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Abstract

Realistic traffic models are a fundamental requirement for understanding network hardware and

software design issues such as queuing behavior, congestion management and buffer sizing. It has

been determined that many real-world traffic traces are statistically consistent with long-range de-

pendent or self-similar traffic models, however many current self-similar traffic models are mathe-

matically complex and inherently slow, or are highly parameterized and tailored to a specific type of

network traffic (e.g. HTTP). Through simulation, we investigate the range and sensitivity of the few

parameters necessary for the generation of traffic from an aggregated, ON/OFF-source model whose

ON/OFF-period lengths have infinite variance. Using this simple model, which provides insight into

the cause of self-similar traffic, we investigate the range of simulation parameter values that produce

traffic which is, to varying degrees, self-similar in nature. This understanding will make it easier

to incorporate self-similar traffic models into network performance simulations. We also show that

traffic can be simulated that is self-similar in nature with as few as eight ON/OFF-sources, greatly

increasing the ease with which this method can be used to synthesize traffic on a small network of

machines.
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Chapter 1

Introduction

Simulation and real-world testing of networking hardware and software such as routers, hubs,

and communication protocols is essential for achieving competitive performance. Realistic traffic

models are a fundamental requirement for understanding queuing behavior, buffer sizing, congestion

management, admission control, and other protocol and hardware design issues.

Tests and simulations are often driven by either simulated traffic or a traffic trace taken from

a working network environment. A simulation or test driven by a traffic trace can provide very

accurate results when investigating a network with properties similar to the traced network. Unfor-

tunately, large collections of representative traffic traces are difficult to obtain and manage. Given

this limitation, the ability to easily synthesize realistic network traffic is a desirable goal. However,

many of the currently used methods are either very complex, fail to capture intrinsic properties of

real traffic, or both.

One important property that is sometimes overlooked in traffic models is the concept of long-range

dependence or self-similarity, terms introduced by Mandlebrot [1969] in the context of economic

patterns. It is shown in [Leland et al. 1994] that Ethernet Local-Area Network (LAN) traffic behaves

in a manner similar to that exhibited by a sample from a self-similar, stochastic process. That is,

dependencies between traffic utilization levels exist at many different time scales. This means that

a period of network utilization above (or below) the mean level is likely to remain above (or below)

the mean for an extended period of time. Dependencies remain between utilization levels that are

measured milliseconds, minutes or even hours apart.

Taqqu et al. [1997] describe a simple method for generating a network traffic stream, and prove

that with an infinite number of sources and an infinite amount of time, the generated stream is self-

similar (implying that it realistically models real-world traffic). Unfortunately, infinite limits are
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inherently unrealistic, therefore, our work focuses on determining what finite limits give reasonable

results.

The effects of self-similar traffic on networking environments are not well understood, despite

numerous papers on the subject. Park et al. [1997] and Erramilli et al. [1996] conclude that self-

similar traffic can have a serious adverse impact on network performance, and that ignoring the

effects of self-similarity typically results in overly optimistic performance predictions. On the other

hand, Cao et al. [1999] and Christiansen et al. [2000] provide simulation evidence that self-similar

traffic tends to behave much like traffic that does not have significant dependencies, especially at

high network utilizations.

Though a discussion on the effects of self-similar traffic on network performance is beyond the

scope of this thesis, the results of this work help provide an intuition into simulating traffic with

various degrees of dependence at the packet level. This could aid researchers in designing simulations

which use self-similar traffic models, allowing further study of the effects of these models on network

performance.

1.1 Background

In [Leland et al. 1994], traces of Ethernet LAN traffic were analyzed and found to be self-similar in

nature. That is, a graph of packet arrivals per unit time from the examined Ethernet traffic tends

to look “similar” when viewed over a wide range of time scales — from milliseconds to hours. In

particular, there is no typical length of a traffic burst, and the variance of the packet arrivals per

unit time appears large.

Statistically, the property that characterizes self-similarity, or more precisely, long-range depen-

dence, is a slowly decaying autocorrelation function. The autocorrelation, r(k), of a stochastic
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process, Xt, with mean µ and variance σ2 is defined as

r(k) = E [(Xt − µ)(Xt+k − µ)] /σ2. (1.1)

The autocorrelation is a measure of the correlation between elements of Xt that are a distance

of k apart. The values of r(k) are normalized such that if all elements a distance of k apart are

nearly identical, r(k)→ 1. If the elements of Xt are independent and identically distributed (i.i.d.),

r(k) = 0 for k ≥ 1. [Geist and Westall 2000]

For a stochastic process to be long-range dependent, it must have a non-summable autocorre-

lation, meaning Σkr(k) = ∞. Exactly self-similar processes have autocorrelation functions that

satisfy

r(k) =
1

2

[

(k + 1)2H − 2k2H + (k − 1)2H
]

(1.2)

where H : 0.5 < H < 1.0 is the Hurst parameter, or degree of self-similarity. Exactly self-similar

processes with H in this range are long-range dependent.

It is important to note that self-similarity or long-range dependence cannot be verified for a

finite sample. Following the terminology used in [Leland et al. 1994], it can be said (somewhat

loosely) that a finite sample is self-similar in nature if it is statistically consistent with a sample of

a stochastic process that is self-similar.

Thus, after statistically analyzing several traces of Ethernet LAN traffic, Leland et al. [1994]

claim that the traces are self-similar in nature, with an estimated Hurst parameter H ≈ 0.80. See

Figure 1.1 for a plot of the autocorrelation of a publicly available Ethernet trace used in this study.

This plot shows the autocorrelation calculated for the packet arrival counts of the 14,400 adjacent,

non-overlapping 0.25 second blocks in the one hour trace. The autocorrelation appear to be slowly-

decaying, and closely follows the exactly self-similar trend of Equation 1.2. Traces of traffic at

NSFNET core switches were analyzed by Klivansky et al. [1994] and determined to behave in a

long-range dependent manner at the packet level as well, with a mean Hurst parameter H = 0.74.
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Additional studies show that traces of Wide-Area Network (WAN) traffic [Paxson and Floyd 1995],

Variable Bit Rate (VBR) video traffic [Beran et al. 1995] and World-Wide Web (WWW) traffic

[Crovella and Bestavros 1997] are also self-similar in nature.
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Figure 1.1: Autocorrelation of DEC-PKT-4 Traced Ethernet Traffic.
Available at http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html

There are many techniques for synthesizing processes that exhibit self-similarity, and are there-

fore suitable for generating network traffic. Among the most common are numerical methods for

generating fractional Gaussian noise (fGn) [Paxson 1995; Che and Li 1997; Geist and Westall 2000].

fGn is the increment process of fractional Brownian motion (FBM), which is also called the Random

Walk Process. fGn has a normal distribution with mean µ = 0, and variance σ2 ∝ B2H , where

B is the width of the FBM increment. fGn is exactly self-similar with an autocorrelation given

by Equation 1.2. A stream of packet arrival counts per unit time can be synthesized from fGn by

specifying a mean utilization level and using fGn as a deviation from that mean.

While the use of these techniques, and other methods described in [Popescu 1999], can accurately
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simulate the self-similar nature of network traffic, these approaches are undesirable according to

Willinger et al. [1997] and Nikolaidis et al. [1997] for a number of reasons. First, they do not

provide any explanation for the cause of long-range dependence observed in network traffic. Second,

these techniques typically exhibit at least O(n log n) run-time complexity in terms of the length of

time simulated. Third, they often are not parallelizable with near linear speedup. Finally, some

techniques require a large number of parameters to achieve the desired statistical characteristics.

In an attempt to address these problems, Leland et al. [1994] propose modeling the traffic streams

emanating from individual sources. Each source is either ON or OFF at any given time. Given a

realistic model of the traffic from a single source, one would expect that by aggregating the ON/OFF

streams of many sources together, the resulting traffic would have characteristics similar to that of

traced network traffic. The key is determining the length of time that each source spends in an ON or

OFF state. Simulations that sample these times from a Poisson process (which has an exponentially

decaying probability density function) fail to capture the self-similar nature of real traffic. Paxson

and Floyd [1995] show that while the Poisson model holds for certain types of traffic (e.g. session

and connection arrivals, and TELNET traffic), other types of traffic do not fit well with a Poisson

model. By taking the ON/OFF times from a heavy-tailed distribution with an infinite variance

(such as the Pareto distribution), it is shown in [Leland et al. 1994] (and proven in [Taqqu et al.

1997]) that it is theoretically possible to generate self-similar traffic by aggregating multiple sources.

To understand the concept of this aggregated traffic stream, it is useful to follow the description as

laid out in [Willinger et al. 1997].

1.1.1 Aggregated Traffic Streams

Consider a variation of the discrete reward renewal process used by Mandlebrot [1969] to generate

fGn, also known as the packet train model in the context of network traffic [Jain and Routhier 1986].

Since an individual source is either ON or OFF at a given time, let W (t), t ≥ 0 represent the state of

that source at time t, where W (t) = 1 and W (t) = 0 indicate the existence or absence, respectively,
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of a packet at time t. During an ON-period (t1 ≤ t ≤ t2), when the source is generating traffic,

W (t) represents a “reward” of 1, and during an OFF-period when the source is not generating

traffic, W (t) represents a “reward” of 0.1 The lengths of both the ON- and OFF-periods are

independent and identically distributed (i.i.d.), and the ON- and OFF-periods are independent of

each other. We consider both the case where the length of the ON/OFF-periods are from identical

distributions, and the case where the distributions have different means. We also consider both

strictly alternating sources, where an ON-period is immediately followed by an OFF-period (and

vice-versa), and idealized sources, where an ON- or OFF-period is just as likely to be followed by

another another ON- or OFF-period.

Now consider M sources, and let W (m)(t) be the state of source m at time t, where m = 1, . . . , M .

The total packet arrival count at time t, W ∗

M (t), is then:

W ∗

M (t) =

M
∑

m=1

W (m)(t) (1.3)

By aggregating over a time block of length B, we arrive at the cumulative packet arrival count over

the range [0, Bt]:

W ∗

M (Bt) =

∫ Bt

0

(

M
∑

m=1

W (m)(u)

)

du (1.4)

The increment of the cumulative arrival count, W ′(t) = W ∗

M (B(t + 1)) −W ∗

M (Bt), represents the

aggregated packet arrival count over the interval [Bt, B(t + 1)], which has interval length B. The

aggregation of three ON/OFF-sources is demonstrated in Figure 1.2.

For large M and B (that is, as M → ∞ and B → ∞), the behavior of Equation 1.4 depends

upon the distributions of the lengths of the ON/OFF-periods. If (at least one of) the ON/OFF-

processes is heavy-tailed, W ∗

M (Bt) will converge to FBM, and hence W ′(t) will converge to fGn.

1To make the model more intuitive, it is possible to assume that the granularity of W (t) is smaller than the time
necessary to send a single packet on a physical Ethernet, for example. The state of W (t) will be ON during the time
required to transmit a packet, and OFF during the inter-packet time. This restriction is not necessary, however. The
model holds when an ON-period represents traffic sent at a constant rate over a larger time scale.
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Aggregated Stream

Source 1
Source 2
Source 3

13 16 10 13 7 12 1215Arrival Count
Aggregated Packet

T
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M

Figure 1.2: The Packet Arrival Count of ON/OFF-Sources Aggregated over an Interval of Length B

Heavy-tailed distributions have infinite variance, or more intuitively, they allow very large lengths of

ON/OFF-periods with non-negligible probability. ON/OFF-periods modeled by Poisson processes

do not have infinite variance, and will not cause W ′(t) to converge to fGn with large M and B.

Instead, they will cause W ′(t) to converge to white noise, which lacks any significant correlation.

Assume that the complementary distributions of the ON- and OFF-periods, respectively, can be

denoted by the following (heavy-tailed) functions:

F1c(x) ∼ l1x
−α1L1(x) with 1 < α1 < 2 (1.5)

F2c(x) ∼ l2x
−α2L2(x) with 1 < α2 < 2

Then, by letting

aj = lj
Γ(2− αj)

αj − 1
(1.6)

b = lim
t→∞

tα2−α1
L1(t)

L2(t)
(1.7)

the variance, σ2
lim, of the aggregated packet count, Equation 1.4, can be calculated as follows:

σ2
lim =

2(µ2
2a1b + µ2

1a2)

(µ1 + µ2)3Γ(4− αmin)
(1.8)



8

The autocorrelation (Equation 1.1) of the aggregated packet count will be exactly self-similar, of

the form in Equation 1.2, where α = 3− 2H .

The benefits of this method are that it is conceptually and mathematically simple (even if the

proof of self-similarity is not), a simulation can be generated by specifying only a few parameters,

it is inherently parallel, the runtime increases linearly with the length of the simulation time (given

a fixed number of sources), and finally, it provides an intuition into the cause of the self-similar

behavior of traffic.

Critics question the ability of this simple model to accurately describe all the nuances of real

traffic, since many factors that affect traffic, such as routing queues, congestion and congestion avoid-

ance, packet losses, Ethernet collisions, user interaction, etc., are not each taken into consideration.

Each of these factors can influence the burstiness and dependence of traffic, and each at a different

time scale, from short-term spikes to long-term swells. The argument can be made however, that

the fractal nature of a self-similar, fGn model captures all of these dependencies over a wide range

of time scales, eliminating the need to describe them individually.

1.2 Related Work

Simulating traffic using an infinite variance ON/OFF source model as outlined in Section 1.1 was

performed in [Taqqu et al. 1997]. However, the results of only a few tests were mentioned, all were

run using a large number of sources (either 500 or 16,000), and no statistical results were given.

They claimed that with a 16,384 node MasPar MP-1216, network traffic that is visually similar to

traced traffic could be quickly simulated. Indeed, visual similarity was demonstrated between the

simulated and traced traffic, and large visual differences were demonstrated between the simulated

traffic and traffic generated with the more traditional Poisson ON/OFF model.

Christiansen et al. [2000] analyzed the performance of Random Early Detection (RED) in routers

by using between 700 and 5,075 simulated HTTP users. The user think times (OFF-periods) and
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response sizes (ON-periods) were both sampled from heavy-tailed Pareto distributions. Though this

study demonstrates the performance effects of traffic generated with the infinite-variance ON/OFF-

source model, it provides no analysis of the actual generated traffic.

A parallel, message-passing algorithm is presented in [Nikolaidis et al. 1997] for synthesizing ATM

traffic that is self-similar in nature. They demonstrate that it is possible to use the ON/OFF-source

model to generate ATM traffic in real-time for a 155 Mbps link. While simulating 500 sources, they

achieved near-linear speedup as the number of workstations increased (up to 8), at least for a link

utilization of 20%. They do not give any statistical results for the synthesized traffic, nor do they

provide any insight into the number of sources that might be required to generate traffic that is

self-similar in nature. But because the parameters used in their tests were comparable to those used

in the simulations presented in [Taqqu et al. 1997], we can conclude that the traffic generated by

Nikolaidis et al. [1997] would also appear pictorially similar to traced Ethernet traffic. Thus, their

work demonstrates the feasibility of synthesizing ATM traffic that appears self-similar in nature,

while using a relatively small network of machines (e.g. 8).

These studies, however, fail to identify the ranges of values for the number of sources, M , and

the size of the observation interval, B, that result in simulated traffic that reasonably approximates

the self-similar nature of fractional Gaussian noise (fGn).2 The range and sensitivity of these limits

is the focus of our work. We are also interested in determining if significant differences are seen

when using strictly alternating or idealized ON/OFF-sources, and when setting the mean length of

the ON- and OFF-processes in such a way that the mean number of sources that are ON at any

given time (i.e. total link utilization) is ≤ 1.0.

2Note that we have not yet defined reasonable.



Chapter 2

The Simulator

The simulator algorithm, which is derived from Equation 1.4, generates a stream of aggregated

packet arrival counts given the following input parameters:

H — the target Hurst parameter (degree of self-similarity)

M — the number of ON/OFF-sources

µon — the mean length of an ON-period

µoff — the mean length of an OFF-period

B — the time interval over which the ON/OFF traffic streams are aggregated to produce
one packet arrival count

T — the total length of time to simulate

We assume a fixed packet size for the simulation, thus packet or byte arrival counts differ only

by a constant factor and are considered equivalent for our purposes. The number of packet arrivals

per interval of length B is then the sum of the time each source spends in an ON state during that

interval. For every interval, each source is “run” through its ON/OFF sequence, and the ON times

are recorded, until the end of the most recent ON- or OFF-period extends beyond the end of the

current interval. The simulator algorithm is presented in Algorithm 2.1.

To begin data collection only after the simulation has reached a steady state, the start time of

each source, t0[i], is uniformly distributed such that −10M(µon + µoff ) ≤ t0[i] < 0. The source is

run until the end of its most recent ON- or OFF-period, time[i], becomes positive. The recording

of ON-times does not begin until time zero.

