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Abstract

Future multicores will be very complex: at the very least,

they may contain statically heterogeneous cores, which are

designed with different engineering trade-offs, and dynami-

cally heterogeneous cores, which have different, and rapidly

changing, execution characteristics. Hardware companies

traditionally expose chips to system software at a very low

level, effectively saying, “Here is what we built, now do

something with it.”

However, there are several advantages to having the chip

itself manage these emerging complexities, while exposing a

more generic interface to software. We do not have all of the

answers for the appropriate role of system software, but we

do suggest that system architects should carefully consider

the benefits of abstraction when designing future systems.

1 Statically and Dynamically Heterogeneous

Several proposals have exalted the benefits of systems

with statically heterogeneous cores — cores which are de-

signed to have different physical characteristics in order to

capitalize on different engineering trade-offs (e.g., [4, 6]).

Similarly, multicore chips will contain dynamically het-

erogeneous cores as well — cores which observe differ-

ent, and rapidly changing, execution characteristics, even

though they may be physically homogeneous. These dif-

fering characteristics may arise from power and thermal

management, intermittent faults, different predictive state,

among others sources, and include not only changes in the

characteristics of an individual core, but also changes in the

number of available cores.

2 Opportunities for Innovation

All of this heterogeneity adds complexity to the organi-

zation and use of future multicores, but also provides many

opportunities for innovative use of these resources. Several

innovative uses of dynamic heterogeneity are discussed be-

low, which improve upon a variety of chip design goals.

Instruction Locality Chakraborty, et al., proposed the

idea of Computation Spreading, and have shown that intel-

ligent, and frequent, thread migration in commercial work-

loads can improve instruction cache and branch predictor

locality without disturbing data caches [2]. Computation

spreading not only takes advantage of the dynamic hetero-

geneous capabilities of different cores, but actively creates

this heterogeneity through the assignment of computation

fragments to different cores, and can lead to a significant

reduction in cache and branch predictor miss rates.

Power/Thermal In follow-on work, Chakraborty, et al.,

have shown that future chips will contain more cores than

can actively execute instructions at any given time, due to

power and thermal constraints [3]. Yet by leveraging tech-

niques such as Computation Spreading, it is possible to ef-

ficiently use all of the cores, at different times, to improve

thermal characteristics, energy, and delay.

Reliability Intermittent faults, caused in part by manufac-

turing process variation or in-progress wear-out, can cause

bursts of frequent faults that last from several cycles to sev-

eral seconds or more. Wells, et al., argue that cost-effective

reliability techniques to tolerate these faults will likely re-

quire, or be greatly simplified by, the ability to temporarily

suspend execution on a core during periods of intermittent

faults [9].

Joining Cores Techniques such as Core Fusion [5],

which dynamic couple multiple cores into one logical pro-

cessor can allow the same chip to be effective for single or

multithreaded applications, as well as mitigate the effects of

Amdahl’s Law for semi-parallel applications.

3 The Multicore Interface Status Quo

These, and many other innovative uses for statically or

dynamically heterogeneous chips, have a variety of features

that make them attractive. Yet, these uses raise several is-

sues about whether the status quo — exposing the details of

the chip and requiring system software to manage its use —

will remain appropriate for future multicores.



Rapidly Changing Conditions The cost of migrating ex-

ecution state among processing cores may be greatly im-

proved by multicore chips, but the overhead of trapping into

the OS to make scheduling decisions is not. If the char-

acteristics and capabilities of the chip changes frequently

enough, the overhead of both monitoring and adapting at

the system software level may be excessively high. As one

concrete example, Wells, et al., show that expecting the

OS to adapt to dynamic changes in the number of available

cores can greatly impact the performance of the entire sys-

tem [8, 9]. At the same time, the latency of OS adaptation

may actually take longer than the need for the adaptation.

Compatibility & Innovation Software (including system

software) often has a longer lifetime than hardware. This

means that hardware companies must maintain backward

compatibility with older software, support system software

from multiple vendors, and at the same time, add value (e.g.

performance or reliability innovations) to their products to

entice users to upgrade.

Meanwhile, system software vendors must support mul-

tiple chips from multiple vendors, but are not always will-

ing to implement an efficient resource management policy

to support hardware innovations from only one company.

Abstracting Details Conceptually, abstracting the details

of a hardware implementation is attractive because it fits

well into the layered model of computer systems. But ab-

straction has practical advantages as well.

First, hardware companies may not wish to disclose all

of the hardware details, including the occurrence of faults,

or certain microarchitectural innovations, for reasons of

competitive advantage. Second, hardware companies may

not wish to abdicate responsibility for the proper workings

of their chip (e.g., thermal management, reliability, etc.) to

a third party system software vendor.

4 The Solution?

Given the preceding opportunities and issues, we argue

that future heterogeneous multicores may do well to ex-

pose a simpler, traditional, homogeneous multiprocessor in-

terface to the system software, and then manage the use

of hardware innovations with hardware/firmware layers be-

neath the ISA. This abstraction is directly analogous to out-

of-order processors exposing a sequential execution model

to the software, and then performing a variety of optimiza-

tions under the hood.

This model provides many opportunities for the inno-

vative uses of future heterogeneous multicores, while at

the same time allows the management of these innovations

to quickly adapt to changing resources, remain compatible

with existing and future software, and abstract the details

from third party vendors, users, and competitors.

We acknowledge that several challenges arise in such a

scenario, especially when it is necessary to perform these

optimizations with no assistance from system software. Yet

we have no reason to believe that the challenges are insur-

mountable, or even particularly difficult. It has already been

shown that simple hardware/firmware techniques can intel-

ligently migrate execution state among cores with low over-

head and without involving the OS, and that high perfor-

mance operation can be maintained even when the chip has

both more or fewer physically available cores than are vis-

ible to the OS [2, 3, 7–9]. Additional challenges will arise

as we continue to explore this model, but in all likelihood,

they can be dealt with similarly: by inferring information

from the higher layers in the system (i.e., using a gray-box

approach [1]).

While we certainly do not have all of the answers about

how this should be done, we do hope that system architects

will carefully consider the benefits of abstraction when de-

signing future systems.
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