
Syntax-Guided Synthesis with Quantitative
Syntactic Objectives

Qinheping Hu(�), Loris D’Antoni

University of Wisconsin-Madison, Madison, USA
{qhu28,loris}@cs.wisc.edu

Abstract. Automatic program synthesis promises to increase the pro-
ductivity of programmers and end-users of computing devices by au-
tomating tedious and error-prone tasks. Despite the practical successes
of program synthesis, we still do not have systematic frameworks to syn-
thesize programs that are “good” according to certain metrics—e.g., pro-
duce programs of reasonable sizes or with good runtime—and to under-
stand when synthesis can result in such good programs. In this paper,
we propose QSyGuS, a unifying framework for describing syntax-guided
synthesis problems with quantitative objectives over the syntax of the
synthesized programs. QSyGuS builds on weighted (tree) grammars,
a clean and foundational formalism that provides flexible support for
different quantitative objectives, useful closure properties, and practical
decision procedures. We then present an algorithm for solving QSyGuS.
Our algorithm leverages closure properties of weighted grammars to gen-
erate intermediate problems that can be solved using non-quantitative
SyGuS solvers. Finally, we implement our algorithm in a tool, QuaSi,
and evaluate it on 26 quantitative extensions of existing SyGuS bench-
marks. QuaSi can synthesize optimal solutions in 15/26 benchmarks
with times comparable to those needed to find an arbitrary solution.

1 Introduction

The goal of program synthesis is to find a program in some search space that
meets a specification—e.g., a set of examples or a logical formula. Recently,
a large family of synthesis problems has been unified into a framework called
syntax-guided synthesis (SyGuS). A SyGuS problem is specified by a context-
free grammar describing the search space of programs, and a logical formula
describing the specification. Many synthesizers now support this format [2] and
annually compete in synthesis competitions [4]. Thanks to these competitions,
these solvers are now quite mature and are finding wide application [14].

While the logical specification mechanism provided by SyGuS is powerful,
it can only capture the functional requirements of the synthesis problem—e.g.,
the program should perform correctly on a given set of input/output examples.
When multiple possible programs can satisfy the specification, SyGuS does not
provide a way to prefer one to the other—e.g., one cannot ask a solver to return
the program with the fewest if-statements. As a consequence, existing synthesis

2

tools do not provide guarantees about what solution is returned if multiple ones
exist. While a few synthesizers have attempted to include some form of specifica-
tion to express this kind of quantitative intents [7,19,16,15], these approaches are
domain-specific, do not apply to SyGuS problems, and do not provide a simple
and flexible specification mechanism. The lack of a formal treatment of quan-
titative requirements stands in the way of designing synthesizers that can take
advantage quantitative of objectives to perform more efficient forms of synthesis.

In this paper, we propose QSyGuS, a unifying framework for describing
syntax-guided synthesis problems with quantitative objectives over the syntax
of the synthesized programs—e.g., find the most likely program with respect to
a given probability distribution—and present an algorithm for solving synthesis
problems expressed in this framework. We focus on syntactic objectives because
they are the most common ones in practical applications of program synthesis.
For example, in programming by examples it is desirable to produce small pro-
grams with fewer constants because these programs are more likely to generalize
to examples outside of the specification [13]. QSyGuS extends SyGuS in two
ways. First, in QSyGuS the search space is represented using weighted gram-
mars, which augment context-free grammars with the ability to assign weights
to programs. Second, QSyGuS allows the user to specify constraints over the
weight of the program, including optimization objectives—e.g., find the program
with the fewest if-statements and with the lowest depth.

QSyGuS is a natural, general, and flexible formalism and is grounded in
the well-studied theory of weighted grammars. We leverage this theory and de-
sign an algorithm for solving QSyGuS problems using closure properties of
weighted grammars. Given a QSyGuS problem, our algorithm generates a Sy-
GuS problem that can be delegated to existing SyGuS solvers. The algorithm
then iteratively refines the solution returned by the SyGuS solver to find an op-
timal one by further generating new SyGuS instances using weighted grammar
operations. We implement our algorithm in a tool, QuaSi, and evaluate it on 26
quantitative extensions of existing SyGuS benchmarks. QuaSi can synthesize
optimal solutions in 15/26 benchmarks with times comparable to those needed
to find a solution that does not need to satisfy any quantitative objective.

Contributions In summary, our contributions are:

– QSyGuS, a formal framework grounded in the theory of weighted gram-
mars that can describe syntax-guided synthesis problems with quantitative
objectives over the syntax of the synthesized programs. (§ 3)

– An algorithm for solving QSyGuS problems that leverages closure properties
of weighted grammars and existing SyGuS solvers. (§ 4)

– QuaSi, a tool for specifying and solving QSyGuS problems that interfaces
with existing SyGuS solvers and a comprehensive evaluation of QuaSi,
which shows that QuaSi can efficiently solve QSyGuS problems over dif-
ferent types of weights, including additive weights, probabilities, and combi-
nations of multiple weights. (§ 5)

3

Start ::= Start+ Start/(0,1)
| if(BExpr) then Start else Start/(1,0)
| x | y | 0 | 1

BExpr ::= Start > Start
| ¬BExpr
| BExpr ∧ BExpr

Fig. 1: Weighted grammar that assigns weight (w1, w2) ∈ Nat×Nat to a program
where w1 is the number of if-statements and w2 is the number of plus-statements.