Though the mathematical model presented in Section 1.1 assumes a discrete time model, the

simulator actually implements a continuous time model, at least as much as the precision of a 64-bit

double allows. That is, a real number is sampled from the appropriate random distribution for
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Algorithm 2.1 The Simulator Algorithm

1: {Initialize sources and run them until time zero}
2: for i← 1 to M do
3: time[i]← initial start time ≤ 0
4: state[i]← OFF
5:

6: while time[i] ≤ 0 do
7: if state[i] is OFF then
8: time[i]← time[i] + length of next ON-period
9: state[i]← ON

10: else
11: time[i]← time[i] + length of next OFF-period
12: state[i]← OFF
13: end if
14: end while
15: end for
16:

17: {For each interval, run each source, recording ON-times, until the end of the interval}
18: for t← 1 to T/B do
19: interval start← (t− 1)× T
20: interval end← t× T
21: on time[t]← 0
22:

23: for i← 1 to M do
24: if state[i] is ON then
25: {Record ON time since beginning of interval}
26: on time[t]← on time[t] + min(B, time[i]− interval start)
27: end if
28:

29: while time[i] ≤ interval end do
30: if state[i] is OFF then
31: p← length of next ON-period
32: time[i]← time[i] + p
33: {Record ON time, up to end of interval}
34: on time[t]← on time[t] + min(p, interval end− time[i])
35: state[i]← ON
36: else
37: p← length of next OFF-period
38: time[i]← time[i] + p
39: state[i]← OFF
40: end if
41: end while
42: end for
43: end for
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the length of the ON- or OFF-period of a source, and that number is used to advance the “current

time” of that source. It is not necessary that the source begin and end an ON- or OFF-period on a

particular discrete boundary. This means that the packet arrival count for a given interval of width

B can be a non-integer value.

In addition to the parameters mentioned above, the following options are also supported to

change the behavior of the algorithm:

strict/notstrict — causes the sources to strictly alternate between an ON-period and an
OFF-period, or causes the likelihood of the next period being either ON or OFF to occur
with equal probability, respectively

discrete — allows the specification of a discretization value (as opposed to the precision of
a 64-bit double)

Algorithm 2.1 is strictly alternating. To accomplish idealized sources, an ON or OFF state is

chosen (with equal probability) between lines 6 and 7, and between lines 29 and 30. In order to

make the simulator discrete, values are truncated to the specified discretization level at lines 3, 8,

11, 31, and 37. It is assumed that the discretization level is a factor of B, and that B is a factor of

T .

The run-time complexity of the simulator is linear over the number of values that must be

generated from a Pareto distribution. In the average case, the simulator has a run-time complexity

of Θ( M×T
µon+µoff

).

2.1 ON/OFF-Period Distributions

The lengths of the ON- and OFF-periods are both sampled from a Pareto distribution, which is

specified by the probability density function

p(x) = αβαx−(α+1), x ≥ β (2.1)
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The cumulative distribution function of a Pareto is

P (x) = 1−
(

β

x

)α

, α, β ≥ 0, x ≥ β (2.2)

and the mean is given by

µ =
βα

α− 1
. (2.3)

For our purposes, the inverse cumulative distribution function,

P−1(r) = β(1− r)
−1

α (2.4)

is used to map a random number r, uniformly distributed over [0, 1), onto the Pareto distribution.

Following Taqqu et al. [1997] and Equation 2.3, we can set α and β as

α = 3− 2H (2.5)

β =
µ(α− 1)

α
(2.6)

allowing us to specify the distribution in terms of only H and µ, the target Hurst parameter, and

the mean length of a source’s ON or OFF period.

For a given simulation using this model, the lengths of the ON- and OFF-periods are obtained

using the same value of H , implying that αon will always equal αoff . For the case of identical

ON/OFF-processes, µon = µoff as well.

2.1.1 Statistical Calculations

Once the simulator has generated the aggregate packet arrival process, Ŵ ′(t), its autocorrelation

and variance are then computed.

It is stated in Theorem 1 of [Taqqu et al. 1997] that for large M and B, the cumulative packet
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arrival count, W ∗

M (Bt), behaves statistically like

BM
µon

µon + µoff

t + BH
√

MσlimBH(t) (2.7)

where E[W ∗

M (Bt)] = BM µon

µon+µoff
t, the term BH(t) is fractional Brownian motion (FBM), which

provides deviations from the expected value, scaled by a factor of T H
√

Mσlim. More precisely,

L lim
B→∞

L lim
M→∞

(

W ∗

M (Bt) −BM µon

µon+µoff
t
)

BH
√

M
= σlimBH(t) (2.8)

where L lim means convergence in the sense of the finite dimensional distributions [Taqqu et al.

1997]. Taking the derivative with respect to t yields

L lim
B→∞

L lim
M→∞

(

W ′(t)−BM µon

µon+µoff

)

BH
√

M
= σlimGH(t) (2.9)

where GH(t) is fractional Gaussian noise.

In similar fashion to Equation 2.9, the normalized variance, σ2
norm, of a sample aggregate packet

arrival count, Ŵ ′(t), can be calculated as follows:

σ2
norm =

N
∑

t=1

(Ŵ ′(t)− µexp)
2

B2HMN
(2.10)

where µexp = BM µon

µon+µoff
and N = T/B.

The sample autocorrelation of Ŵ ′(t) is

r(k) =
1

N − k

N−k
∑

t=1

(Ŵ ′(t)− µexp)(Ŵ ′(t + k)− µexp)

σ2
calc

(2.11)

where σ2
calc the calculated, non-normalized sample variance of Ŵ ′(t).

This autocorrelation, r(k), along with the normalized variance, σ2
norm, are examined to de-
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termine, with respect to various parameters, the effectiveness of the ON/OFF-source model at

approximating exactly self-similar traffic.

2.2 Simulator Verification

No formal analysis has been performed to verify that the simulator correctly implements the math-

ematical model presented in Section 1.1. However, results of a small set of simulations have been

found to be consistent with results obtained from an independently generated simulator, and the re-

sults match our expectations in most cases. In addition, the mean and variance of samples generated

from Pareto distributions have been shown to agree with the mean and variance of the distributions.

Though we can never eliminate the possibility of implementation errors, these techniques, combined

with careful hand-checking of the simulator greatly increase the probability that all implementation

errors have been corrected.



Chapter 3

Expected Results

Based on the work of Taqqu et al. [1997], it is known to be possible to generate network traffic

that is self-similar in nature using the aggregated ON/OFF-stream model. Their simulations used

the parameters: Hurst parameter H = 0.9, number of sources M = 500, identical, strictly alternating

ON/OFF-sources, and a total simulation time of 27 hours at a time-scale of 10 milliseconds.

We would expect that as the limits of the simulated packet arrival count, Ŵ ′(t), increase (that is,

the number of sources, M , and the scale of the aggregation interval, B), the resulting autocorrelations

would converge to the target: exactly self-similar as in Equation 1.2. We would also expect that as

M and B decrease, the resulting autocorrelations would diverge from the target.

For any reasonable M , B, and H , we anticipate that as either the length of the simulation

time, T , is increased, or the autocorrelations of many smaller trials runs are averaged, the resulting

autocorrelation values will converge to points that lie on a smooth curve (though not necessarily the

target).

As the limiting parameters of Ŵ ′(t) increase, the resulting normalized variance, σ2
norm, should

converge to the value given in Equation 1.8. For i.i.d. ON/OFF-processes, the expected, normalized

variance can be further simplified to

σ2
lim =

βα

2µ(α− 1)(2− α)(3− α)
(3.1)

where 0.5 < H < 1.0, α = 3− 2H and β = µ(α−1)
α

.

For heavy-tailed ON/OFF-processes with the same α but different means, µon and µoff , σ2
norm
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is expected to converge to

σ2
lim =

2(µ2
offβα

on + µ2
onβα

off )

(µon + µoff )3(α− 1)(2− α)(3− α)
(3.2)

as M and B become large.

In terms of the limits of the aggregation time, B, we would expect the ratio of B to the mean

ON/OFF-lengths and total simulation time to be more significant than the actual value of B. This

implies that a simulation with µon = µoff = 1.0, B = 1000 and a total simulation time of T = 109

should yield identical results to a simulation with µon = µoff = 0.1, B = 100, and T = 108. This

allows the units to be interpreted as seconds, milliseconds, or at any other time scale, with equivalent

results.

Our objective is to determine if values for M and B exist such that real-world synthesis of traffic

that is self-similar in nature is feasible with a small network of machines in a reasonable amount of

time.



Chapter 4

Simulation Results

To demonstrate the feasibility of simulating traffic that is self-similar in nature, while using a

significantly smaller number of sources than presented in [Taqqu et al. 1997], we use a simulation with

the parameters H = 0.75, M = 32 sources, µon = µoff = 1, B = 1024, T = 1024× 105, and idealized

ON/OFF-sources as a baseline. These parameters were identified experimentally. This represents

about 28.4 hours worth of traffic where the mean ON-period for each source is one millisecond,

and the autocorrelation is calculated using the packet arrival counts for 1024 millisecond intervals.

Figure 4.1 shows the average autocorrelation of the 32 trials (shown individually in Figure 4.2) that

were run with these parameters. The average is visually very close to the exactly self-similar target

for H = 0.75. Each of the 32 trials took one hour to simulate on a machine with a 742 MHz Pentium

II Xeon processor.

Table 4.1 shows the visual similarity in a more quantitative way. The Lag is the distance, k,

between packet arrival counts who’s correlation is calculated, µ̂r(k) is the mean sample autocorrela-

tion value and ∆µ is the difference between µ̂r(k) and the target value. The column labeled σ̂r(k)

is the standard deviation of r(k) for the 32 trials, and ±90% C.I. represents the half-width of the

two-sided 90% confidence interval. In all but one case for Simulation 1, the target value is contained

within the 90% confidence interval.

The variance of the packet arrival count for Simulation 1 is shown in Table 4.2, where σ2
lim

in the expected variance from Equation 3.1, σ̂2
norm is the mean, normalized sample variance, and

∆σ2 is the difference between the two. The column labeled σ̂σ2 is the standard deviation of the 32

normalized sample variances. We note that the target variance is not within the 90% confidence

interval, though the difference between the target and mean sample variance is quite small.

Quantifying the quality of a simulation’s results requires a bit of comment. It is most desirable
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Figure 4.1: Simulation 1 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.2: Simulation 1 — Autocorrelations of 32 Individual Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4149 -0.00069 0.0125 0.00364 0.4142 Yes
2 0.2668 0.00288 0.0156 0.00455 0.2696 Yes
4 0.1841 0.00412 0.0171 0.00499 0.1882 Yes
8 0.1284 0.00427 0.0176 0.00511 0.1327 Yes

16 0.0890 0.00480 0.0186 0.00542 0.0938 Yes
32 0.0614 0.00489 0.0179 0.00520 0.0663 Yes
64 0.0431 0.00378 0.0188 0.00548 0.0469 Yes

128 0.0304 0.00277 0.0195 0.00568 0.0331 Yes
256 0.0195 0.00396 0.0176 0.00513 0.0234 Yes
512 0.0111 0.00546 0.0175 0.00510 0.0166 No

Table 4.1: Simulation 1 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

0.2566 0.2527 0.00393 0.0050 0.00147 No

Table 4.2: Simulation 1 — Variance Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

for the autocorrelation values to lie exactly on the target line. In practice, though, this rarely

happens. In the following sections, we will say that a simulation provides “good” or “reasonable”

results if the target is contained within the 90% confidence interval for every, or all except one, value

of the lag. However, to compare two simulations who’s 90% confidence intervals contain the target

in every case, we need to closely examine both the distance of the mean autocorrelations from the

target and the standard deviation of the sample autocorrelations. Thus, claiming that the results

of a simulation are “good” or “better” than another simulation remains somewhat subjective.

Nonetheless, we believe that Simulation 1 represents a good baseline to which we compare further

simulations. It can also be claimed that Simulation 1 provides “good” results in terms of the self-

similar nature of the simulated traffic stream. Now we modify various parameters in turn to examine

their limits and sensitivity.
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4.1 Total Simulation Time

The first parameter we adjust is the length of the simulation time, T . A short length, that still

provides good results, is the most desirable, since longer simulations can take a large amount of

clock-time to run.1 It is desirable to have the results converge to the target values within a short

T when using this method to synthesize traffic on a real network as well, since there is no way to

speed up the actual clock-time compared to the simulation time in this case.

We begin by reducing the simulation time of Simulation 1 by a factor of 10 for Simulation ST-1

(Figure 4.3), and then by another 10 for Simulation ST-2 (Figure 4.4). We immediately notice three

things about these simulations. First, the average autocorrelation of Simulation ST-1 is not nearly

as close to the target as Simulation 1, and Simulation ST-2 is even worse. Second, higher values of

the lag, k, result in a less smooth autocorrelation. This is especially evident in Figures 4.5 and 4.6,

where a representative subset of the 32 individual trials of Simulations ST-1 and ST-2, respectively,

are shown. We argue that this decreased smoothness is largely due to the low number of data

points, N = T/B, used in the autocorrelation calculation. Third, Figures 4.5 and 4.6 show how the

autocorrelations of the individual trials deviate from the average by an increasing amount as the T

decreases.

Tables 4.3 and 4.4 show these observations numerically. The target value is almost never in the

90% confidence interval for the sample autocorrelations of Simulations ST-1 and ST-2. Interest-

ingly, the standard deviation of the autocorrelations for Simulation ST-1 are almost twice that of

Simulation 1, and Simulation ST-2 is more than twice that of Simulation ST-1.

The variance of Simulations ST-1 and ST-2 shown in Table 4.5, also deviates from the target

value as T decreases, and the standard deviation of these calculated variances increases twofold

for Simulation ST-1, and another threefold for Simulation ST-2. The calculated variance, even for

Simulation ST-2, is still quite close to the target value, however.

1Clock-time is the amount of time a simulation takes to run as measured by a wall clock or watch, as opposed to
simulation time which is the amount of time simulated — typically much larger than the clock-time.
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Figure 4.3: Simulation ST-1 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 104
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Figure 4.4: Simulation ST-2 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 103
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Figure 4.5: Simulation ST-1 — Autocorrelations for 4 of 32 Individual Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 104
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Figure 4.6: Simulation ST-2 — Autocorrelations for 4 of 32 Individual Trials
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4060 0.008173 0.0248 0.007204 0.4142 No
2 0.2553 0.014318 0.0269 0.007828 0.2696 No
4 0.1712 0.017025 0.0351 0.010200 0.1882 No
8 0.1060 0.026719 0.0355 0.010319 0.1327 No

16 0.0725 0.021254 0.0355 0.010320 0.0938 No
32 0.0424 0.023892 0.0302 0.008772 0.0663 No
64 0.0210 0.025835 0.0292 0.008483 0.0469 No

128 0.0129 0.020291 0.0244 0.007098 0.0331 No
256 0.0024 0.020989 0.0211 0.006144 0.0234 No
512 0.0028 0.013723 0.0159 0.004621 0.0166 No

Table 4.3: Simulation ST-1 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 104

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.3826 0.031644 0.0668 0.019439 0.4142 No
2 0.2186 0.051057 0.0778 0.022615 0.2696 No
4 0.1405 0.047796 0.0832 0.024208 0.1882 No
8 0.0851 0.047612 0.0839 0.024392 0.1327 No

16 0.0537 0.040033 0.0933 0.027126 0.0938 No
32 0.0331 0.033182 0.0874 0.025413 0.0663 No
64 0.0095 0.037400 0.0810 0.023558 0.0469 No

128 0.0147 0.018430 0.0819 0.023807 0.0331 Yes
256 0.0148 0.008640 0.0744 0.021635 0.0234 Yes

Table 4.4: Simulation ST-2 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 103

Sim σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

ST-1 0.2566 0.2492 0.00304 0.0105 0.00738 No
ST-2 0.2566 0.2438 0.00898 0.0309 0.01282 No
ST-3 0.2566 0.2538 0.00279 0.0025 0.00169 No

Table 4.5: Simulations ST-1 ST-2 and ST-3 — Variance Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = {1024× 104, 1024× 103, 1024× 106}
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4180 -0.00375 0.0074 0.00548 0.4142 Yes
2 0.2717 -0.00202 0.0086 0.00635 0.2696 Yes
4 0.1893 -0.00109 0.0092 0.00677 0.1882 Yes
8 0.1343 -0.00161 0.0096 0.00703 0.1327 Yes

16 0.0951 -0.00135 0.0096 0.00710 0.0938 Yes
32 0.0675 -0.00124 0.0107 0.00785 0.0663 Yes
64 0.0477 -0.00085 0.0099 0.00726 0.0469 Yes

128 0.0335 -0.00031 0.0105 0.00769 0.0331 Yes
256 0.0228 0.00065 0.0093 0.00688 0.0234 Yes
512 0.0149 0.00166 0.0088 0.00650 0.0166 Yes

Table 4.6: Simulation ST-3 — Autocorrelation Data of 5 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 106

One of the individual trials in Simulation ST-2 has a surprisingly high correlation, as evident

from Figure 4.6. This is likely due to the increased probability that the length of one or more

ON-periods chosen from the Pareto distribution would span the entire simulation time.

