adapting to intermittent

faults in multicore systems. In Proc. of 13th ASPLOS, pages 255–

264, 2008.
[43] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode multicore

reliability. In Proc. of 14th ASPLOS, 2009.
[44] M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture for

well-conditioned, scalable internet services. In Proceedings of the

18th Symposium on Operating Systems Principles, 2001.
[45] K. Wonyoung, G. Meeta, W. Gu-Yeon, and B. David. System level

analysis of fast, per-core DVFS using on-chip switching regulators.

In Proc. of 14th HPCA, February 2008.