2 Illustrative Example

In this section, we illustrate the main components of our framework using an ex-
ample. We start with a Syntax-Guided Synthesis (SyGuS) problem in which no
quantitative objective is provided. We recall that the goal of a SyGuS problem
is to synthesize a function f of a given type that is accepted by a context-free
grammar G, and such that ∀x.φ(f, x) holds (for a given Boolean constraint φ).

The following SyGuS problem asks to synthesize a function that is accepted
by the following grammar and that computes the max of two numbers.

Start ::= Start+ Start | if(BExpr) then Start else Start | x | y | 0 | 1
BExpr ::= Start > Start | ¬BExpr | BExpr ∧ BExpr

The semantic constraint is given by the following formula.
ψ(f)

def
= ∀x, y.f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y)

The following three programs are semantically equivalent, but syntactically dif-
ferent solutions.

max1(x, y) = if(x > y) then x else y
max2(x, y) = if(x > y) then (x+ 0) else (y + 0)
max3(x, y) = if(x > y) then x else (if(y > x) then y else x)

All solutions are correct, but the user might, for example, prefer the smallest
one. However, SyGuS does not provide ways to specify this quantitative intent.
Adding weights In our formalism, QSyGuS, we augment context-free gram-
mars to assign weights to programs in the search space. Concretely, we adopt
weighted grammars [10], a well-studied formalism with many desirable proper-
ties. In a weighted grammar, each production is assigned a weight. For example,
the weighted grammar shown in Figure 1 extends the one from the previous
SyGuS example to assign to each program p a pair of weights (w1, w2) where
w1 is the number of if-statements and w2 is the number of plus operators in
p. In this case, the weights are pairs of integers and the weight of a grammar
derivation is the pairwise sum of all the weights of the productions involved in
the derivation—e.g., the sum of (w1, w2) and (w′1, w

′
2) is (w1 + w′1, w2 + w′2).

In the figure, we write /(w1, w2) to assign weight (w′1, w′2) to a production. We
omit the weight for productions with cost (0, 0). The functions max1, max2 and
max3 have weights (1, 0), (1, 2), and (2, 0) respectively.
Adding and solving quantitative objectives Once we have a way to assign weights
to programs, QSyGuS allows the user to specify quantitative objectives over

4

the weights of the productions—e.g., only allow solutions with fewer than 4 if-
statements. In our example, we could require the solution to be minimal with
respect to the number of if-statements, i.e., minimize the first component of the
paired weight. With these constraints both max1 and max2 would be considered
optimal solutions because there exists no solution with 0 if-statements. If we
require the solution to also be minimal with respect to the second component of
the paired weight, max1 will be a possible optimal solution.

Our tool QuaSi can automatically discover solutions in both these cases.
Let’s consider the last minimization objective. In this case, QuaSi first uses
existing SyGuS solvers to synthesize an initial solution using the non-weighted
version of the grammar. Let’s say that the returned solution is, for example,
max3 of weight (2, 0). QuaSi uses this solution to build a new SyGuS instance
that only accepts programs with at most one if-statement. Solving this SyGuS
problem can, for example, result in the program max2 of weight (1, 2), which
will require our solver to build yet another SyGuS instance. This approach is
repeated and if it terminates, an optimal program is found.

3 SyGuS with Quantitative Objectives

In this section, we introduce our framework for defining syntax-guided synthesis
problems with quantitative objectives over the syntax of the synthesized pro-
grams. We first provide preliminary definitions for notions such as semirings
(Section 3.1) and weighted tree grammars (Section 3.2), and then use these no-
tions to augment SyGuS problems with quantitative objectives (Section 3.3).

3.1 Weights over Semirings

We now define the universe of weights we will assign to programs. In gen-
eral, weights are defined using monoids—i.e., sets equipped with an addition
operator—but when a grammar is nondeterministic—i.e., it can produce the
same term using multiple derivations—the same term might be assigned multiple
weights. Hence, we choose to use semirings. Since we also care about optimiza-
tion objectives, we assume all our semirings are equipped with a partial order.

Definition 1 (Semiring). A (ordered) semiring is a pair (S,�) where (i) S =
(S,⊕,⊗, 0, 1) is an algebra consisting of a commutative monoid (S,⊕, 0) and a
monoid (S,⊗, 1) such that ⊗ distributes over ⊕, 0 6= 1, and, for every x ∈ S,
x⊗ 0 = 0, (ii) � ⊂ S × S is a partial order over S.

We often use the word semiring to refer to just the algebra S.

Example 1. In this paper, we focus on semirings with the following algebras.

Boolean Bool = (B,∨,∧, 0, 1). This semiring only contains the values true and
false and is used to represent non-quantitative problems.