Finally, Simulation ST-3 was run with a longer simulation time, T = 1024× 106. Each trial took

nearly 10 hours to run on a 742 MHz Pentium II Xeon, but as evident from Figures 4.7 and 4.8,

and Table 4.6, the average autocorrelation is very close to the target and the standard deviation

of the trials is low. The 90% confidence interval is included in Table 4.6 for consistency, though it

should be noted that the confidence interval is not an accurate estimate for only 5 trials. However,

because both the standard deviation and the distance between autocorrelation values and the target

are significantly smaller than the other simulations, we claim that Simulation ST-3 generates the

“best” results of any simulation up to this point. The variance is also closer to the target than any

other simulation so far (Table 4.5).

Of this small sample of simulation times, T = 1024 × 105 seems to give autocorrelations and

variances that converge to the target values within a reasonable amount of clock-time. The shape

of the autocorrelation for Simulation ST-1 where T = 1024× 104 is also similar to the target, but

the values are an order of magnitude farther from the target than Simulation 1.
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Figure 4.7: Simulation ST-3 — Average Autocorrelation of 5 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 106
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4.2 Number of Sources

We have seen that 32 sources is adequate for generating self-similar traffic, which is much more

tractable than the 500 (or 16,000) sources used in [Taqqu et al. 1997]. The next step is to investigate

the effects of more and fewer sources on the autocorrelation and variance. We continue to use the

parameters used in Simulation 1 for H = 0.75, µon = µoff = 1, B = 1024, T = 1024 × 105, and

idealized ON/OFF-sources.

For Simulations NS-1, NS-2, and NS-3, M is set to 8, 4, and 2 sources, respectively. As shown in

Figure 4.9, the number of sources makes only a slight difference. In fact, Table 4.7 might indicate an

improvement for 8 sources over 32, since the 90% confidence interval for Simulation NS-1 contains

the target values in every case. On close examination, the standard deviation of the autocorrelation

values in Simulation NS-1 increased significantly over Simulation 1, creating a wider confidence

interval, so an overall improvement cannot be inferred. Simulations NS-1, NS-2, and NS-3 do show

that given a large enough B and T , traffic with autocorrelations closely matching the target can

be generated with as few as 8 sources. Even with as 4 or 2 sources, traffic can be generated with

autocorrelations that are surprisingly close to the target. In all three simulations, the average

calculated variance is still close to the target variance, though it begins to decrease slightly with

fewer sources.

An interesting effect is observed when we set M to 1 source as in Simulation NS-4. As shown

in Figure 4.10 and Table 4.11, the autocorrelation is actually slightly larger than the target, and

the target is contained in the 90% confidence interval for all values of the lag, k. However, as we

see in Table 4.11, and graphically in Figure 4.11, the standard deviation of the individual trials in

Simulation NS-5 is very large — much larger than the standard deviation for most other simula-

tions. We suggest that another run of Simulation NS-4 could yield a significantly different average

autocorrelation, implying that it is necessary to average more than 32 trials for this simulation to

converge to a particular set of values. The curve to which it converges would then likely follow
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Figure 4.9: Simulations 1, NS-1, NS-2 and NS-3 — Average Autocorrelation of 32 Trials
H = 0.75, M = {32, 8, 4, 2}, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4162 -0.00194 0.0229 0.00666 0.4142 Yes
2 0.2696 0.00001 0.0282 0.00821 0.2696 Yes
4 0.1867 0.00156 0.0299 0.00870 0.1882 Yes
8 0.1305 0.00217 0.0300 0.00872 0.1327 Yes

16 0.0907 0.00304 0.0305 0.00886 0.0938 Yes
32 0.0614 0.00485 0.0303 0.00882 0.0663 Yes
64 0.0431 0.00373 0.0304 0.00885 0.0469 Yes

128 0.0288 0.00439 0.0290 0.00843 0.0331 Yes
256 0.0194 0.00401 0.0278 0.00809 0.0234 Yes
512 0.0135 0.00308 0.0236 0.00687 0.0166 Yes

Table 4.7: Simulation NS-1 — Autocorrelation Data of 32 Trials
H = 0.75, M = 8, µon = µoff = 1, B = 1024, T = 1024× 105
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4093 0.00495 0.0284 0.00825 0.4142 Yes
2 0.2604 0.00928 0.0354 0.01030 0.2696 Yes
4 0.1745 0.01378 0.0386 0.01123 0.1882 No
8 0.1186 0.01408 0.0399 0.01160 0.1327 No

16 0.0784 0.01539 0.0420 0.01221 0.0938 No
32 0.0497 0.01664 0.0431 0.01252 0.0663 No
64 0.0309 0.01594 0.0419 0.01217 0.0469 No

128 0.0203 0.01289 0.0395 0.01149 0.0331 No
256 0.0130 0.01040 0.0381 0.01108 0.0234 Yes
512 0.0087 0.00783 0.0334 0.00972 0.0166 Yes

Table 4.8: Simulation NS-2 — Autocorrelation Data of 32 Trials
H = 0.75, M = 4, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4068 0.00741 0.0238 0.00693 0.4142 No
2 0.2576 0.01201 0.0291 0.00847 0.2696 No
4 0.1740 0.01429 0.0318 0.00924 0.1882 No
8 0.1178 0.01493 0.0328 0.00953 0.1327 No

16 0.0773 0.01648 0.0327 0.00951 0.0938 No
32 0.0478 0.01849 0.0285 0.00828 0.0663 No
64 0.0285 0.01839 0.0247 0.00719 0.0469 No

128 0.0137 0.01941 0.0189 0.00550 0.0331 No
256 0.0039 0.01949 0.0158 0.00460 0.0234 No
512 0.0018 0.01476 0.0080 0.00232 0.0166 No

Table 4.9: Simulation NS-3 — Autocorrelation Data of 32 Trials
H = 0.75, M = 2, µon = µoff = 1, B = 1024, T = 1024× 105

Sim σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

NS-1 0.2566 0.2534 0.00318 0.0100 0.00292 No
NS-2 0.2566 0.2513 0.00527 0.0135 0.00394 No
NS-3 0.2566 0.2496 0.00701 0.0101 0.00294 No
NS-4 0.2566 0.2635 -0.00693 0.0692 0.02012 Yes

Table 4.10: Simulations NS-1, NS-2 and NS-3 — Variance Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.10: Simulation NS-4 — Average Autocorrelation of 32 Trials
H = 0.75, M = 1, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.11: Simulation NS-4 — Autocorrelations for 8 of 32 Individual Trials
H = 0.75, M = 1, µon = µoff = 1, B = 1024, T = 1024× 105
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4211 -0.00690 0.0780 0.02268 0.4142 Yes
2 0.2749 -0.00525 0.0984 0.02861 0.2696 Yes
4 0.1935 -0.00523 0.1092 0.03174 0.1882 Yes
8 0.1382 -0.00545 0.1154 0.03357 0.1327 Yes

16 0.0984 -0.00460 0.1187 0.03451 0.0938 Yes
32 0.0708 -0.00448 0.1172 0.03409 0.0663 Yes
64 0.0496 -0.00269 0.1145 0.03329 0.0469 Yes

128 0.0346 -0.00148 0.1110 0.03228 0.0331 Yes
256 0.0259 -0.00246 0.1070 0.03113 0.0234 Yes
512 0.0203 -0.00376 0.0985 0.02864 0.0166 Yes

Table 4.11: Simulation NS-4 — Autocorrelation Data of 32 Trials
H = 0.75, M = 1, µon = µoff = 1, B = 1024, T = 1024× 105

the same trend as Simulations NS-2 and NS-3, and fall slightly below the target. The variance of

Simulation NS-4 is also slightly larger than the target, though the standard deviation of the 32 trials

is again large. This creates a wide confidence interval that does contain the target.

It was determined in Section 4.1 that setting T = 1024 × 104 in Simulation ST-1 caused the

autocorrelations to deviate further from the target by an order of magnitude when compared with

Simulation 1 where T = 1024×105. We now investigate the effects of varying the number of sources

while using a simulation time of T = 1024× 104. Simulations NS-5, NS-6, NS-7 and NS-8 were run

with 8, 4, 2, and 1 sources, respectively, and the results more closely match what we expected: as

the number of sources increases, the correlations converge to the target (Figure 4.12). In all cases,

the autocorrelations become essentially zero after a lag of 32–128. See Appendix A for complete

autocorrelation and variance data for these trials.

Simulations NS-9 and NS-10 were run with 64 and 128 sources, respectively. The results show

that in order to generate traffic with autocorrelations that are as close to the target as Simulation 1,

while simulating less time, up to four times as many sources are necessary (see Figure 4.13). This

increases simulation clock-time by a factor of four, and reduces the feasibility of using this technique

to physically synthesize realistic traffic with a small network of machines.
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Figure 4.12: Simulations ST-1, NS-5, NS-6, NS-7, and NS-8 — Average Autocorrelation of 32 Trials
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Figure 4.13: Simulations ST-2, NS-9 and NS-10 — Average Autocorrelation of 32 Trials
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4.3 Length of Aggregation Interval

The smoothness of the autocorrelation plots is certainly a result of the number of data-points used in

the autocorrelation calculations. If the number of data-points also affects the degree of self-similarity,

then one possible way to retain reasonably accurate over a shorter simulation time would be to reduce

the interval width, B. This possibility is investigated, but first we explore the effects of varying the

aggregation time on the autocorrelations and variances while keeping the other parameters constant.

Simulations AT-1, AT-2, and AT-3 were run with an aggregation time, B, of 512, 128, and 64,

respectively. As evident from Figure 4.14 and Tables 4.12, 4.13, and 4.14, values of B ≥ 128 produce

nearly identical results, but at B = 64, the results begin to diverge from the target. Simulations

AT-4, AT-5, AT-6, and AT-7, run with B = 32, 16, 4, and 1, respectively, follow this trend of

increasing correlations (Figure 4.15).

With a smaller interval width, B, there is a higher probability that ON- and OFF-periods

will span multiple intervals, resulting in higher correlations. The above results confirm with this

observation, and indicate that B = 128 is the lowest tested value that results in autocorrelations

that are close to the target.

To investigate the effects of B and T together, we run Simulations AT-8, and AT-9 with B = 128,

T = 1024×104 and 1024×103, respectively. These results, in Figures 4.16 and 4.17 and Tables 4.15

and 4.16, show Simulation AT-8 to be as close to the target as Simulation 1, and also as close as

Simulation AT-2, despite a reduction of T by a factor of ten. This indicates that the number of data-

points, N = T
B

, rather than the total simulation time, T , has the largest effect on the convergence

of the autocorrelations to the target. The results of Simulation AT-9 and Simulation ST-2 are again

comparable despite a reduction in T by a factor of ten. Simulation AT-9 also shows that with a

similar number of data-points, a smaller B results in a higher correlation, consistent with the results

of the previous simulations, but amplified by the lower value of T .
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Figure 4.14: Simulations 1, AT-1, AT-2, and AT-3 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = {1024, 512, 128, 64}, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4249 -0.010671 0.0367 0.010665 0.4142 No
2 0.2795 -0.009879 0.0460 0.013383 0.2696 Yes
4 0.1975 -0.009252 0.0518 0.015058 0.1882 Yes
8 0.1409 -0.008231 0.0551 0.016014 0.1327 Yes

16 0.1016 -0.007859 0.0577 0.016777 0.0938 Yes
32 0.0752 -0.008901 0.0595 0.017291 0.0663 Yes
64 0.0554 -0.008555 0.0602 0.017513 0.0469 Yes

128 0.0414 -0.008300 0.0608 0.017689 0.0331 Yes
256 0.0308 -0.007375 0.0616 0.017918 0.0234 Yes
512 0.0234 -0.006876 0.0617 0.017928 0.0166 Yes

Table 4.12: Simulation AT-1 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 512, T = 1024× 105
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Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4251 -0.010896 0.0047 0.001362 0.4142 No
2 0.2758 -0.006172 0.0058 0.001694 0.2696 No
4 0.1922 -0.003959 0.0064 0.001873 0.1882 No
8 0.1346 -0.001853 0.0065 0.001898 0.1327 Yes

16 0.0944 -0.000657 0.0068 0.001981 0.0938 Yes
32 0.0660 0.000257 0.0075 0.002184 0.0663 Yes
64 0.0463 0.000538 0.0073 0.002133 0.0469 Yes

128 0.0318 0.001373 0.0070 0.002035 0.0331 Yes
256 0.0221 0.001296 0.0071 0.002057 0.0234 Yes
512 0.0157 0.000878 0.0074 0.002148 0.0166 Yes

Table 4.13: Simulation AT-2 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4304 -0.016191 0.0034 0.000981 0.4142 No
2 0.2793 -0.009618 0.0041 0.001196 0.2696 No
4 0.1944 -0.006162 0.0047 0.001375 0.1882 No
8 0.1361 -0.003388 0.0048 0.001395 0.1327 No

16 0.0954 -0.001654 0.0050 0.001455 0.0938 No
32 0.0667 -0.000377 0.0051 0.001477 0.0663 No
64 0.0464 0.000513 0.0053 0.001549 0.0469 Yes

128 0.0319 0.001231 0.0050 0.001444 0.0331 Yes
256 0.0225 0.000974 0.0052 0.001507 0.0234 Yes
512 0.0151 0.001521 0.0046 0.001330 0.0166 No

Table 4.14: Simulation AT-3 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 64, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4239 -0.009640 0.0127 0.003706 0.4142 No
2 0.2748 -0.005127 0.0154 0.004482 0.2696 No
4 0.1913 -0.003050 0.0166 0.004820 0.1882 Yes
8 0.1323 0.000364 0.0192 0.005573 0.1327 Yes

16 0.0913 0.002428 0.0201 0.005858 0.0938 Yes
32 0.0637 0.002640 0.0200 0.005828 0.0663 Yes
64 0.0442 0.002644 0.0199 0.005783 0.0469 Yes

128 0.0285 0.004668 0.0194 0.005652 0.0331 Yes
256 0.0175 0.005917 0.0192 0.005573 0.0234 No
512 0.0106 0.005950 0.0175 0.005082 0.0166 No

Table 4.15: Simulation AT-8 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 104
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Figure 4.15: Simulations AT-4, AT-5, AT-6, and AT-7 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = {32, 16, 4, 1}, T = 1024× 105
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Figure 4.16: Simulations 1 and AT-8 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = {1024, 128}, T = {1024× 105, 1024× 104}
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Figure 4.17: Simulations AT-9 and ST-1 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = {128, 1024}, T = {1024× 103, 1024× 104}

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.4166 -0.002371 0.0277 0.008056 0.4142 Yes
2 0.2651 0.004527 0.0351 0.010198 0.2696 Yes
4 0.1823 0.005992 0.0432 0.012571 0.1882 Yes
8 0.1257 0.006973 0.0406 0.011800 0.1327 Yes

16 0.0819 0.011914 0.0445 0.012934 0.0938 Yes
32 0.0538 -0.053845 0.0449 0.014495 0.0663 No
64 0.0396 -0.039623 0.0343 0.011055 0.0469 No

128 0.0233 -0.023292 0.0298 0.009607 0.0331 No
256 0.0113 -0.011321 0.0313 0.010107 0.0234 No
512 0.0075 -0.007501 0.0270 0.008715 0.0166 Yes

Table 4.16: Simulation AT-9 — Autocorrelation Data of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 103
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4.4 Hurst Parameter

A Hurst parameter of H = 0.75 is a good initial simulation choice for two reasons. First, it is

approximately equal to the average value of H found by Klivansky et al. [1994] to represent traces

of all traffic at NSFNET switches. Second, 0.75 is exactly in the middle of the range [0.5, 1.0],

values of H which give rise to long-range dependence in network traffic. Some other mechanisms

for approximating fGn, such as Random Midpoint Displacement tend to produce higher than target

correlations for H < 0.75 and lower than target correlations for H > 0.75 [Popescu 1999], suggesting

that we might see the best results at H = 0.75 as well.

We now run simulations with different values of H , roughly corresponding to values of H de-

termined from various network traces. No major studies found H to be significantly higher that

0.9, so we choose that as our upper bound. We use H = 0.8 and H = 0.85 as intermediate values

corresponding to values from traffic examined by Leland et al. [1994]. For values of H < 0.75, we

choose H = 0.7, H = 0.65 and H = 0.60. Though no major studies examined traffic traces where

H was found to be less than 0.69, we choose the lower values for symmetry.

We first notice from Simulation H-1, where H = 0.80, that the results are at least as close

to the target as Simulation 1 (Figure 4.18 and Table 4.17). However, for Simulation H-2, where

H = 0.85, the results begin to diverge from the target (Figure 4.19 and Table 4.18). This is even

more evident in Simulation H-3, where H = 0.90 (Figure 4.20 and Table 4.19). The autocorrelation

of Simulation H-3 is less correlated than the target by a significant amount.

A similar phenomenon is observed for values of H < 0.75. Simulation H-4, with H = 0.70, is

close to the target (Figure 4.20 and Table 4.19), Simulation H-5 with H = 0.65 and Simulation H-6

with H = 0.60 diverge from the target, but in this case are more strongly correlated.