5

Tropical Trop = (Z ∪ {∞},min,+,∞, 0). This semiring is the most common
one and is used to assign additive weights—e.g., term sizes and term depth.
In this case, we typically consider the order � def

= ≤.
Probabilistic Prob = ([0, 1],+, ·, 0, 1). This semiring is used to assign proba-

bilities to terms in a grammar. ut

In our framework, we allow synthesis problems to have multiple objectives.
Hence, we define a product operation to compose semirings. Intuitively, the fol-
lowing operation composes algebras of semirings to create a pair and applies the
operation of each algebra to the corresponding projections of the pair. Similarly,
two orders can be composed to create an order over pairs of elements. We pro-
pose two such compositions, one which assigns equal weights to the two orders
(Pareto) one one which prefers one order over the other (Sorted).

Definition 2 (Products). Given two algebras S1 = (S1,⊕1,⊗1, 01, 11) and
S2 = (S2,⊕2,⊗2, 02, 12), the product algebra is the tuple S1×S S2 = (S1 ×
S2,⊕,⊗, (01, 02), (11, 12)) such that for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we
have (x1, y1) ⊕ (x2, y2)

def
= (x1 ⊕1 x2, y1 ⊕2 y2) and (x1, y1) ⊗ (x2, y2)

def
= (x1 ⊗1

x2, y1 ⊗2 y2).
Given two partial orders �1⊂ S1×S1 and �2⊂ S2×S2, the Pareto product of

the two orders is defined as the partial order �p= par(�1,�2) ⊆ (S1×S2)×(S1×
S2) such that, for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we have (x1, y1) �p (x2, y2)
iff x1 �1 x2 and y1 �2 y2.

Given two partial orders �1⊂ S1 × S1 and �2⊂ S2 × S2, the Sorted product
of the two orders is defined as the partial order �s= sort(�1,�2) ⊆ (S1 ×
S2) × (S1 × S2) such that, for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we have
(x1, y1) �s (x2, y2) iff x1 �1 x2 or (x1 = x2 and y1 �2 y2).

Example 2. The weights in the grammar in Figure 1 are from the product semir-
ing Trop ×S Trop. When using the Pareto partial orders, we have, for example,
(1, 0) � (2, 0) and (1, 0) � (1, 2), but (1, 2) is incomparable to (2, 0). When using
the Sorted product, we have, for example, (1, 0) � (1, 2) � (2, 0). ut

3.2 Weighted Tree Grammars

Since SyGuS defines search spaces using context-free grammars, we propose to
extend this formalism with weights to assign costs to terms in the grammar. We
focus our attention on a restricted class of context-free grammars called regular
tree grammars—i.e., grammars generating regular tree languages—because, to
our knowledge, the benchmarks appearing in the SyGuS competition [3] and
in practical applications of SyGuS operate over tree grammars. Moreover, it
was recently shown that SyGuS problems that are undecidable for context-free
grammars become decidable with weighted tree grammars [8].
Trees A ranked alphabet is a tuple (Σ, rkΣ) where Σ is a finite set of symbol
and rkΣ : Σ → N associates a rank to each symbol. For every m ≥ 0, the set
of all symbols in Σ with rank m is denoted by Σ(m). In our examples, a ranked

6

alphabet is specified by showing the set Σ and attaching the respective rank to
every symbol as superscript—e.g., Σ = {+(2), c(0)}. We use TΣ to denote the set
of all (ranked) trees over Σ—i.e., TΣ is the smallest set such that (i) Σ(0) ⊆ TΣ ,
(ii) if σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ , then σ(t1, · · · , tk) ∈ TΣ . In the following we
assume a fixed ranked alphabet (Σ, rkΣ).

Weighted Tree Grammars Tree grammars are similar to word grammars but
they generate ranked trees instead of words. Weighted tree grammars augment
tree grammars by assigning weights from a semiring to trees. They do so by
associating weights to productions in the grammar. Weighted grammars can, for
example, compute the height of a tree, the number of occurrences of some node
in the tree, or the probability of a tree with respect to some distribution In the
following, we assume a fixed semiring (S,�) where S = (S,⊕,⊗, 0, 1).

Definition 3 (Weighted Tree Grammar). A weighted tree grammar (WTG)
is a tuple G = (N,Z, P, µ), where N is a set of non-terminal symbols with arity
0, Z is an axiom with Z ∈ N , P is a set of production rules of the form A→ β
where A ∈ N is a non-terminal and β is a tree of T (Σ ∪N), and µ : P → S is
a function assigning to each production a weight from the semiring.

We can now define the semantics of a WTG as a function wG : TΣ 7→ S,
which assigns weights to trees. Intuitively, the weight of a tree is ⊕-sum of the
weight of every possible derivation of that tree in a grammar and the weight of
a derivation is the ⊗-product of the weights of the productions appearing in the
derivation. We use MS(β) = 〈X1, . . . , Xk〉 to denote the multi-set of all nonter-
minals appearing in β and β[t1/X1, . . . , tk/Xk] to denote the result of simultane-
ously substituting each Xi with ti in β. Given a derivation p = A→ β such that
MS(β) = 〈X1, . . . , Xk〉, we assume that p is a symbol of arity k. A derivation d
starting at non-terminal X is a tree of productions d ∈ T (P) representing one
possible way to derive a tree starting from X. The derivation has to be such that:
(i) the root of d is a production of the formX → β, (ii) for every node p = A→ β
in d, if MS(β) = 〈X1, . . . , Xk〉, then, for every 1 ≤ i ≤ k, the i-th child of p is
a production Xi → βi. Given a derivation d with root p = X → β, such that
MS(β) = 〈X1, . . . , Xk〉 and p has children subtrees d1, . . . , dk, the tree gener-
ated by d is recursively defined as tree(d) = β[tree(d1)/X1, . . . , tree(dk)/Xk].
We use der(X, t) to denote the set of all derivations d starting at X, such that
tree(d) = t. The weight dw(d) of a derivation d is the ⊗-product of the weights
of the productions appearing in the derivation. Finally, the weight of a tree t is
the ⊕-sum of the weights of all the derivations of t from the initial nonterminal
wG(t) =

⊕
d∈der(Z,t) dw(d). A weighted tree grammar is unambiguous iff, for

every t ∈ TΣ , there exists at most one derivation—i.e., |der(Z, t)| ≤ 1.
Weighted tree grammars generalize weighted tree automata. In particular, a

weighted tree automaton (WTA) is a WTG in which every production is of the
form A → σ(T1, . . . , Tn), where A ∈ N , each Ti ∈ N , and σ ∈ Σ(n). Finally, a
tree automaton (TA) is a WTA over the Boolean semiring—i.e., the TA accepts
all trees with some derivations yielding true. Similarly, a tree grammar (TG) is

7

a WTG over the Boolean semiring. Given a TA (resp. TG) G, we use L(G) to
denote the set of trees accepted by G—i.e., L(G) = {t | wG(t) = true}.

Example 3. The weighted grammar in Fig. 1 operates over the semiring Trop×
Trop, N = {Start, BExpr}, Z = Start, P contains 9 productions, and µ assigns
non-zero weights to two of them. ut

Aside from being a natural formalism for assigning weights to trees, TGs
and WTGs enjoy properties that make them a good choice for our model. First,
WTGs (resp. TGs) are equi-expressive to WTAs (resp. TAs) and have logic
characterizations [9,11,10]. Due to this reason, tree grammars are closed under
Boolean operations and enjoy decidable equivalence [9]. Second, WTGs enjoy
many closure and decidability properties—e.g., given two WTGs G1 and G2,
we can compute the grammars G1 ⊕ G2 and G1 ⊗ G2 such that, for every f ,
wG1⊕G2

(f) = wG1
(f) ⊕ wG2

(f) and wG1⊗G2
(f) = wG1

(f) ⊗ wG2
(f). This

operation is convenient for building grammars over product semirings.

3.3 QSyGuS

In this section, we formally define QSyGuS, which extends SyGuS with quanti-
tative objectives. In SyGuS a problem is specified with respect to a background
theory T—e.g., linear arithmetic—and the goal is to synthesize a function f that
satisfies two constraints provided by the user. The first constraint describes a
functional semantic property that f should satisfy and is given as a predicate
ψ(f)

def
= ∀x.φ(f, x). The second constraint limits the search space S of f and is

given as a set of expressions specified by a context-free grammar G defining a
subset of all the terms in T . A solution to the SyGuS problem is an expression
e in S such that the formula ψ(e) is valid.

We augment such a framework in two ways. First, we replace context free
grammars with WTGs, which we use to assign weights (from a given semiring)
to terms. Second, we augment the problem formulation with constraints over
the weight of the synthesized program—i.e., only consider programs of weight
greater than 2—and optimization objectives over the same weight—i.e., find the
solution of minimal weight. Weight constraints range over the grammar

WC :=WC ∧WC |WC ∨WC | ¬WC | w � s | s � w | w ≺ s | s ≺ w,
where w is a special variable and s is an element of the semiring under consid-
eration. Given a constraint ω ∈WC, we write ω(t) to denote the term obtained
by replacing w with t in ω.

Definition 4 (QSyGuS). A QSyGuS problem is a tuple
(T, (S,�), ψ(f), G, ω,opt) where:

– T is a background theory.
– (S,�) is an ordered semiring defining the set of weights and their operations.
– G is a weighted tree grammar with weights over the semiring S and that only
contains terms in T—i.e., L(G) ⊆ T .

8

Algorithm 1 QSyGuS synthesis algorithm
1: procedure QSyGuS-solve(T,S, ψ,G, ω,opt)
2: G′ ← ReduceGrammar(G,ω) . extract grammar satisfying ω
3: f∗ ← SyGuS(T, ψ,G′) . solve corresponding SyGuS problem
4: if opt = false then return f∗

5: while true do
6: G′ ← ReduceGrammar(G′, w ≺ wG(f

∗))
7: f ← SyGuS(T, ψ,G′) . Try to find better solution
8: if f = ⊥ then return f∗ . Return the optimal solution
9: f∗ ← f

– ψ(f)
def
= ∀x.φ(f, x) is a Boolean formula constraining the semantic behavior

of the synthesized program f .
– ω ∈WC is a set of constraints over the weight w of the synthesized program.
– opt is a Boolean denoting whether the solution has to have minimal weight
with respect to �.