Autocorrelations of simulations with H > 0.75 diverge from the target with larger values of the

lag, and simulations with H < 0.75 converge to the target with a larger lag. However, for H < 0.75

the target values approach 0 quite rapidly (i.e. after a lag > 32 for Simulation H-6), implying
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Figure 4.18: Simulation H-1 — Average Autocorrelation of 32 Trials
H = 0.80, M = 32, B = 1024, µon = µoff = 1, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.5173 -0.00162 0.0312 0.00908 0.5157 Yes
2 0.3694 -0.00110 0.0407 0.01183 0.3683 Yes
4 0.2772 -0.00069 0.0467 0.01359 0.2765 Yes
8 0.2095 -0.00046 0.0516 0.01500 0.2091 Yes

16 0.1586 -0.00020 0.0547 0.01592 0.1584 Yes
32 0.1208 -0.00080 0.0574 0.01670 0.1200 Yes
64 0.0914 -0.00045 0.0598 0.01739 0.0909 Yes

128 0.0686 0.00030 0.0595 0.01730 0.0689 Yes
256 0.0504 0.00186 0.0615 0.01789 0.0522 Yes
512 0.0381 0.00149 0.0609 0.01771 0.0396 Yes

Table 4.17: Simulation H-1 — Autocorrelation Data of 32 Trials
H = 0.80, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.19: Simulation H-2 — Average Autocorrelation of 32 Trials
H = 0.85, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.6163 0.008160 0.0180 0.005236 0.6245 No
2 0.4758 0.011710 0.0246 0.007152 0.4875 No
4 0.3795 0.013887 0.0289 0.008396 0.3934 No
8 0.3023 0.016765 0.0318 0.009237 0.3190 No

16 0.2404 0.018666 0.0343 0.009960 0.2590 No
32 0.1895 0.020862 0.0363 0.010567 0.2104 No
64 0.1501 0.020732 0.0381 0.011071 0.1709 No

128 0.1176 0.021166 0.0393 0.011424 0.1388 No
256 0.0912 0.021538 0.0428 0.012441 0.1127 No
512 0.0723 0.019218 0.0417 0.012123 0.0916 No

Table 4.18: Simulation H-2 — Autocorrelation Data of 32 Trials
H = 0.85, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.20: Simulation H-3 — Average Autocorrelation of 32 Trials
H = 0.90, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.6019 0.139225 0.2636 0.076662 0.7411 No
2 0.4980 0.132103 0.2189 0.063667 0.6301 No
4 0.4206 0.125757 0.1860 0.054097 0.5464 No
8 0.3536 0.121523 0.1580 0.045953 0.4752 No

16 0.2947 0.118826 0.1339 0.038929 0.4136 No
32 0.2451 0.114902 0.1142 0.033207 0.3600 No
64 0.1989 0.114456 0.0966 0.028077 0.3134 No

128 0.1602 0.112670 0.0830 0.024130 0.2728 No
256 0.1246 0.112900 0.0741 0.021547 0.2375 No
512 0.0962 0.110604 0.0646 0.018777 0.2068 No

Table 4.19: Simulation H-3 — Autocorrelation Data of 32 Trials
H = 0.90, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.21: Simulation H-4 — Average Autocorrelation of 32 Trials
H = 0.70, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.3278 -0.008337 0.0120 0.003493 0.3195 No
2 0.1934 -0.004688 0.0145 0.004220 0.1888 No
4 0.1249 -0.002426 0.0148 0.004310 0.1225 Yes
8 0.0808 -0.000268 0.0146 0.004249 0.0805 Yes

16 0.0536 -0.000569 0.0139 0.004045 0.0531 Yes
32 0.0335 0.001504 0.0127 0.003697 0.0350 Yes
64 0.0202 0.002897 0.0123 0.003568 0.0231 Yes

128 0.0130 0.002185 0.0123 0.003575 0.0152 Yes
256 0.0081 0.001980 0.0109 0.003176 0.0101 Yes
512 0.0035 0.003130 0.0070 0.002024 0.0066 No

Table 4.20: Simulation H-4 — Autocorrelation Data of 32 Trials
H = 0.70, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.22: Simulation H-5 — Average Autocorrelation of 32 Trials
H = 0.65, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.2486 -0.017461 0.0116 0.003370 0.2311 No
2 0.1314 -0.008086 0.0133 0.003878 0.1233 No
4 0.0785 -0.004149 0.0139 0.004048 0.0744 No
8 0.0464 -0.000856 0.0139 0.004047 0.0456 Yes

16 0.0276 0.000363 0.0125 0.003636 0.0280 Yes
32 0.0161 0.001143 0.0119 0.003449 0.0172 Yes
64 0.0090 0.001659 0.0115 0.003350 0.0106 Yes

128 0.0059 0.000647 0.0099 0.002891 0.0065 Yes
256 0.0034 0.000650 0.0081 0.002352 0.0040 Yes
512 0.0022 0.000302 0.0052 0.001519 0.0025 Yes

Table 4.21: Simulation H-5 — Autocorrelation Data of 32 Trials
H = 0.65, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.23: Simulation H-6 — Average Autocorrelation of 32 Trials
H = 0.60, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.
1 0.1581 -0.009439 0.0612 0.017800 0.1487 Yes
2 0.0756 -0.004380 0.0304 0.008827 0.0712 Yes
4 0.0416 -0.001682 0.0181 0.005272 0.0399 Yes
8 0.0245 -0.001725 0.0124 0.003610 0.0228 Yes

16 0.0143 -0.001217 0.0085 0.002483 0.0131 Yes
32 0.0084 -0.000938 0.0068 0.001988 0.0075 Yes
64 0.0038 0.000500 0.0051 0.001496 0.0043 Yes

128 0.0022 0.000262 0.0048 0.001406 0.0025 Yes
256 0.0011 0.000290 0.0030 0.000868 0.0014 Yes
512 -0.0004 0.001220 0.0031 0.000910 0.0008 No

Table 4.22: Simulation H-6 — Autocorrelation Data of 32 Trials
H = 0.60, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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virtually no correlation between elements a distance of 32 apart.

Geist and Westall [2000] provide a statistical analysis of their own procedure for producing sam-

ples that are approximately fGn and that of Paxson [1995]. It is interesting to note that the results

of those simulations, which target a Hurst parameter of 0.845, roughly match ours for Simulation

H-2 in terms of both the distance of the autocorrelations from the target, and the width of the 90%

confidence interval.

4.5 Mean ON 6= Mean OFF

The results thus far, where µon = µoff , are interesting in a theoretical sense. However, in order to

synthesize traffic that is self-similar in nature on a real network, the average link utilization must be

kept lower than 100%. There are two ways to achieve this. The first is to specify that on ON-period

represents a source sending at some constant rate less than the link bandwidth. The mathematical

result presented in [Taqqu et al. 1997] holds for any constant rate. Using this model, we would thus

expect our current results to agree with those from a physical network simulation, at least where

the transmission rates of the ON-sources are sufficiently low to prevent utilization bursts in excess

of 100%. It can be somewhat challenging, however, to produce traffic at a precise rate on a real

machine due to characteristics of the physical, data-link, and network layers. Another simple way

to achieve a desired link utilization, U , is to set µoff is such a way that U = M µon

µon+µoff
. That is,

µoff = M×µon

U
− µon. This is the scenario we investigate in this section. Again, the simulator does

not attempt to capture the effects of short-term utilization bursts that exceed 100%.

For Simulations MO-1, MO-2, MO-3, MO-4, MO-5, and MO-6, the average desired link utilization

was set to 25%. For each of these simulations, µoff = 4Mµon − µon. As shown in Figure 4.24, no

trend can easily be found among these simulations. This is likely due to the fact that µoff is much

closer to B — the value of B is only four times µoff for Simulation MO-1.

To keep the ratio of B
µon+µoff

similar to that of Simulation 1, we run Simulations MO-7, MO-8,
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Figure 4.24: Simulations MO-{1, 2, 3, 4, 5, 6} — Average Autocorrelation of 32 Trials
H = 0.75, M = {32, 16, 8, 4, 2, 1}, µon = 1, µoff = (4Mµon − µon), B = 1024, T = 1024× 105
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Figure 4.25: Simulations MO-{7, 8, 9, 10, 11, 12} — Average Autocorrelation of 32 Trials
H = 0.75, M = {32, 16, 8, 4, 2, 1}, µon = 1, µoff = (4Mµon − µon), B = 16, 384, T = 16, 384× 105
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MO-9, MO-10, MO-11, and MO-12 with the same values of µon, µoff , and M as before, but with

B = 16, 384. We increase T to 16, 384 × 105 to maintain 105 data-points. The results of these

simulations are given in Figure 4.25, and again, no clear trend is observed between the number

of sources and the distance of the autocorrelations to the target. If such a tend exists, it will

only determined after a much more thorough examination of the many combinations of simulation

parameters.

4.6 Strictly Alternating Sources

Though idealized ON/OFF-sources are considered in [Willinger et al. 1995], later Willinger et al.

[1997] and Taqqu et al. [1997] focus on strictly alternating ON/OFF-sources. We now investigate

the results of simulations run with strictly alternating sources.

Simulations STR-1, STR-2, STR-3, and STR-4 were run with 32, 8, 4, and 2 sources respectively,

and the results are given in Figure 4.26. There is only a slight difference, respectively, between these

and Simulations 1, NS-1, NS-2, and NS-3.

In an effort to cause the results to deviate further from the target, Simulations STR-5, STR-6,

STR-7, and STR-8 were run with the same respective values of M , but with T = 1024× 104. These

values, compared with the corresponding idealized Simulations ST-1, NS-5, NS-6, and NS-6, are

closer to the target in every case (except for the tail of Simulation STR-8, which becomes slightly

negative). See Appendix A for complete data from these simulations.

Simulations STR-9, STR-10, and STR-11 were run with H = 0.85, 0.90, and 0.65, respectively

to compare the results with Simulations H-2, H-3, and H-5. Figures 4.28, 4.29, and 4.30 show that

the strictly alternating sources are not more strongly correlated and are not closer to the target in

this case.

Simulation AT-7, with parameters H = 0.75, M = 32, B = 1, T = 1024 × 105, and idealized

sources, was more strongly correlated than the target by a significant amount. Simulation STR-
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Figure 4.26: Simulations STR-1, STR-2, STR-3, and STR-4 — Average Autocorrelation of 32 Trials
Strictly Alternating H = 0.75, M = {32, 8, 4, 2}, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.27: Simulations STR-5, STR-6, STR-7, and STR-8 — Average Autocorrelation of 32 Trials
Strictly Alternating H = 0.75, M = {32, 8, 4, 2}, µon = µoff = 1, B = 1024, T = 1024× 104
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Figure 4.28: Simulations STR-9 and H-2 — Average Autocorrelation of 32 Trials
{Strictly Alt., Idealized} H = 0.85, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.29: Simulations STR-10 and H-3 — Average Autocorrelation of 32 Trials
{Strictly Alt., Idealized} H = 0.90, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.30: Simulations STR-11 and H-5 — Average Autocorrelation of 32 Trials
{Strictly Alt., Idealized} H = 0.65, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105
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Figure 4.31: Simulations STR-12 and AT-7 — Average Autocorrelation of 32 Trials
{Strictly Alt., Idealized} H = 0.75, M = 32, µon = µoff = 1, B = 1, T = 1024× 105
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12 was run with strictly alternating sources, and the results are compared with Simulation AT-7

in Figure 4.31. The results of Simulation STR-12 are again more strongly correlated than the

corresponding idealized source simulation. It is interesting that the autocorrelation for a lag of one

is the same for both simulations, though the shapes of the curves are different.

It appears that the results of simulations with strictly alternating sources tend to be more strongly

correlated than to simulations with idealized sources for an target H = 0.75. Strictly alternating

simulations with other target values of H are not more strongly correlated, though only a very

limited set of simulations were examined.

4.7 Discrete Time

Though a discrete time model is presented in [Willinger et al. 1997] and [Taqqu et al. 1997], the

simulations thus far were consistent with a continuous time model, at least to the point allowed by

the precision of a 64-bit double. To investigate any differences that discretization may cause, the

lengths of the ON- and OFF-periods for the simulations in this section have been truncated to a

specified discretization value.

The discretization levels for Simulations D-1, D-2, D-3 are set to 0.01, 0.1, and 1.0, respectively.

The other parameters are identical to that of Simulation 1, H = 0.75, M = 32 sources, µon = µoff =

1, B = 1024, T = 1024× 105, and idealized ON/OFF-sources. A value of 0.01 is sufficiently smaller

than µon and µoff that we would expect this simulation be be very similar to Simulation 1. Indeed,

we see from Figure 4.32 that this is true. It is surprising, however, that a value of 0.1, which is only

a tenth of the mean, and a value of 1.0, which is equal to the mean, should also result in nearly

identical results. For Simulation D-3, we reason that since every ON or OFF time chosen below

the mean is truncated to zero, they have absolutely no effect on the simulation since we are using

idealized sources. Thus, the mean of the ON and OFF-periods that are actually used is shifted to a

somewhat larger value. This value is apparently not sufficiently closer to B or T to cause a change
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Figure 4.32: Simulations D-1, D-2, and D-3 — Average Autocorrelation of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105, Discretized at {0.01, 0.1, 1.0}

Sim σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

D-1 0.2566 0.2495 0.00707 0.0116 0.00337 No
D-2 0.2566 0.2656 -0.00898 0.0045 0.00131 No
D-3 0.2566 0.4925 -0.23598 0.0096 0.00280 No

Table 4.23: Simulations D-1, D-2, and D-3 — Average Variance of 32 Trials
H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105, Discretized at {0.01, 0.1, 1.0}

in the results.

Interestingly, the variance from Simulation D-3 is much larger than the target (Table 4.23).

Again, we reason that because the smallest ON- and OFF-period for Simulation D-3 is 1.0, the

mean ON- and OFF-period of this head-truncated Pareto is likely to be ≈ 3, since 1
3 is the ratio of β

µ

for a Pareto with H = 0.75. The variance appears to agree with this statement, since the expected

variance of a simulation with µon = µoff = 3 is 0.4444, which is much closer to the average sample

variance of 0.4925.
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Figure 4.33: Simulation P-1 — Autocorrelation of 1 Trial
M = 32, µon = µoff = 1, B = 1024, T = 1024× 105, Poisson ON/OFF-sources

The similarity of these three simulations compared with the continuous time model used in

Simulation 1 might indicate the existence of a continuous time model and proof of self-similar that

parallels the discrete model presented in [Taqqu et al. 1997].

4.8 Poisson ON/OFF-Sources

Though not all of the simulations thus far have converged to the target values, the correlations of the

simulated packet arrival counts have all been strongly correlated over a wide range of time scales. We

now contrast these results with one final simulation. Simulation P-1 was run using ON/OFF-periods

with lengths taken from a Poisson process. We set M = 32 sources, µon = µoff = 1, B = 1024,

T = 1024× 105, and idealized ON/OFF-sources as in Simulation 1. The target Hurst parameter,

H , has no effect on this simulation. As evident from Figure 4.33, Simulation P-1 is completely

uncorrelated over an interval of length 1024.
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Simulation P-1 provides simulation evidence for that which has already been proven in [Taqqu

et al. 1997]: A heavy-tailed distribution for the ON/OFF-periods is the main ingredient necessary

for generating strongly correlated network traffic.

4.9 Application of Units

Using the results obtained thus far in Chapter 4, we conclude that a simulation with H = 0.75,

M = 8, B = 128, T = 128 × 104, µon = µoff = 1, and idealized sources would likely provide a

good compromise between an accurate approximation of self-similar network traffic and resource

requirements. Synthesizing traffic with those parameters on a ATM network, for example, could be

done by setting µon to 100 53-byte ATM cells, which could be sent at a rate of 5 Mbit/sec, keeping

the average utilization of a 155 Mbit/sec link at 13%. This causes the mean length of an ON-period

(and an OFF-period) to be ≈ 8.1 milliseconds. The traffic would then be aggregated at an interval

width of ≈ 1 second, and the simulation would be run for 2.9 hours.



Chapter 5

Conclusions

Though self-similarity or long-range dependence can never be verified for a finite sample, we

have shown that the infinite variance, aggregated, ON/OFF-source model presented in [Taqqu et al.

1997] can be used to synthesize network traffic that is statistically consistent with a sample of a

stochastic process that is self-similar.

Although an examination of every combination of simulation parameters is impossible, we have

shown evidence for the following statements:

• It is possible to produce traffic that is self-similar in nature with many fewer sources that
used in previous studies — “good” results were obtained with as few as 8 sources.

• Simulations with strictly alternating sources typically produce results that are more strongly
correlated than simulations with idealized ON/OFF-sources, at least for a target H of 0.75.

• The number of data-points, N = T/B, is a more important factor than the total simulation
time, T , in determining the accuracy of the approximation.