A solution to the QSyGuS problem is a term e such that e ∈ L(G), ψ(e) is
true, and ω(wG(e)) is true. If opt is true, we also require that there is no g that
satisfies the previous conditions and such that ω(wG(g)) ≺ ω(wG(e)).

A SyGuS problem is a QSyGuS problem without weight constraints—i.e., ω ≡
true and opt = false. We denote such problems just as triples (T, ψ(f), G).

Example 4. Consider the QSyGuS problem described in Section. 2. We already
described all the components but ω and opt in the rest of this section. In this
example, ω = true and opt = true because we want to synthesize the solution
with minimal weight.

4 Solving QSyGuS Problems via Grammar Reduction

In this section, we present an algorithm for solving QSyGuS problems (Algo-
rithm 1), which works as follows. First, given a QSyGuS problem, we construct
(under certain assumptions) a SyGuS problem for which the solution is guaran-
teed to satisfy the weight constraints ω (line 2) and use existing SyGuS solvers
to find a solution to such a problem (line 3). If the QSyGuS problem requires
minimization, our algorithm produces a new SyGuS instance to search for a
solution that is better than the previously found one and tries to solve it (lines
6-7). This procedure is repeated until an optimal solution is found (line 8).

4.1 From QSyGuS to SyGuS

The first step of our algorithm is to construct a SyGuS problem characteriz-
ing exactly all the solutions of the QSyGuS problem that satisfy the weight

9

constraints. Given a QSyGuS problem P = (T, (S,�), ψ(f), G, ω,opt), we con-
struct a SyGuS problem P ′ = (T, ψ(f), G′) such that a function g is a solution
to the SyGuS problem P ′ iff g is a solution of P = (T, (S,�), ψ(f), G, ω, false),
where the optimization constraint has been dropped. We denote the grammar
reduction operation as G′ ← ReduceGrammar(G,ω).
Base case First we show how to solve the problem when ω is an atomic formula—
i.e. of the form w � s, s � w, w ≺ s, or s ≺ w. We start by showing how to solve
the problem for w � s as the construction is identical for the other constraints.

Concretely, we are given a WTG G = (N,Z, P, µ) and we want to construct
a TG G�s = (N ′, Z ′, P ′) such that t ∈ L(G�s) iff wG(t) � s. In general, it is not
possible to perform this construction for arbitrary semirings and grammars. We
first present our algorithm and then describe sufficient conditions under which
we can ensure termination and correctness.

The idea behind our construction is to introduce new nonterminals in the
grammar G�s to keep track of the weight of the trees that can be produced
from those nonterminals. For example, a nonterminal pair (X, s′) will derive all
trees derivable from X using a single derivation of weight s′. Therefore, the set
of nonterminals N ′ is a subset of N × S (plus an initial nonterminal Z ′), where
S is the universe of the WTG’s semiring. We construct our set of nonterminals
N ′ starting from the leaf productions of G and then recursively explore other
productions. At the same time we generate the set of productions P ′. Formally,
N ′ and P ′ are the smallest sets such that the following conditions hold.

1. Z ′ ∈ N ′ (the initial nonterminal).
2. For every production p ∈ P such that p = (A→ β) and β ∈ TΣ—i.e., p is a

leaf—and µ(p) � s, then (A,µ(p)) ∈ N ′ and ((A,µ(p))→ β) ∈ P ′. If A = Z,
then Z ′ → (A,µ(p)) ∈ P ′.

3. For every production p ∈ P such that p = (A→ β), MS(β) = 〈X1, . . . , Xk〉,
(X1, s1), . . . , (Xk, sk) ∈ N ′ (for some values si ∈ S), and µ(p)⊗s1⊗. . .⊗sk =
s′, s′ � s, then (A, s′) ∈ N ′, and ((A, s′)→ β[(X1, s1)/X1, . . . , (Xk, sk)/Xk]) ∈
P ′. If A = Z, then Z ′ → (A, s′) ∈ P ′.

Example 5. We illustrate our construction using the grammar in Figure 1 . As-
sume the weight constraint is w � (1, 0) and the partial order is built using a
Pareto product—i.e., we accept terms with 1 or less if-statements and no plus-
statements. Our construction yields the following grammar.

Z’ ::= (Start,1,0) | (Start,0,0)
(Start,1,0) ::= if((BExpr,0,0)) then (Start,0,0) else (Start,0,0) | x | y | 0 | 1
(Start,0,0) ::= x | y | 0 | 1

(BExpr,0,0) ::= (Start,0,0) > (Start,0,0) | ¬(BExpr,0,0) | (BExpr,0,0) ∧ (BExpr,0,0)

ut

The construction of G�s only terminates for certain semirings and grammars,
and only guarantees that individual derivations yield the correct cost—i.e., it
does not account for the ⊕-sum of multiple derivations.

10

Example 6. The following WTG over Prob is ambiguous and, if we apply the
grammar reduction algorithm for ω := w � 0.6, the resulting grammar will be
empty. However, the tree 1 + 1 has weight 0.9 � 0.6 (0.9 ≥ 0.6).

Start ::= Start+ Start/0.5
| x | 0 | 1 | Expr

Expr ::= Expr+ Expr/0.4
| x | 0 | 1

ut

We now identify sufficient conditions under which the construction of G�s
terminates and is sound. In particular, we start by restricting our attention to un-
ambiguousWTGs, which are the common ones in practice. We use weights(G) =
{s | p ∈ P ∧ µ(p) = s} to denote the set of weights used by G and MS,G =
(S′,⊗, 1) to denote the submonoid of S generated by weights(G)—i.e., the set
of all weights we can generate using ⊗ and weights(G).

Theorem 1. Given an unambiguous WTG G over a semiring S such thatMS,G =
(S′,⊗, 1), and a weight s ∈ S, the construction of G�s terminates if the set {s′ |
s′ � s ∧ w ∈ S′} is finite. Moreover, if the set of weights weights(G) is mono-
tonically increasing with respect to �—i.e. for every s ∈ S and s′ ∈ weights(G),
s � s⊗ s′—then L(G�s) contains exactly every tree t such that wG(t) � s.

The theorem above also holds for other atomic constraints w ≺ s, s � w,
or s ≺ w (for these last two, the direction of the monotonicity is reversed).
Moreover, in certain cases, even if the construction may not terminate for, let’s
say s � w, it might terminate for the negated constraint w ≺ s. In such a case, we
can use the closure properties of regular tree grammars/automata to construct
the reduced grammar for s � w as G�w = intersect(G,complement(G�w)).
The same idea can be applied to all atomic constraints.

In practice, the restriction of Theorem 1 holds for grammars that operate
over the Boolean and probabilistic semirings, and the tropical semiring only
with positive weights. Theorem 1 never holds when S is the tropical semiring
and the grammar contains negative weights. In general, one cannot construct
the constrained grammar in this case. However, it is easy to modify our algo-
rithm to work with grammars that do not contain loops—i.e., derivations from a
nonterminal to a tree containing the same nonterminal—with negative weights.

Intuitively, when the grammar contains no negative loops, we can find a con-
stant SH such that any intermediate derivation with weight greater than s+SH
will never result in tree with weight smaller than s. We use this idea to modify
the construction of GTrop

≤s —i.e., G≤s for Trop—as follows. First, this constant is
bounded by ckn+1 where c is the absolute value of the smallest negative weight
in the grammar, k is the largest number of nonterminals appearing in one gram-
mar production, and n = |N | is the number of nonterminals. Second, in steps 2
and 3 of the construction, a new nonterminal and the corresponding productions
are produced if µ(p) ≤ s + |SH| (previously µ(p) ≤ s). However, if A = Z in
steps 2 and 3, we add a new production Z ′ → (A, s′) only if s′ � s.

We now show when this construction terminates and return correct values.
Since the tropical semiring combines multiple runs using the min operator, we
can drop the requirement that the grammar has to be unambiguous.

11

Theorem 2. Given a WTG G over Trop and a weight s ∈ Z, the construc-
tion of GTrop

≤s terminates if G contains no loop with cumulative negative weight.
Moreover, GTrop

≤s contains exactly every tree t such that wG(t) ≤ s.

Composing semirings We next discuss how Theorem 1 relates to product semir-
ings. Given a grammar G = (N,Z, P, µ) over a semiring S1×SS2, we use GSi

to denote the grammar (N,Z, P, µi) in which the weight function outputs the
corresponding projected weight—i.e., if µ(p) = (s1, s2), then µi(p) = si.

Let’s first consider the case where the product semiring uses a Pareto partial
order. In this case, if Theorem 1 holds for each grammar GSi and wi �i si, then
it holds for G and (w1, w2) �p (s1, s2). However, the other direction is not true.
Theorem 3 proves this intuition and states that, in some sense, solving Pareto
partial orders is easier than solving the individual partial orders.

Theorem 3 Given an unambiguous WTG G over the semiring S = S1 ×S S2

with Pareto partial order �p= par(�1,�2) and a weight s = (s1, s2) ∈ S,
if the constructions GS1

�1s1
and GS2

�2s2
terminate, then the construction of G�s

terminates.

When we move to Sorted partial order we cannot get an analogous theorem: if
Theorem 1 holds for each grammar GSi and wi �i si, then it does not necessary
hold forG and (w1, w2) �s (s1, s2). In particular, if the semiring S2 is infinite and
there exists an s′1 ≺ s1, there will be infinitely many elements (s′1,_) ≺ (s1, s2).
Using this observation, we devise a modified algorithm for reducing grammars
with sorted objectives. First, we compute the grammars GS1

≺1s1 , G
S1
=s1 , and G

S2
≺2s2 .

Second, we use WTG closure properties to compute G�s(s1, s2) as the union of
GS1
≺1s1 and intersect(GS1

=s1 , G
S2
≺2s2).

General formulas We can now inductively construct the grammar accepting only
terms satisfying all constraints in ω. We again use the fact that tree grammars
are closed under Boolean operations to compute intersections and unions and
correctly characterize all conjunctions and unions appearing in the formulas.