• Reducing the aggregation interval, B, causes the autocorrelation to increase, with the results
diverging from the target for values of B < 128× µon. (All simulations that investigated B
were run with µoff = µon.)

• The correlation of the resulting traffic is exaggerated for values of H ≤ 0.65 and underesti-
mated for values of h ≥ 0.85.

• Little difference is observed whether or not artificial discretization is performed.

We have shown that for every combination of H , M , µon, µoff , B, and T investigated, the

correlations of the simulated packet arrival counts are strongly correlated over a wide range of

time scales — in stark contrast to a simulation run with a finite variance ON/OFF-model. We

have provided insight into the range of values for simulation parameters that produce traffic that is

approximately self-similar in nature, and have demonstrated the effects of limited modifications to

these parameters. This would allow other researchers to more easily incorporate self-similar traffic

models into their network simulations. Finally, we make the claim that the generation of network
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traffic that is approximately self-similar or long-range dependent in nature is not only theoretically

possible, but feasible with a small number of sources, greatly increasing the ease with which this

method can be used to synthesize traffic on a small network of machines.



Chapter 6

Future Work

Future work in this area should include:

• A more thorough examination of simulation results produced with the many possible com-
binations of parameters

• Synthesis and statistical analysis of traffic generated on a real network using only a few
sources

• Determining the effects of self-similar traffic on the behavior of queuing, congestion and
other network design models



Appendix A

Complete Simulation Data

Label Description
Sim simulation number

H target Hurst parameter
µon mean length of ON-period
µoff mean length of OFF-period

M number of sources
B length of aggregation interval
T length of total simulation

Strict (yes) strictly alternating or (no) idealized sources
Discr discretization value

Table A.1: Key to Simulation Parameter Labels

Sim H µon µoff M B T Strict Discr
1 0.75 1 1 32 1024 1024× 105 No n/a

ST-1 0.75 1 1 32 1024 1024× 104 No n/a
ST-2 0.75 1 1 32 1024 1024× 103 No n/a
ST-3 0.75 1 1 32 1024 1024× 106 No n/a
NS-1 0.75 1 1 8 1024 1024× 105 No n/a
NS-2 0.75 1 1 4 1024 1024× 105 No n/a
NS-3 0.75 1 1 2 1024 1024× 105 No n/a
NS-4 0.75 1 1 1 1024 1024× 105 No n/a
NS-5 0.75 1 1 8 1024 1024× 104 No n/a
NS-6 0.75 1 1 4 1024 1024× 104 No n/a
NS-7 0.75 1 1 2 1024 1024× 104 No n/a
NS-8 0.75 1 1 1 1024 1024× 104 No n/a
NS-9 0.75 1 1 64 1024 1024× 104 No n/a

NS-10 0.75 1 1 128 1024 1024× 104 No n/a
AT-1 0.75 1 1 32 512 1024× 105 No n/a
AT-2 0.75 1 1 32 128 1024× 105 No n/a
AT-3 0.75 1 1 32 64 1024× 105 No n/a
AT-4 0.75 1 1 32 32 1024× 105 No n/a
AT-5 0.75 1 1 32 16 1024× 105 No n/a

Table A.2: Simulation Parameters (Continues...)
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Sim H µon µoff M B T Strict Discr
AT-6 0.75 1 1 32 4 1024× 105 No n/a
AT-7 0.75 1 1 32 1 1024× 105 No n/a
AT-8 0.75 1 1 32 128 1024× 104 No n/a
AT-9 0.75 1 1 32 128 1024× 103 No n/a
H-1 0.80 1 1 32 1024 1024× 105 No n/a
H-2 0.85 1 1 32 1024 1024× 105 No n/a
H-3 0.90 1 1 32 1024 1024× 105 No n/a
H-4 0.70 1 1 32 1024 1024× 105 No n/a
H-5 0.65 1 1 32 1024 1024× 105 No n/a
H-6 0.60 1 1 32 1024 1024× 105 No n/a

MO-1 0.75 1 127 32 1024 1024× 105 No n/a
MO-2 0.75 1 63 16 1024 1024× 105 No n/a
MO-3 0.75 1 31 8 1024 1024× 105 No n/a
MO-4 0.75 1 15 4 1024 1024× 105 No n/a
MO-5 0.75 1 7 2 1024 1024× 105 No n/a
MO-6 0.75 1 3 1 1024 1024× 105 No n/a
MO-7 0.75 1 127 32 16384 16384× 105 No n/a
MO-8 0.75 1 63 16 16384 16384× 105 No n/a
MO-9 0.75 1 31 8 16384 16384× 105 No n/a

MO-10 0.75 1 15 4 16384 16384× 105 No n/a
MO-11 0.75 1 7 2 16384 16384× 105 No n/a
STR-1 0.75 1 1 32 1024 1024× 105 Yes n/a
STR-2 0.75 1 1 8 1024 1024× 105 Yes n/a
STR-3 0.75 1 1 4 1024 1024× 105 Yes n/a
STR-4 0.75 1 1 2 1024 1024× 105 Yes n/a
STR-5 0.75 1 1 32 1024 1024× 104 Yes n/a
STR-6 0.75 1 1 8 1024 1024× 104 Yes n/a
STR-7 0.75 1 1 4 1024 1024× 104 Yes n/a
STR-8 0.75 1 1 2 1024 1024× 104 Yes n/a
STR-9 0.85 1 1 32 1024 1024× 105 Yes n/a

STR-10 0.90 1 1 32 1024 1024× 105 Yes n/a
STR-11 0.65 1 1 32 1024 1024× 105 Yes n/a
STR-12 0.75 1 1 32 1 1024× 105 Yes n/a

D-1 0.75 1 1 32 1024 1024× 105 Yes 0.01
D-2 0.75 1 1 32 1024 1024× 105 Yes 0.1
D-3 0.75 1 1 32 1024 1024× 105 Yes 1.0

Table A.2 Continued: Simulation Parameters
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Label Description
Sim simulation number
σ2

lim expected variance
σ̂2

norm mean sample variance
∆σ2 difference between σ̂2

norm and σ2
lim

σ̂σ2 standard deviation of the sample variances
±90% C.I. half-width of the two-sided 90% confidence interval

Target in C.I. is the target contained withing the 90% confidence interval?

Table A.3: Key to Variance Data Labels

Sim σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

1 0.2566 0.2527 0.00392 0.0050 0.00147 No
ST-1 0.2566 0.2492 0.00738 0.0104 0.00304 No
ST-2 0.2566 0.2438 0.01282 0.0309 0.00898 No
ST-3 0.2566 0.2538 0.00279 0.0025 0.00169 No
NS-1 0.2566 0.2534 0.00318 0.0100 0.00292 No
NS-2 0.2566 0.2513 0.00527 0.0135 0.00394 No
NS-3 0.2566 0.2496 0.00701 0.0101 0.00294 No
NS-4 0.2566 0.2635 -0.00693 0.0692 0.02012 Yes
NS-5 0.2566 0.2434 0.01322 0.0136 0.00394 No
NS-6 0.2566 0.2459 0.01072 0.0216 0.00628 No
NS-7 0.2566 0.2431 0.01350 0.0295 0.00857 No
NS-8 0.2566 0.2377 0.01891 0.0308 0.00895 No
NS-9 0.2566 0.2570 -0.00041 0.0193 0.00563 Yes

NS-10 0.2566 0.2515 0.00512 0.0095 0.00277 No
AT-1 0.2566 0.2561 0.00046 0.0225 0.00654 Yes
AT-2 0.2566 0.2488 0.00782 0.0018 0.00051 No
AT-3 0.2566 0.2456 0.01096 0.0013 0.00037 No
AT-4 0.2566 0.2418 0.01479 0.0015 0.00044 No
AT-5 0.2566 0.2357 0.02094 0.0004 0.00012 No
AT-6 0.2566 0.2152 0.04138 0.0002 0.00007 No
AT-7 0.2566 0.1764 0.08024 0.0001 0.00002 No
AT-8 0.2566 0.2484 0.00819 0.0055 0.00161 No
AT-9 0.2566 0.2454 0.01121 0.0116 0.00339 No
H-1 0.2254 0.2255 -0.00006 0.0172 0.00501 Yes
H-2 0.2082 0.2041 0.00412 0.0088 0.00257 No
H-3 0.2022 0.1887 0.01353 0.0127 0.00370 No
H-4 0.3098 0.3001 0.00966 0.0052 0.00150 No
H-5 0.4052 0.3753 0.02989 0.0058 0.00168 No
H-6 0.6050 0.4941 0.11083 0.0061 0.00177 No

Table A.4: Complete Variance Data (Continues...)
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Sim σ2
lim σ̂2

norm ∆σ2 σ̂σ2 ±90% C.I. Target in C.I.

MO-1 0.0086 0.0087 -0.00007 0.0014 0.00039 Yes
MO-2 0.0175 0.0199 -0.00238 0.0072 0.00209 No
MO-3 0.0355 0.0343 0.00123 0.0027 0.00080 No
MO-4 0.0709 0.0689 0.00207 0.0090 0.00262 Yes
MO-5 0.1354 0.1393 -0.00399 0.0446 0.01296 Yes
MO-6 0.2277 0.3009 -0.07325 0.3886 0.11300 Yes
MO-7 0.0086 0.0093 -0.00069 0.0028 0.00080 Yes
MO-8 0.0175 0.0159 0.00155 0.0022 0.00064 No
MO-9 0.0355 0.0354 0.00008 0.0054 0.00156 Yes

MO-10 0.0709 0.0637 0.00723 0.0057 0.00166 No
MO-11 0.1354 0.1366 -0.00128 0.0312 0.00908 Yes
STR-1 0.2566 0.2563 0.00031 0.0456 0.01326 Yes
STR-2 0.2566 0.2445 0.01209 0.0095 0.00275 No
STR-3 0.2566 0.2440 0.01260 0.0186 0.00542 No
STR-4 0.2566 0.2420 0.01457 0.0123 0.00358 No
STR-5 0.2566 0.2425 0.01410 0.0120 0.00349 No
STR-6 0.2566 0.2488 0.00777 0.0299 0.00870 Yes
STR-7 0.2566 0.2467 0.00995 0.0776 0.02256 Yes
STR-8 0.2566 0.2392 0.01738 0.0277 0.00805 No
STR-9 0.2082 0.2017 0.00645 0.0098 0.00284 No

STR-10 0.2022 0.1855 0.01669 0.0136 0.00396 No
STR-11 0.4052 0.3442 0.06099 0.0061 0.00179 No
STR-12 0.2566 0.1214 0.13516 0.0002 0.00007 No

D-1 0.2566 0.2495 0.00707 0.0116 0.00337 No
D-2 0.2566 0.2656 -0.00898 0.0045 0.00131 No
D-3 0.2566 0.4925 -0.23589 0.0096 0.00280 No

Table A.4 Continued: Complete Variance Data



62

Label Description
Sim simulation number
Lag distance between elements for which the correlation is determined

µ̂r(k) mean sample autocorrelation
∆µ difference between µ̂r(k) and the expected value

σ̂r(k) standard deviation of the sample autocorrelation values for a given lag
±90% C.I. half-width of the two-sided 90% confidence interval

Target expected value
Target in C.I. is the target contained withing the 90% confidence interval?

Table A.5: Key to Autocorrelation Data Labels

Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

1 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4149 -0.00069 0.0125 0.00364 0.4142 Yes
2 0.2668 0.00288 0.0156 0.00455 0.2696 Yes
4 0.1841 0.00412 0.0171 0.00499 0.1882 Yes
8 0.1284 0.00427 0.0176 0.00511 0.1327 Yes

16 0.0890 0.00480 0.0186 0.00542 0.0938 Yes
32 0.0614 0.00489 0.0179 0.00520 0.0663 Yes
64 0.0431 0.00378 0.0188 0.00548 0.0469 Yes

128 0.0304 0.00277 0.0195 0.00568 0.0331 Yes
256 0.0195 0.00396 0.0176 0.00513 0.0234 Yes
512 0.0111 0.00546 0.0175 0.00510 0.0166 No

ST-1 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4060 0.008173 0.0248 0.007204 0.4142 No
2 0.2553 0.014318 0.0269 0.007828 0.2696 No
4 0.1712 0.017025 0.0351 0.010200 0.1882 No
8 0.1060 0.026719 0.0355 0.010319 0.1327 No

16 0.0725 0.021254 0.0355 0.010320 0.0938 No
32 0.0424 0.023892 0.0302 0.008772 0.0663 No
64 0.0210 0.025835 0.0292 0.008483 0.0469 No

128 0.0129 0.020291 0.0244 0.007098 0.0331 No
256 0.0024 0.020989 0.0211 0.006144 0.0234 No
512 0.0028 0.013723 0.0159 0.004621 0.0166 No

ST-2 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 103

1 0.3826 0.031644 0.0668 0.019439 0.4142 No
2 0.2186 0.051057 0.0778 0.022615 0.2696 No
4 0.1405 0.047796 0.0832 0.024208 0.1882 No
8 0.0851 0.047612 0.0839 0.024392 0.1327 No

16 0.0537 0.040033 0.0933 0.027126 0.0938 No
32 0.0331 0.033182 0.0874 0.025413 0.0663 No
64 0.0095 0.037400 0.0810 0.023558 0.0469 No

128 0.0147 0.018430 0.0819 0.023807 0.0331 Yes
256 0.0148 0.008640 0.0744 0.021635 0.0234 Yes

Table A.6: Complete Autocorrelation Data (Continues...)
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Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

ST-3 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 106

1 0.4180 -0.00375 0.0074 0.00548 0.4142 Yes
2 0.2717 -0.00202 0.0086 0.00635 0.2696 Yes
4 0.1893 -0.00109 0.0092 0.00677 0.1882 Yes
8 0.1343 -0.00161 0.0096 0.00703 0.1327 Yes

16 0.0951 -0.00135 0.0096 0.00710 0.0938 Yes
32 0.0675 -0.00124 0.0107 0.00785 0.0663 Yes
64 0.0477 -0.00085 0.0099 0.00726 0.0469 Yes

128 0.0335 -0.00031 0.0105 0.00769 0.0331 Yes
256 0.0228 0.00065 0.0093 0.00688 0.0234 Yes
512 0.0149 0.00166 0.0088 0.00650 0.0166 Yes

NS-1 H = 0.75, M = 8, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4162 -0.00194 0.0229 0.00666 0.4142 Yes
2 0.2696 0.00001 0.0282 0.00821 0.2696 Yes
4 0.1867 0.00156 0.0299 0.00870 0.1882 Yes
8 0.1305 0.00217 0.0300 0.00872 0.1327 Yes

16 0.0907 0.00304 0.0305 0.00886 0.0938 Yes
32 0.0614 0.00485 0.0303 0.00882 0.0663 Yes
64 0.0431 0.00373 0.0304 0.00885 0.0469 Yes

128 0.0288 0.00439 0.0290 0.00843 0.0331 Yes
256 0.0194 0.00401 0.0278 0.00809 0.0234 Yes
512 0.0135 0.00308 0.0236 0.00687 0.0166 Yes

NS-2 H = 0.75, M = 4, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4093 0.00495 0.0284 0.00825 0.4142 Yes
2 0.2604 0.00928 0.0354 0.01030 0.2696 Yes
4 0.1745 0.01378 0.0386 0.01123 0.1882 No
8 0.1186 0.01408 0.0399 0.01160 0.1327 No

16 0.0784 0.01539 0.0420 0.01221 0.0938 No
32 0.0497 0.01664 0.0431 0.01252 0.0663 No
64 0.0309 0.01594 0.0419 0.01217 0.0469 No

128 0.0203 0.01289 0.0395 0.01149 0.0331 No
256 0.0130 0.01040 0.0381 0.01108 0.0234 Yes
512 0.0087 0.00783 0.0334 0.00972 0.0166 Yes

NS-3 H = 0.75, M = 2, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4068 0.00741 0.0238 0.00693 0.4142 No
2 0.2576 0.01201 0.0291 0.00847 0.2696 No
4 0.1740 0.01429 0.0318 0.00924 0.1882 No
8 0.1178 0.01493 0.0328 0.00953 0.1327 No

16 0.0773 0.01648 0.0327 0.00951 0.0938 No
32 0.0478 0.01849 0.0285 0.00828 0.0663 No
64 0.0285 0.01839 0.0247 0.00719 0.0469 No

128 0.0137 0.01941 0.0189 0.00550 0.0331 No
256 0.0039 0.01949 0.0158 0.00460 0.0234 No
512 0.0018 0.01476 0.0080 0.00232 0.0166 No

Table A.6 Continued: Complete Autocorrelation Data
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Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

NS-4 H = 0.75, M = 1, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4211 -0.00690 0.0780 0.02268 0.4142 Yes
2 0.2749 -0.00525 0.0984 0.02861 0.2696 Yes
4 0.1935 -0.00523 0.1092 0.03174 0.1882 Yes
8 0.1382 -0.00545 0.1154 0.03357 0.1327 Yes

16 0.0984 -0.00460 0.1187 0.03451 0.0938 Yes
32 0.0708 -0.00448 0.1172 0.03409 0.0663 Yes
64 0.0496 -0.00269 0.1145 0.03329 0.0469 Yes