4.2 Finding an Optimal Solution

If our QSyGuS problem does not require minimization—i.e., opt = false—
the technique presented in Section 4.1 can be used to generate an equivalent
SyGuS problem P ′ = (T, ψ(f), G′), which can be solved using off-the-shelf Sy-
GuS solvers. In this section, we show how to extend this technique to handle
minimization objectives. Our idea is to use SyGuS solvers to find a non-optimal
solution for P ′ and then iteratively refine our grammar G′ to search for a better
solution. This loop is illustrated in Algorithm 1 (lines 5-9). Given the initial so-
lution f∗ to P ′ such that wG(f

∗) = s, we can construct a new grammar G≺s and
look for a solution with lower weight. If the SyGuS solver we use is sound—it
can find a solution if it exists—and complete—it can detect if a solution does
not exist—Algorithm 1 terminates with an optimal solution.

12

In general, the above conditions are too strict and in practice this implies
that the algorithm will often not terminate. However, if the SyGuS solver is
sound, the Algorithm 1 will eventually find the optimal solution, but it will not
be able to prove that no smaller one exists. In our experiments, we will show
that this approach can yield better solutions than those given by vanilla SyGuS
solvers even when Algorithm 1 does not terminate.

5 Implementation and Evaluation

First, We extended the SyGuS format with new syntax for expressing QSy-
GuS problems. Our format supports all semirings presented in Section 3.1 as
well as additional ones. The format also allows creating tuples of semirings us-
ing the product operation described in Section 3.1. We augment the original
SyGuS syntax to support weights on grammar productions. Weight constraints
are added using an SMT-like syntax.

Second, we implemented Algorithm 1 in a tool called QuaSi. QuaSi already
interfaces with three SyGuS solvers: CVC4 [6], ESolver [4], and EUSolver [5].
QuaSi supports all the semirings allowed in our format and implements a library
for tree automata/grammars and weighted tree automata/grammars operations,
as well as several optimizations we did not discuss in the paper. In particular,
QuaSi often uses simple grammar reduction techniques to simplify the generated
grammars, remove unnecessary productions, and consolidate equivalent ones.

We evaluate QuaSi through the following questions (experiments performed
on an Intel Core i7 4.00GHz CPU with 32GB/RAM).
Q1 Can QuaSi solve quantitative variants of real SyGuS benchmarks? (§ 5.1)
Q2 What is the overhead of synthesizing optimal solutions? (§ 5.2)
Q3 How do multiple iterations of Alg. 1 affect the solution’s weight? (§ 5.3)
Q4 Can QuaSi solve QSyGuS problems with multiple objectives? (§ 5.4)
Benchmarks We perform our evaluation on 26 quantitative extensions of exist-
ing SyGuS competition benchmarks taken from 4 SyGuS benchmark tracks [4]:
Hackers Delight, Integers, ICFP and Bitvector. 18 of our benchmarks only use
a minimization objective over a single semiring (Table 1), while 8 use a min-
imization objective (Pareto or Sorted) over a product semiring (Table 2). We
select SyGuS benchmarks using the following criteria: (i) the benchmark can
be solved by either CVC4 [6] or ESolver [4], and (ii) the solution is not optimal
according to some reasonable metric—e.g., size or number of if statements.

5.1 Effectiveness of QSyGuS Solver

We evaluate the effectiveness of QuaSi on the 18 single-minimization-objective
benchmarks. For each benchmark, we run QuaSi using either CVC4 or ESolver
as the backend SyGuS solver (we also evaluated QuaSi using EUSolver [5], but,
due to its poor performance, we do not report the results). The results are shown
in Table 1. The timeout for each iteration of Alg. 1 is 10 minutes.

13

Table 1: Performance of QuaSi. Time shows the sequence of times taken to
solve individual iterations of Alg. 1. Largest is the size of the largest SyGuS
sub-problem. Grammar Size is the number of rules in the original grammar.

Problem CVC4 ESolver Grammar
Time[sec] Largest Time[sec] Largest Size

T
ro

p

max_ite(2,3) 0.1+0.1 42 0.1 42 13
max_ite(2,15) 0.1+0.1 239 0.3 239 13
max_ite(3,15) 0.1+0.1+0.1 238 OOM 238 13
max_ite(10,15) 0.5+0.5+0.9 226 OOM 226 13

parity_not 0.1+TO 301 26.9+TO 43 6
max3_ite 0.1+TO 31 OOM - 14

array_search_3 0.1+TO 135 TO - 15
array_search_5 0.1+TO 108 TO - 16

hackers_5 0.1+0.1 27 0.1+0.1+0.1 35 13
hackers_7 0.1+0.3 35 0.1+0.1+0.2 41 13
hackers_17 0.1+0.7 41 2.8+3.0+1.0 62 13
hackers_19 0.2+TO 174 TO - 13

icfp_7 0.2+TO 146 TO - 11
LinExpr_eq1ex 0.7+TO 1717 TO - 14

P
ro

b

hackers_2_prob 0.6+4.1+0.1 95 0.8+0.1+0.2 154 13
hackers_5_prob 0.1+0.9+0.1 96 0.1+0.2+0.1 154 13
hackers_7_prob 0.1+TO 162 0.1+0.1+0.2 212 13
hackers_17_prob 0.1+TO 187 3.4+6.5+OOM 291 13