128 0.0346 -0.00148 0.1110 0.03228 0.0331 Yes
256 0.0259 -0.00246 0.1070 0.03113 0.0234 Yes
512 0.0203 -0.00376 0.0985 0.02864 0.0166 Yes

NS-5 H = 0.75, M = 8, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.3898 0.024450 0.0333 0.009697 0.4142 No
2 0.2365 0.033113 0.0395 0.011485 0.2696 No
4 0.1519 0.036315 0.0417 0.012125 0.1882 No
8 0.0918 0.040898 0.0411 0.011953 0.1327 No

16 0.0502 0.043580 0.0426 0.012382 0.0938 No
32 0.0305 0.035782 0.0359 0.010429 0.0663 No
64 0.0175 0.029336 0.0307 0.008936 0.0469 No

128 0.0055 0.027639 0.0243 0.007071 0.0331 No
256 0.0045 0.018978 0.0137 0.003975 0.0234 No
512 -0.0027 0.019267 0.0136 0.003944 0.0166 No

NS-6 H = 0.75, M = 4, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.3931 0.021141 0.0484 0.014084 0.4142 No
2 0.2443 0.025344 0.0568 0.016527 0.2696 No
4 0.1602 0.028015 0.0645 0.018747 0.1882 No
8 0.1055 0.027187 0.0645 0.018768 0.1327 No

16 0.0676 0.026222 0.0598 0.017391 0.0938 No
32 0.0426 0.023677 0.0517 0.015031 0.0663 No
64 0.0216 0.025273 0.0398 0.011562 0.0469 No

128 0.0070 0.026164 0.0158 0.004594 0.0331 No
256 -0.0032 0.026600 0.0116 0.003367 0.0234 No
512 0.0015 0.015118 0.0171 0.004977 0.0166 No

NS-7 H = 0.75, M = 2, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.3751 0.039121 0.0563 0.016359 0.4142 No
2 0.2205 0.049115 0.0683 0.019848 0.2696 No
4 0.1285 0.059771 0.0695 0.020204 0.1882 No
8 0.0726 0.060146 0.0685 0.019909 0.1327 No

16 0.0374 0.056419 0.0618 0.017962 0.0938 No
32 0.0130 0.053307 0.0571 0.016598 0.0663 No
64 0.0083 0.038580 0.0483 0.014035 0.0469 No

128 0.0043 0.028866 0.0347 0.010080 0.0331 No
256 0.0019 0.021562 0.0139 0.004055 0.0234 No
512 0.0024 0.014140 0.0134 0.003896 0.0166 No

Table A.6 Continued: Complete Autocorrelation Data
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Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

NS-8 H = 0.75, M = 1, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.3653 0.048876 0.0689 0.020029 0.4142 No
2 0.2052 0.064457 0.0820 0.023842 0.2696 No
4 0.1235 0.064789 0.0800 0.023265 0.1882 No
8 0.0728 0.059902 0.0750 0.021800 0.1327 No

16 0.0357 0.058052 0.0604 0.017573 0.0938 No
32 0.0155 0.050838 0.0412 0.011977 0.0663 No
64 0.0075 0.039368 0.0237 0.006892 0.0469 No

128 0.0019 0.031250 0.0129 0.003751 0.0331 No
256 0.0026 0.020877 0.0115 0.003346 0.0234 No
512 0.0022 0.014354 0.0122 0.003556 0.0166 No

NS-9 H = 0.75, M = 64, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4225 -0.008284 0.0396 0.011510 0.4142 Yes
2 0.2790 -0.009342 0.0489 0.014222 0.2696 Yes
4 0.1942 -0.005947 0.0557 0.016199 0.1882 Yes
8 0.1396 -0.006897 0.0601 0.017479 0.1327 Yes

16 0.1018 -0.007989 0.0645 0.018763 0.0938 Yes
32 0.0734 -0.007099 0.0622 0.018092 0.0663 Yes
64 0.0526 -0.005709 0.0631 0.018355 0.0469 Yes

128 0.0367 -0.003586 0.0601 0.017471 0.0331 Yes
256 0.0243 -0.000847 0.0561 0.016308 0.0234 Yes
512 0.0235 -0.006918 0.0550 0.016006 0.0166 Yes

NS-10 H = 0.75, M = 128, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4105 0.003685 0.0214 0.006232 0.4142 Yes
2 0.2643 0.005355 0.0240 0.006976 0.2696 Yes
4 0.1807 0.007589 0.0216 0.006283 0.1882 No
8 0.1275 0.005217 0.0252 0.007315 0.1327 Yes

16 0.0909 0.002832 0.0283 0.008238 0.0938 Yes
32 0.0605 0.005772 0.0297 0.008651 0.0663 Yes
64 0.0423 0.004529 0.0277 0.008068 0.0469 Yes

128 0.0291 0.004011 0.0256 0.007457 0.0331 Yes
256 0.0178 0.005603 0.0246 0.007162 0.0234 Yes
512 0.0127 0.003889 0.0230 0.006684 0.0166 Yes

AT-1 H = 0.75, M = 32, µon = µoff = 1, B = 512, T = 1024× 105

1 0.4249 -0.010671 0.0367 0.010665 0.4142 No
2 0.2795 -0.009879 0.0460 0.013383 0.2696 Yes
4 0.1975 -0.009252 0.0518 0.015058 0.1882 Yes
8 0.1409 -0.008231 0.0551 0.016014 0.1327 Yes

16 0.1016 -0.007859 0.0577 0.016777 0.0938 Yes
32 0.0752 -0.008901 0.0595 0.017291 0.0663 Yes
64 0.0554 -0.008555 0.0602 0.017513 0.0469 Yes

128 0.0414 -0.008300 0.0608 0.017689 0.0331 Yes
256 0.0308 -0.007375 0.0616 0.017918 0.0234 Yes
512 0.0234 -0.006876 0.0617 0.017928 0.0166 Yes

Table A.6 Continued: Complete Autocorrelation Data



66

Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

AT-2 H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 105

1 0.4251 -0.010896 0.0047 0.001362 0.4142 No
2 0.2758 -0.006172 0.0058 0.001694 0.2696 No
4 0.1922 -0.003959 0.0064 0.001873 0.1882 No
8 0.1346 -0.001853 0.0065 0.001898 0.1327 Yes

16 0.0944 -0.000657 0.0068 0.001981 0.0938 Yes
32 0.0660 0.000257 0.0075 0.002184 0.0663 Yes
64 0.0463 0.000538 0.0073 0.002133 0.0469 Yes

128 0.0318 0.001373 0.0070 0.002035 0.0331 Yes
256 0.0221 0.001296 0.0071 0.002057 0.0234 Yes
512 0.0157 0.000878 0.0074 0.002148 0.0166 Yes

AT-3 H = 0.75, M = 32, µon = µoff = 1, B = 64, T = 1024× 105

1 0.4304 -0.016191 0.0034 0.000981 0.4142 No
2 0.2793 -0.009618 0.0041 0.001196 0.2696 No
4 0.1944 -0.006162 0.0047 0.001375 0.1882 No
8 0.1361 -0.003388 0.0048 0.001395 0.1327 No

16 0.0954 -0.001654 0.0050 0.001455 0.0938 No
32 0.0667 -0.000377 0.0051 0.001477 0.0663 No
64 0.0464 0.000513 0.0053 0.001549 0.0469 Yes

128 0.0319 0.001231 0.0050 0.001444 0.0331 Yes
256 0.0225 0.000974 0.0052 0.001507 0.0234 Yes
512 0.0151 0.001521 0.0046 0.001330 0.0166 No

AT-4 H = 0.75, M = 32, µon = µoff = 1, B = 32, T = 1024× 105

1 0.4394 -0.025214 0.0043 0.001237 0.4142 No
2 0.2862 -0.016534 0.0054 0.001582 0.2696 No
4 0.1997 -0.011417 0.0060 0.001753 0.1882 No
8 0.1409 -0.008148 0.0063 0.001833 0.1327 No

16 0.0996 -0.005852 0.0067 0.001954 0.0938 No
32 0.0707 -0.004359 0.0069 0.001994 0.0663 No
64 0.0500 -0.003155 0.0068 0.001970 0.0469 No

128 0.0355 -0.002317 0.0071 0.002078 0.0331 No
256 0.0248 -0.001353 0.0073 0.002131 0.0234 Yes
512 0.0180 -0.001401 0.0075 0.002174 0.0166 Yes

AT-5 H = 0.75, M = 32, µon = µoff = 1, B = 16, T = 1024× 105

1 0.4502 -0.035972 0.0012 0.000344 0.4142 No
2 0.2928 -0.023189 0.0015 0.000444 0.2696 No
4 0.2042 -0.015905 0.0016 0.000468 0.1882 No
8 0.1437 -0.010946 0.0016 0.000465 0.1327 No

16 0.1013 -0.007495 0.0018 0.000520 0.0938 No
32 0.0712 -0.004870 0.0019 0.000548 0.0663 No
64 0.0499 -0.003065 0.0018 0.000526 0.0469 No

128 0.0350 -0.001854 0.0017 0.000505 0.0331 No
256 0.0245 -0.001028 0.0019 0.000550 0.0234 No
512 0.0169 -0.000322 0.0017 0.000487 0.0166 Yes
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Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

AT-6 H = 0.75, M = 32, µon = µoff = 1, B = 4, T = 1024× 105

1 0.4924 -0.078170 0.0008 0.000227 0.4142 No
2 0.3209 -0.051238 0.0010 0.000299 0.2696 No
4 0.2238 -0.035559 0.0012 0.000354 0.1882 No
8 0.1575 -0.024830 0.0014 0.000395 0.1327 No

16 0.1112 -0.017383 0.0014 0.000418 0.0938 No
32 0.0784 -0.012112 0.0014 0.000401 0.0663 No
64 0.0551 -0.008267 0.0014 0.000396 0.0469 No

128 0.0388 -0.005659 0.0014 0.000400 0.0331 No
256 0.0273 -0.003858 0.0015 0.000426 0.0234 No
512 0.0190 -0.002420 0.0015 0.000432 0.0166 No

AT-7 H = 0.75, M = 32, µon = µoff = 1, B = 1, T = 1024× 105

1 0.5940 -0.179768 0.0005 0.000137 0.4142 No
2 0.3924 -0.122752 0.0007 0.000200 0.2696 No
4 0.2740 -0.085725 0.0008 0.000239 0.1882 No
8 0.1932 -0.060471 0.0009 0.000265 0.1327 No

16 0.1365 -0.042749 0.0010 0.000289 0.0938 No
32 0.0966 -0.030266 0.0010 0.000304 0.0663 No
64 0.0682 -0.021374 0.0010 0.000302 0.0469 No

128 0.0483 -0.015155 0.0011 0.000309 0.0331 No
256 0.0342 -0.010748 0.0011 0.000330 0.0234 No
512 0.0032 -0.007585 0.0011 0.000323 0.0166 No

AT-8 H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 104

1 0.4239 -0.009640 0.0127 0.003706 0.4142 No
2 0.2748 -0.005127 0.0154 0.004482 0.2696 No
4 0.1913 -0.003050 0.0166 0.004820 0.1882 Yes
8 0.1323 0.000364 0.0192 0.005573 0.1327 Yes

16 0.0913 0.002428 0.0201 0.005858 0.0938 Yes
32 0.0637 0.002640 0.0200 0.005828 0.0663 Yes
64 0.0442 0.002644 0.0199 0.005783 0.0469 Yes

128 0.0285 0.004668 0.0194 0.005652 0.0331 Yes
256 0.0175 0.005917 0.0192 0.005573 0.0234 No
512 0.0106 0.005950 0.0175 0.005082 0.0166 No

AT-9 H = 0.75, M = 32, µon = µoff = 1, B = 128, T = 1024× 103

1 0.4166 -0.002371 0.0277 0.008056 0.4142 Yes
2 0.2651 0.004527 0.0351 0.010198 0.2696 Yes
4 0.1823 0.005992 0.0432 0.012571 0.1882 Yes
8 0.1257 0.006973 0.0406 0.011800 0.1327 Yes

16 0.0819 0.011914 0.0445 0.012934 0.0938 Yes
32 0.0538 -0.053845 0.0449 0.014495 0.0663 No
64 0.0396 -0.039623 0.0343 0.011055 0.0469 No

128 0.0233 -0.023292 0.0298 0.009607 0.0331 No
256 0.0113 -0.011321 0.0313 0.010107 0.0234 No
512 0.0075 -0.007501 0.0270 0.008715 0.0166 Yes
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H-1 H = 0.80, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.5173 -0.00162 0.0312 0.00908 0.5157 Yes
2 0.3694 -0.00110 0.0407 0.01183 0.3683 Yes
4 0.2772 -0.00069 0.0467 0.01359 0.2765 Yes
8 0.2095 -0.00046 0.0516 0.01500 0.2091 Yes

16 0.1586 -0.00020 0.0547 0.01592 0.1584 Yes
32 0.1208 -0.00080 0.0574 0.01670 0.1200 Yes
64 0.0914 -0.00045 0.0598 0.01739 0.0909 Yes

128 0.0686 0.00030 0.0595 0.01730 0.0689 Yes
256 0.0504 0.00186 0.0615 0.01789 0.0522 Yes
512 0.0381 0.00149 0.0609 0.01771 0.0396 Yes

H-2 H = 0.85, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.6163 0.008160 0.0180 0.005236 0.6245 No
2 0.4758 0.011710 0.0246 0.007152 0.4875 No
4 0.3795 0.013887 0.0289 0.008396 0.3934 No
8 0.3023 0.016765 0.0318 0.009237 0.3190 No

16 0.2404 0.018666 0.0343 0.009960 0.2590 No
32 0.1895 0.020862 0.0363 0.010567 0.2104 No
64 0.1501 0.020732 0.0381 0.011071 0.1709 No

128 0.1176 0.021166 0.0393 0.011424 0.1388 No
256 0.0912 0.021538 0.0428 0.012441 0.1127 No
512 0.0723 0.019218 0.0417 0.012123 0.0916 No

H-3 H = 0.90, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.6019 0.139225 0.2636 0.076662 0.7411 No
2 0.4980 0.132103 0.2189 0.063667 0.6301 No
4 0.4206 0.125757 0.1860 0.054097 0.5464 No
8 0.3536 0.121523 0.1580 0.045953 0.4752 No

16 0.2947 0.118826 0.1339 0.038929 0.4136 No
32 0.2451 0.114902 0.1142 0.033207 0.3600 No
64 0.1989 0.114456 0.0966 0.028077 0.3134 No

128 0.1602 0.112670 0.0830 0.024130 0.2728 No
256 0.1246 0.112900 0.0741 0.021547 0.2375 No
512 0.0962 0.110604 0.0646 0.018777 0.2068 No

H-4 H = 0.70, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.3278 -0.008337 0.0120 0.003493 0.3195 No
2 0.1934 -0.004688 0.0145 0.004220 0.1888 No
4 0.1249 -0.002426 0.0148 0.004310 0.1225 Yes
8 0.0808 -0.000268 0.0146 0.004249 0.0805 Yes

16 0.0536 -0.000569 0.0139 0.004045 0.0531 Yes
32 0.0335 0.001504 0.0127 0.003697 0.0350 Yes
64 0.0202 0.002897 0.0123 0.003568 0.0231 Yes

128 0.0130 0.002185 0.0123 0.003575 0.0152 Yes
256 0.0081 0.001980 0.0109 0.003176 0.0101 Yes
512 0.0035 0.003130 0.0070 0.002024 0.0066 No
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H-5 H = 0.65, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.2486 -0.017461 0.0116 0.003370 0.2311 No
2 0.1314 -0.008086 0.0133 0.003878 0.1233 No
4 0.0785 -0.004149 0.0139 0.004048 0.0744 No
8 0.0464 -0.000856 0.0139 0.004047 0.0456 Yes

16 0.0276 0.000363 0.0125 0.003636 0.0280 Yes
32 0.0161 0.001143 0.0119 0.003449 0.0172 Yes
64 0.0090 0.001659 0.0115 0.003350 0.0106 Yes

128 0.0059 0.000647 0.0099 0.002891 0.0065 Yes
256 0.0034 0.000650 0.0081 0.002352 0.0040 Yes
512 0.0022 0.000302 0.0052 0.001519 0.0025 Yes

H-6 H = 0.60, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.1581 -0.009439 0.0612 0.017800 0.1487 Yes
2 0.0756 -0.004380 0.0304 0.008827 0.0712 Yes
4 0.0416 -0.001682 0.0181 0.005272 0.0399 Yes
8 0.0245 -0.001725 0.0124 0.003610 0.0228 Yes

16 0.0143 -0.001217 0.0085 0.002483 0.0131 Yes
32 0.0084 -0.000938 0.0068 0.001988 0.0075 Yes
64 0.0038 0.000500 0.0051 0.001496 0.0043 Yes

128 0.0022 0.000262 0.0048 0.001406 0.0025 Yes
256 0.0011 0.000290 0.0030 0.000868 0.0014 Yes
512 -0.0004 0.001220 0.0031 0.000910 0.0008 No

MO-1 H = 0.75, M = 32, µon = 1, µoff = 127, B = 1024, T = 1024× 105

1 0.4073 0.006882 0.0964 0.028045 0.4142 Yes
2 0.2627 0.006923 0.1150 0.033448 0.2696 Yes
4 0.1829 0.005372 0.1194 0.034709 0.1882 Yes
8 0.1274 0.005355 0.1194 0.034718 0.1327 Yes

16 0.0896 0.004195 0.1131 0.032884 0.0938 Yes
32 0.0646 0.001734 0.1035 0.030090 0.0663 Yes
64 0.0462 0.000627 0.0895 0.026020 0.0469 Yes

128 0.0289 0.004205 0.0699 0.020329 0.0331 Yes
256 0.0149 0.008529 0.0431 0.012531 0.0234 Yes
512 0.0029 0.013640 0.0135 0.003932 0.0166 No

MO-2 H = 0.75, M = 16, µon = 1, µoff = 63, B = 1024, T = 1024× 105

1 0.4410 -0.026778 0.1115 0.032412 0.4142 Yes
2 0.3031 -0.033452 0.1384 0.040252 0.2696 Yes
4 0.2239 -0.035641 0.1534 0.044617 0.1882 Yes
8 0.1700 -0.037291 0.1636 0.047585 0.1327 Yes

16 0.1338 -0.039984 0.1689 0.049102 0.0938 Yes
32 0.1053 -0.039047 0.1719 0.049988 0.0663 Yes
64 0.0853 -0.038446 0.1678 0.048794 0.0469 Yes

128 0.0663 -0.033201 0.1598 0.046476 0.0331 Yes
256 0.0513 -0.027851 0.1392 0.040469 0.0234 Yes
512 0.0321 -0.015555 0.1059 0.030807 0.0166 Yes
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MO-3 H = 0.75, M = 8, µon = 1, µoff = 31, B = 1024, T = 1024× 105

1 0.3884 0.025833 0.0446 0.012979 0.4142 No
2 0.2372 0.032404 0.0542 0.015752 0.2696 No
4 0.1552 0.033071 0.0595 0.017313 0.1882 No
8 0.0981 0.034596 0.0619 0.018013 0.1327 No

16 0.0621 0.031715 0.0568 0.016522 0.0938 No
32 0.0359 0.030389 0.0450 0.013086 0.0663 No
64 0.0179 0.028943 0.0283 0.008234 0.0469 No

128 0.0068 0.026366 0.0142 0.004116 0.0331 No
256 0.0024 0.021003 0.0043 0.001261 0.0234 No
512 0.0006 0.015953 0.0040 0.001162 0.0166 No

MO-4 H = 0.75, M = 4, µon = 1, µoff = 15, B = 1024, T = 1024× 105

1 0.3928 0.021383 0.0569 0.016539 0.4142 No
2 0.2418 0.027875 0.0690 0.020052 0.2696 No
4 0.1583 0.029903 0.0736 0.021401 0.1882 No
8 0.1064 0.026318 0.0740 0.021505 0.1327 No

16 0.0715 0.022231 0.0704 0.020477 0.0938 No
32 0.0425 0.023773 0.0648 0.018858 0.0663 No
64 0.0252 0.021705 0.0523 0.015220 0.0469 No

128 0.0144 0.018722 0.0370 0.010756 0.0331 No
256 0.0046 0.018867 0.0116 0.003366 0.0234 No
512 0.0031 0.013511 0.0078 0.002273 0.0166 No

MO-5 H = 0.75, M = 2, µon = 1, µoff = 7, B = 1024, T = 1024× 105

1 0.4152 -0.000974 0.0804 0.023387 0.4142 Yes
2 0.2697 -0.000050 0.0985 0.028639 0.2696 Yes
4 0.1865 0.001792 0.1093 0.031798 0.1882 Yes
8 0.1265 0.006188 0.1150 0.033454 0.1327 Yes

16 0.0854 0.008352 0.1172 0.034075 0.0938 Yes
32 0.0594 0.006860 0.1178 0.034242 0.0663 Yes
64 0.0412 0.005683 0.1139 0.033134 0.0469 Yes

128 0.0308 0.002385 0.1062 0.030889 0.0331 Yes
256 0.0195 0.003908 0.0962 0.027965 0.0234 Yes
512 0.0153 0.001224 0.0821 0.023864 0.0166 Yes

MO-6 H = 0.75, M = 1, µon = 1, µoff = 3, B = 1024, T = 1024× 105

1 0.4268 -0.012548 0.1273 0.037005 0.4142 Yes
2 0.2815 -0.011817 0.1589 0.046196 0.2696 Yes
4 0.1985 -0.010302 0.1767 0.051370 0.1882 Yes
8 0.1438 -0.011123 0.1870 0.054390 0.1327 Yes

16 0.1078 -0.014069 0.1927 0.056027 0.0938 Yes
32 0.0840 -0.017725 0.1956 0.056868 0.0663 Yes
64 0.0682 -0.021335 0.1958 0.056943 0.0469 Yes

128 0.0545 -0.021370 0.1945 0.056553 0.0331 Yes
256 0.0483 -0.024884 0.1914 0.055650 0.0234 Yes
512 0.0438 -0.027220 0.1832 0.053283 0.0166 Yes
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MO-7 H = 0.75, M = 32, µon = 1, µoff = 127, B = 16, 384, T = 16, 384× 105

1 0.4191 -0.004885 0.1206 0.035064 0.4142 Yes
2 0.2765 -0.006863 0.1422 0.041356 0.2696 Yes
4 0.1927 -0.004482 0.1517 0.044109 0.1882 Yes
8 0.1374 -0.004687 0.1479 0.043015 0.1327 Yes

16 0.0992 -0.005417 0.1346 0.039155 0.0938 Yes
32 0.0661 0.000188 0.1094 0.031808 0.0663 Yes
64 0.0357 0.011155 0.0817 0.023771 0.0469 Yes

128 0.0102 0.022917 0.0401 0.011656 0.0331 No
256 0.0010 0.022449 0.0038 0.001112 0.0234 No
512 0.0015 0.015084 0.0033 0.000954 0.0166 No

MO-8 H = 0.75, M = 16, µon = 1, µoff = 63, B = 16, 384, T = 16, 384× 105

1 0.3516 0.062587 0.0691 0.020090 0.4142 No
2 0.1993 0.070323 0.0790 0.022978 0.2696 No
4 0.1176 0.070639 0.0808 0.023494 0.1882 No
8 0.0696 0.063087 0.0738 0.021475 0.1327 No

16 0.0371 0.056627 0.0586 0.017051 0.0938 No
32 0.0204 0.045912 0.0392 0.011390 0.0663 No
64 0.0081 0.038802 0.0160 0.004643 0.0469 No

128 0.0054 0.027721 0.0054 0.001569 0.0331 No
256 0.0035 0.019971 0.0040 0.001175 0.0234 No
512 0.0026 0.014019 0.0051 0.001491 0.0166 No

MO-9 H = 0.75, M = 8, µon = 1, µoff = 31, B = 16, 384, T = 16, 384× 105

1 0.4001 0.014159 0.0755 0.021955 0.4142 Yes
2 0.2481 0.021533 0.0916 0.026623 0.2696 Yes
4 0.1605 0.027703 0.0955 0.027783 0.1882 Yes
8 0.1061 0.026662 0.0926 0.026931 0.1327 Yes

16 0.0683 0.025436 0.0789 0.022950 0.0938 No
32 0.0369 0.029348 0.0578 0.016821 0.0663 No
64 0.0144 0.032490 0.0358 0.010423 0.0469 No

128 0.0067 0.026417 0.0111 0.003240 0.0331 No
256 0.0035 0.019926 0.0106 0.003069 0.0234 No
512 0.0024 0.014179 0.0096 0.002792 0.0166 No

MO-10 H = 0.75, M = 4, µon = 1, µoff = 15, B = 16, 384, T = 16, 384× 105

1 0.3524 0.061764 0.0456 0.013267 0.4142 No
2 0.1999 0.069767 0.0557 0.016188 0.2696 No
4 0.1172 0.071006 0.0559 0.016266 0.1882 No
8 0.0650 0.067663 0.0471 0.013690 0.1327 No

16 0.0356 0.058201 0.0356 0.010341 0.0938 No
32 0.0164 0.049870 0.0229 0.006660 0.0663 No
64 0.0078 0.039068 0.0084 0.002451 0.0469 No

128 0.0049 0.028251 0.0097 0.002818 0.0331 No
256 0.0026 0.020886 0.0072 0.002108 0.0234 No
512 0.0007 0.015874 0.0051 0.001494 0.0166 No
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MO-11 H = 0.75, M = 2, µon = 1, µoff = 7, B = 16, 384, T = 16, 384× 105

1 0.3970 0.017227 0.0946 0.027516 0.4142 Yes
2 0.2481 0.021501 0.1119 0.032539 0.2696 Yes
4 0.1672 0.021039 0.1145 0.033304 0.1882 Yes
8 0.1121 0.020574 0.1116 0.032467 0.1327 Yes

16 0.0746 0.019212 0.1038 0.030177 0.0938 Yes
32 0.0544 0.011893 0.0943 0.027431 0.0663 Yes
64 0.0335 0.013405 0.0780 0.022672 0.0469 Yes

128 0.0224 -0.022382 0.0700 0.027127 0.0331 Yes
256 0.0070 -0.006953 0.0169 0.006553 0.0234 No
512 0.0010 -0.001025 0.0050 0.001948 0.0166 Yes

STR-1 Strictly Alternating H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4256 -0.011398 0.0143 0.004165 0.4142 No
2 0.2752 -0.005594 0.0178 0.005185 0.2696 No
4 0.1893 -0.001094 0.0195 0.005664 0.1882 Yes
8 0.1314 0.001320 0.0212 0.006178 0.1327 Yes

16 0.0907 0.003029 0.0217 0.006314 0.0938 Yes
32 0.0610 0.005269 0.0235 0.006831 0.0663 Yes
64 0.0419 0.004984 0.0202 0.005863 0.0469 Yes

128 0.0282 0.004941 0.0198 0.005771 0.0331 Yes
256 0.0173 0.006173 0.0170 0.004940 0.0234 No
512 0.0100 0.006570 0.0136 0.003964 0.0166 No

STR-2 Strictly Alternating H = 0.75, M = 8, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4246 -0.010366 0.0220 0.006395 0.4142 No
2 0.2734 -0.003716 0.0268 0.007794 0.2696 Yes
4 0.1872 0.001028 0.0286 0.008324 0.1882 Yes
8 0.1275 0.005258 0.0282 0.008199 0.1327 Yes

16 0.0864 0.007369 0.0291 0.008455 0.0938 Yes
32 0.0581 0.008185 0.0280 0.008135 0.0663 No
64 0.0365 0.010346 0.0261 0.007581 0.0469 No

128 0.0212 0.011941 0.0242 0.007029 0.0331 No
256 0.0118 0.011596 0.0209 0.006085 0.0234 No
512 0.0063 0.010248 0.0161 0.004687 0.0166 No

STR-3 Strictly Alternating H = 0.75, M = 4, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4213 -0.007131 0.0378 0.010992 0.4142 Yes
2 0.2682 0.001469 0.0468 0.013597 0.2696 Yes
4 0.1831 0.005155 0.0519 0.015085 0.1882 Yes
8 0.1246 0.008100 0.0548 0.015940 0.1327 Yes

16 0.0839 0.009891 0.0563 0.016370 0.0938 Yes
32 0.0556 0.010724 0.0560 0.016277 0.0663 Yes
64 0.0368 0.010035 0.0513 0.014913 0.0469 Yes

128 0.0250 0.008176 0.0497 0.014449 0.0331 Yes
256 0.0165 0.006900 0.0453 0.013167 0.0234 Yes
512 0.0137 0.002871 0.0413 0.012007 0.0166 Yes
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STR-4 Strictly Alternating H = 0.75, M = 2, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.4184 -0.004178 0.0293 0.008526 0.4142 Yes
2 0.2654 0.004261 0.0363 0.010555 0.2696 Yes
4 0.1791 0.009149 0.0398 0.011565 0.1882 Yes
8 0.1220 0.010746 0.0426 0.012399 0.1327 Yes

16 0.0815 0.012230 0.0441 0.012820 0.0938 Yes
32 0.0512 0.015118 0.0415 0.012070 0.0663 No
64 0.0304 0.016500 0.0414 0.012033 0.0469 No

128 0.0191 0.014045 0.0371 0.010800 0.0331 No
256 0.0086 0.014857 0.0316 0.009203 0.0234 No
512 0.0053 0.011247 0.0232 0.006759 0.0166 No

STR-5 Strictly Alternating H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4189 -0.004718 0.0282 0.008207 0.4142 Yes
2 0.2675 0.002155 0.0352 0.010228 0.2696 Yes
4 0.1826 0.005628 0.0399 0.011590 0.1882 Yes
8 0.1234 0.009334 0.0415 0.012081 0.1327 Yes

16 0.0788 0.014973 0.0451 0.013109 0.0938 No
32 0.0512 0.015057 0.0415 0.012068 0.0663 No
64 0.0288 0.018085 0.0402 0.011676 0.0469 No

128 0.0203 0.012825 0.0320 0.009319 0.0331 No
256 0.0161 0.007363 0.0267 0.007751 0.0234 Yes
512 0.0032 0.013387 0.0216 0.006269 0.0166 No

STR-6 Strictly Alternating H = 0.75, M = 8, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4273 -0.013065 0.0591 0.017183 0.4142 Yes
2 0.2740 -0.004400 0.0732 0.021294 0.2696 Yes
4 0.1898 -0.001534 0.0761 0.022137 0.1882 Yes
8 0.1265 0.006244 0.0809 0.023528 0.1327 Yes

16 0.0852 0.008565 0.0802 0.023318 0.0938 Yes
32 0.0562 0.010122 0.0806 0.023450 0.0663 Yes
64 0.0376 0.009283 0.0726 0.021099 0.0469 Yes

128 0.0231 0.010093 0.0614 0.017862 0.0331 Yes
256 0.0045 0.018933 0.0505 0.014691 0.0234 No
512 0.0055 0.011101 0.0352 0.010242 0.0166 No

STR-7 Strictly Alternating H = 0.75, M = 4, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4058 0.008403 0.0878 0.025526 0.4142 Yes
2 0.2473 0.022335 0.1094 0.031804 0.2696 Yes
4 0.1615 0.026737 0.1200 0.034888 0.1882 Yes
8 0.1049 0.027794 0.1271 0.036953 0.1327 Yes

16 0.0724 0.021406 0.1287 0.037436 0.0938 Yes
32 0.0486 0.017694 0.1272 0.036993 0.0663 Yes
64 0.0304 0.016504 0.1243 0.036153 0.0469 Yes

128 0.0188 0.014360 0.1178 0.034262 0.0331 Yes
256 0.0164 0.007045 0.1112 0.032349 0.0234 Yes
512 0.0225 -0.005923 0.1006 0.029254 0.0166 Yes

Table A.6 Continued: Complete Autocorrelation Data
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Sim Lag µ̂r(k) ∆µ σ̂r(k) ±90% C.I. Target Target in C.I.

STR-8 Strictly Alternating H = 0.75, M = 2, µon = µoff = 1, B = 1024, T = 1024× 104

1 0.4085 0.005712 0.0569 0.016555 0.4142 Yes
2 0.2538 0.015804 0.0706 0.020527 0.2696 Yes
4 0.1635 0.024776 0.0723 0.021034 0.1882 No
8 0.1061 0.026610 0.0732 0.021283 0.1327 No

16 0.0588 0.034980 0.0646 0.018795 0.0938 No
32 0.0288 0.037452 0.0511 0.014857 0.0663 No
64 0.0097 0.037198 0.0269 0.007829 0.0469 No

128 -0.0015 0.034617 0.0121 0.003508 0.0331 No
256 -0.0004 0.023849 0.0184 0.005359 0.0234 No
512 -0.0035 0.020036 0.0124 0.003617 0.0166 No

STR-9 Strictly Alternating H = 0.85, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.6185 0.006037 0.0183 0.005315 0.6245 No
2 0.4766 0.010873 0.0246 0.007145 0.4875 No
4 0.3782 0.015200 0.0282 0.008211 0.3934 No
8 0.3012 0.017790 0.0319 0.009270 0.3190 No

16 0.2380 0.021026 0.0341 0.009905 0.2590 No
32 0.1858 0.024559 0.0370 0.010747 0.2104 No
64 0.1425 0.028416 0.0383 0.011138 0.1709 No

128 0.1083 0.030519 0.0394 0.011445 0.1388 No
256 0.0819 0.030832 0.0422 0.012268 0.1127 No
512 0.0637 0.027843 0.0428 0.012440 0.0916 No

STR-10 Strictly Alternating H = 0.90, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.7141 0.026971 0.0218 0.006348 0.7411 No
2 0.5902 0.039972 0.0315 0.009149 0.6301 No
4 0.4964 0.049948 0.0385 0.011201 0.5464 No
8 0.4171 0.058089 0.0442 0.012844 0.4752 No

16 0.3487 0.064903 0.0488 0.014189 0.4136 No
32 0.2871 0.072880 0.0537 0.015628 0.3600 No
64 0.2364 0.076968 0.0574 0.016699 0.3134 No

128 0.1906 0.082191 0.0611 0.017771 0.2728 No
256 0.1528 0.084668 0.0641 0.018653 0.2375 No
512 0.1203 0.086429 0.0653 0.018999 0.2068 No

STR-11 Strictly Alternating H = 0.65, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105

1 0.2693 -0.038188 0.0131 0.003822 0.2311 No
2 0.1428 -0.019466 0.0141 0.004101 0.1233 No
4 0.0845 -0.010124 0.0130 0.003772 0.0744 No
8 0.0492 -0.003652 0.0141 0.004091 0.0456 Yes

16 0.0298 -0.001777 0.0136 0.003954 0.0280 Yes
32 0.0166 0.000621 0.0143 0.004169 0.0172 Yes
64 0.0091 0.001554 0.0125 0.003638 0.0106 Yes

128 0.0048 0.001715 0.0103 0.002996 0.0065 Yes
256 0.0032 0.000820 0.0084 0.002448 0.0040 Yes
512 0.0008 0.001650 0.0051 0.001493 0.0025 No

Table A.6 Continued: Complete Autocorrelation Data
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STR-12 H = 0.75, M = 32, µon = µoff = 1, B = 1, T = 1024× 105

1 0.5972 -0.182997 0.0007 0.000201 0.4142 No
2 0.4723 -0.202604 0.0009 0.000266 0.2696 No
4 0.3589 -0.170625 0.0011 0.000320 0.1882 No
8 0.2652 -0.132440 0.0013 0.000375 0.1327 No

16 0.1923 -0.098505 0.0014 0.000421 0.0938 No
32 0.1378 -0.071492 0.0015 0.000446 0.0663 No
64 0.0981 -0.051227 0.0015 0.000445 0.0469 No

128 0.0695 -0.036396 0.0016 0.000466 0.0331 No
256 0.0492 -0.025777 0.0017 0.000481 0.0234 No
512 0.0348 -0.018193 0.0017 0.000495 0.0166 No

D-1 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105 Discr. at 0.01
1 0.4148 -0.000549 0.0172 0.005003 0.4142 Yes
2 0.2671 0.002533 0.0215 0.006243 0.2696 Yes
4 0.1840 0.004211 0.0234 0.006813 0.1882 Yes
8 0.1265 0.006178 0.0249 0.007246 0.1327 Yes

16 0.0877 0.006079 0.0254 0.007397 0.0938 Yes
32 0.0604 0.005860 0.0271 0.007874 0.0663 Yes
64 0.0396 0.007268 0.0273 0.007941 0.0469 Yes

128 0.0257 0.007418 0.0293 0.008514 0.0331 Yes
256 0.0157 0.007699 0.0269 0.007824 0.0234 Yes
512 0.0111 0.005493 0.0230 0.006693 0.0166 Yes

D-2 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105 Discr. at 0.1
1 0.4176 -0.003370 0.0100 0.002901 0.4142 No
2 0.2702 -0.000575 0.0135 0.003915 0.2696 Yes
4 0.1874 0.000810 0.0152 0.004423 0.1882 Yes
8 0.1309 0.001800 0.0152 0.004430 0.1327 Yes

16 0.0917 0.002037 0.0155 0.004496 0.0938 Yes
32 0.0632 0.003073 0.0141 0.004108 0.0663 Yes
64 0.0420 0.004839 0.0166 0.004835 0.0469 No

128 0.0284 0.004783 0.0168 0.004885 0.0331 Yes
256 0.0175 0.005923 0.0156 0.004534 0.0234 No
512 0.0110 0.005592 0.0144 0.004201 0.0166 No

D-3 H = 0.75, M = 32, µon = µoff = 1, B = 1024, T = 1024× 105 Discr. at 1.0
1 0.4254 -0.011149 0.0107 0.003114 0.4142 No
2 0.2748 -0.005137 0.0145 0.004205 0.2696 No
4 0.1915 -0.003290 0.0160 0.004661 0.1882 Yes
8 0.1325 0.000176 0.0174 0.005072 0.1327 Yes

16 0.0928 0.001005 0.0182 0.005280 0.0938 Yes
32 0.0648 0.001514 0.0174 0.005064 0.0663 Yes
64 0.0447 0.002205 0.0194 0.005640 0.0469 Yes

128 0.0297 0.003468 0.0176 0.005110 0.0331 Yes
256 0.0192 0.004232 0.0171 0.004965 0.0234 Yes
512 0.0146 0.001936 0.0142 0.004130 0.0166 Yes

Table A.6 Continued: Complete Autocorrelation Data



Appendix B

Source Code Listing

Source Listing B.1: Simulator Source

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// F i l e : sim . c
// Author : Ph i l i p M. Wells
// Desc r ip t i on :
// This program s imula te s the genera t i on o f s e l f−s im i l a r network t r a f f i c
// us ing high−var iance , ON/OFF sou r c e s . See
// Wells , P .M. , ‘ S imulat ion o f S e l f−S im i l a r Network T r a f f i c Using High
// Variance ON/OFF Sources , ’ M. S . Thes is , Clemson Univer s i ty , May 2002
// f o r more in fo rmat ion .
//
// Copyright 2002 Ph i l i p M. Wells
//
// This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify
// i t under the terms o f the GNU General Publ ic L i cense as pub l i shed by
// the Free Software Foundation ; e i t h e r v e r s i on 2 o f the L i cense , or
// ( at your opt ion ) any l a t e r v e r s i on .
//
// This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l ,
// but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Publ ic L i cense f o r more d e t a i l s .
//
// You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
// along with t h i s program ; i f not , wr i t e to the Free Software
// Foundation , Inc . , 5 9 Temple Place , Su i t e 3 3 0 , Boston , MA 02111−1307 USA
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

#inc l ude < s t d i o . h>

#inc l ude < s t d l i b . h>

#inc l ude <math . h>

#inc l ude < sys / ddi . h>

#inc l ude < sys / time . h>

#de f i n e ON 1
#de f i n e OFF 0

// Runtime parameters
i n t M; // number o f s ou r c e s
double B ; // number o f seconds to aggregate << t o t a l t im e
double H; // Hurst parameter
double mu on ; // mean ON time
double mu off ; // mean OFF time

// Ca lcu la t ed Pareto cons tant s
double a lpha on ; // Ca lcu la t ed from H & mean
double a lpha on neg inv ;
double beta on ;
double a l p h a o f f ;
double a l p h a o f f n e g i n v ;
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double b e t a o f f ;

i n l i n e double next on pare to ( ) {
// Using Pareto cumulat ive d i s t . o f :
// P(X <= x ) = 1 − ( beta /x )ˆ alpha
//
// to genera te pseudo random numbers from th i s d i s t .
// take uniform pseudo random numbers o f the range [ 0 , 1 )
// and map onto P(x ) us ing the i nv e r s e o f the cumulat ive
// d i s t r i b u t i o n func t i on :
// P{−1} = beta (1 − p ) ˆ (−1 / alpha )

re turn beta on ∗ pow ( ( 1 . 0 − drand48 ( ) ) , a lpha on neg inv ) ;
}

i n l i n e double n e x t o f f t im e ( ) {
// Return pareto with mean o f f
r e turn b e t a o f f ∗ pow ( ( 1 . 0 − drand48 ( ) ) , a l p h a o f f n e g i n v ) ;

}

// Ca lcu la t e s t a t i s t i c s o f e lements in array W
void s t a t s ( double ∗W, in t N)
{

i n t i , k ;
i n t auto max = 1024 ; // maximum lag
double temp ;

double expected mean , var iance , var normal ;
double norm factor ;
double ∗ r ; // a u t o c o r r e l a t i o n s array

expected mean = mu on / ( mu on + mu off ) ∗ M ∗ B;

// ca l c var iance and normal ized var iance
norm factor = 1 / ( pow(B , 2 ∗ H) ∗ M) ;
var iance = 0 ;
f o r ( i = 0 ; i < N; i ++) {

temp = (W[ i ] − expected mean ) ;
var iance += temp ∗ temp ;

}
var iance = var iance / ( double ) N;
var normal = var iance ∗ norm factor ;

f p r i n t f ( s t d e r r , ”% l f ” , var normal ) ;

// l im i t the lag i f the re are not enough data po int s
i f (N/2 < auto max )

auto max = N/2 ;
r = mal loc ( s i z e o f ( double ) ∗ auto max ) ;

// Ca lcu la t e auto c o r r e l a t i o n va lues
r [ 0 ] = 0 ;
f o r ( k = 1 ; k < auto max ; k++) {

f o r ( i = 0 ; i < N−k ; i ++) {
r [ k ] += (W[ i ] − expected mean ) ∗ (W[ i+k ] − expected mean ) ;

}
r [ k ] = r [ k ] / ( double ) (N − k ) ;
r [ k ] = r [ k ] / var iance ;

}

f o r ( i = 0 ; i < auto max ; i++)
p r i n t f (”% l f \n ” , r [ i ] ) ;
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}

i n t main ( i n t argc , char ∗ argv [ ] )
{

double T ; // t o t a l s imula t i on time
in t N; // number o f time s t ep s

#i f d e f DISCRETE
double d i s c r s i z e ;

#end i f

double ∗ cu r s ou r c e t ime s ;
uns igned char ∗ s o u r c e s t a t e ;
double ∗ pack a r r i v a l c oun t ; / / Aggregated packet a r r i v a l count array

double on t ime th i s b l o ck ;
double cur s im t ime ;
double next s im t ime ;
double new on time ;

s t ru c t t imeval cur t imeo fday ;

i n t i , proc , cur b lock ;

// Extract args
#i f d e f DISCRETE

i f ( argc == 8) {
H = ato f ( argv [ 1 ] ) ;
mu on = ato f ( argv [ 2 ] ) ;
mu off = a to f ( argv [ 3 ] ) ;
M = ato i ( argv [ 4 ] ) ;
B = ato f ( argv [ 5 ] ) ;
T = ato f ( argv [ 6 ] ) ;
d i s c r s i z e = a to f ( argv [ 7 ] ) ;

} e l s e {
f p r i n t f ( s t d e r r ,

”Usage : sim <H> <mean on> <mean of f> <M> <B> <T> <d i s c r t ime>\n ” ) ;
e x i t ( 1 ) ;

}
#e l s e

i f ( argc == 7) {
H = ato f ( argv [ 1 ] ) ;
mu on = ato f ( argv [ 2 ] ) ;
mu off = a to f ( argv [ 3 ] ) ;
M = ato i ( argv [ 4 ] ) ;
B = ato f ( argv [ 5 ] ) ;
T = ato f ( argv [ 6 ] ) ;

} e l s e {
f p r i n t f ( s t d e r r ,

”Usage : sim <H> <mean on> <mean of f> <M> <B> <T>\n ” ) ;
e x i t ( 1 ) ;

}
#end i f

// Seed random number genera tor
gett imeofday (&cur t imeo fday , NULL) ;
srand48 ( cur t imeo fday . t v u s e c ) ;

// Set pareto cons tant s
a lpha on = 3 . 0 − 2 . 0 ∗ H;
beta on = (mu on ∗ ( a lpha on − 1 ) ) / alpha on ;
a lpha on neg inv = −1 .0 / alpha on ;

a l p h a o f f = 3 . 0 − 2 . 0 ∗ H;
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b e t a o f f = ( mu off ∗ ( a l p h a o f f − 1 ) ) / a l p h a o f f ;
a l p h a o f f n e g i n v = −1 .0 / a l p h a o f f ;

// Create cu r s ou r c e t ime s array
N = T / B;
pa ck a r r i v a l c oun t = mal loc (N ∗ s i z e o f ( double ) ) ;
c u r s ou r c e t ime s = mal loc (M ∗ s i z e o f ( double ) ) ;
s o u r c e s t a t e = mal loc (M ∗ s i z e o f ( uns igned char ) ) ;

// Star t s ou r c e s at d i f f e r e n t t imes
f o r ( i = 0 ; i < M; i ++) {

// Give each source a random , uni formly d i s t . s t a r t i n g time be f o r e time
// ze ro − t h i s range i s j u s t a guess . . .

#i f d e f DISCRETE
cur s ou r c e t ime s [ i ] =

( double ) ( ( i n t ) (−10 ∗ ( mu on+mu off ) ∗ M ∗ drand48 ( ) / d i s c r s i z e ) ) ∗
d i s c r s i z e ;

#e l s e
cu r s ou r c e t ime s [ i ] = −10 ∗ ( mu on+mu off ) ∗ M ∗

drand48 ( ) ;
#end i f

s o u r c e s t a t e [ i ] = OFF;

whi le ( cu r s ou r c e t ime s [ i ] <= 0) {

#i f n d e f STRICT ALTERNATE
// Pick random current s t a t e
s o u r c e s t a t e [ i ] = ( drand48 ( ) > 0 . 5 ) ? ON : OFF;

#end i f

// Do on
i f ( s o u r c e s t a t e [ i ] == OFF) {

#i f d e f DISCRETE
cur s ou r c e t ime s [ i ] +=

( double ) ( ( i n t ) ( next on pare to ( ) / d i s c r s i z e ) ) ∗ d i s c r s i z e ;
#e l s e

cu r s ou r c e t ime s [ i ] += next on pare to ( ) ;
#end i f

s o u r c e s t a t e [ i ] = ON;
}
// Do o f f
e l s e {

#i f d e f DISCRETE
cur s ou r c e t ime s [ i ] +=

( double ) ( ( i n t ) ( n e x t o f f t im e ( ) / d i s c r s i z e ) ) ∗ d i s c r s i z e ;
#e l s e

cu r s ou r c e t ime s [ i ] += nex t o f f t im e ( ) ;
#end i f

s o u r c e s t a t e [ i ] = OFF;
}

}

}

cur s im t ime = 0 ; // Beginning o f the cur rent time block
f o r ( cur b lock = 0 ; cur b lock < N; cur b lock++)
{

on t ime th i s b l o ck = 0 ;
next s im t ime = cur s im t ime + B;

f o r ( proc = 0 ; proc < M; proc++)
{
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// I f source i s cu r r en t l y on , add i t s time s i n c e the beginning o f
// the time block
i f ( s o u r c e s t a t e [ proc ] == ON)
{

new on time = cur s ou r c e t ime s [ proc ] − cur s im t ime ;
i f ( new on time > B)

on t ime th i s b l o ck += B;
e l s e
{

#i f d e f DISCRETE
on t ime th i s b l o ck +=

( double ) ( ( i n t ) ( new on time / d i s c r s i z e ) ) ∗ d i s c r s i z e ;
#e l s e

on t ime th i s b l o ck += new on time ;
#end i f

}
}

whi le ( cu r s ou r c e t ime s [ proc ] <= next s im t ime )
{

#i f n d e f STRICT ALTERNATE
// Pick random current s t a t e
s o u r c e s t a t e [ proc ] = ( drand48 ( ) > 0 . 5 ) ? ON : OFF;

#end i f
// Do on
i f ( s o u r c e s t a t e [ proc ] == OFF)
{

// Add t h i s on time −− un t i l end o f block −− to
// on t ime th i s b l o ck
new on time = next on pare to ( ) ;
i f ( new on time + cur s ou r c e t ime s [ proc ] <

next s im t ime )
{

#i f d e f DISCRETE
on t ime th i s b l o ck +=

( double ) ( ( i n t ) ( new on time / d i s c r s i z e ) ) ∗
d i s c r s i z e ;

#e l s e
on t ime th i s b l o ck += new on time ;

#end i f
}
e l s e

on t ime th i s b l o ck += next s im t ime −
cu r s ou r c e t ime s [ proc ] ;

#i f d e f DISCRETE
cur s ou r c e t ime s [ proc ] +=

( double ) ( ( i n t ) ( new on time / d i s c r s i z e ) ) ∗ d i s c r s i z e ;
#e l s e

cu r s ou r c e t ime s [ proc ] += new on time ;
#end i f

s o u r c e s t a t e [ proc ] = ON;
}
// Do o f f
e l s e {

#i f d e f DISCRETE
cur s ou r c e t ime s [ proc ] +=

( double ) ( ( i n t ) ( n e x t o f f t im e ( ) / d i s c r s i z e ) ) ∗
d i s c r s i z e ;

#e l s e
cu r s ou r c e t ime s [ proc ] += nex t o f f t im e ( ) ;

#end i f
s o u r c e s t a t e [ proc ] = OFF;

}
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}
}

pack a r r i v a l c oun t [ cur b lock ] = on t ime th i s b l o ck ;

cur s im t ime = next s im t ime ;

}

s t a t s ( pa ck a r r i v a l c oun t , N) ;

}
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