With CVC4, QuaSi terminates with an optimal solution in 9/18 benchmarks,
taking less than 5 seconds (avg: 0.7s) to solve each sub-problem. In 3 of these
cases, the initial solution is already optimal and the second iteration is used
to prove optimality. With ESolver, QuaSi terminates with an optimal solution
in 8/18 benchmarks, taking less than 7 seconds (avg: 0.9s) to solve each sub-
problem. In 2 cases, it can find a better solution than the original one, but it
cannot prove that the solution is optimal. Overall, by combining solvers, QuaSi
can find a better solution than the original SyGuS solution given by one of the
two solvers in 9/18 benchmarks. QuaSi cannot improve the initial solution of
the linear integer arithmetic benchmarks (array_search and LinExpr_eq1ex).

Both solvers timeout on large grammars. The grammars in Table 1 are 1 to 2
order of magnitude larger than those in existing SyGuS benchmarks (avg: 224 vs
13 rules) and existing solvers have not yet been optimized for this parameter. In
some cases, the solver times out for intermediate grammars that do not contain
a solution, but that generate infinitely many terms. In general, existing SyGuS
solvers cannot prove unsatisfiability for these types of problems. To answer Q1,
QuaSi can solve quantitative variants of 10/18 real SyGuS benchmarks.

5.2 Solving Time for Different Iterations

In this section, we evaluate the time required by each iteration of Alg. 1. Figure 2
shows the ratio of time taken by each iteration with respect to the initial non-

14

quantitative SyGuS solving time. Some of the iterations shown in Figure 1 do
not appear in Figure 2 since they resulted in no solution—i.e., the initial solution
was minimal. CVC4 is typically slower in subsequent iterations and can take up
to 10 times the original solving time, while ESolver has comparable runtime
to the initial run and is often faster. These numbers are largely due to how
the two solvers work: CVC4 is optimized to solve problems where the grammar
imposes no restrictions on the structure of the solution, while ESolver performs
enumerative search and takes advantage of more restrictive grammars.

0 1

0

2

4

7

9

iterations
(a) CVC4.

ra
ti

o

Trop Prob

0 1 2

0

2

4

9

iterations
(b) ESolver.

ra
ti

o

Fig. 2: Solving time across iterations

One interesting point is the
parity_not benchmark. ESolver takes
26.9s to find an initial solution. But,
with a weight constraint w < 11,
an solution can be found in 2.2s.
CVC4 can find the initial solution
with weight 11 in 0.1s but cannot
solve the next iteration. We tried us-
ing different solvers in different iter-
ations of our algorithm and, in fact,
found that, if we use CVC4 to find an
initial solution and then ESolver in subsequent iterations with restricted gram-
mars we can fully solve this benchmark in a total of 2.3s which is much better
than the time taken by a single solver. To answer Q2, with appropriate choices
of solvers the overhead of synthesizing optimal solutions is minimal.

5.3 Solution Weight across Iterations

0 1
0

0.2

0.4

0.6

0.8

1

iterations
(a) CVC4.

ra
ti

o

Trop Prob

0 1 2
0

0.2

0.4

0.6

0.8

1

iterations
(b) ESolver.

ra
ti

o

Fig. 3: Solution weight across iterations.

In this section, we present how the
weight of the synthesized solutions
change across each iteration of Alg. 1.
Figure 3 shows the percentage of
weight of solutions synthesized at each
iteration with respect to the weight of
the initial SyGuS solution. The result
shows that we can improve the solu-
tions of CVC4 by 15-25% in one iter-
ation, and the solutions of ESolver by
20-50% when taking one iteration and
50-60% when taking two. The Prob benchmarks, which require two iterations,
can be improved more when using ESolver because ESolver tends to synthesize
small terms whose probability may also be small. To answer Q3, QuaSi can
improve the weights of SyGuS solutions by 20-60%.

5.4 Multi-Objective Optimization

In this section, we evaluate the effectiveness of QuaSi on the 8 benchmarks
involving two minimization objectives. The benchmarks consists of two families,

15

Table 2: Performance of QuaSi on multi-objective benchmarks.Weight denotes
the sequence of weights explored during minimization.

Problem Time[sec] Weight Largest Size
T
ro

p
×

T
ro

p

array_search_sorted TO - - 15
hackers_5_sorted 0.1+0.1+01 (0, 3)→ (0, 2) 31 13
hackers_7_sorted 0.1+0.3+0.1 (1, 4)→ (0, 5)→ (0, 3) 72 13
hackers_17_sorted 0.1+156.1+TO (2, 5)→ (1, 4)→ (0, 6) 97 13
array_search_pareto TO - - 15
hackers_5_pareto 0.1+0.1+01 (0, 3)→ (0, 2) 31 13
hackers_7_pareto 0.1+0.3+0.1 (1, 4)→ (1, 3)→ (0, 3) 74 13
hackers_17_pareto 0.1+9.1+0.1 (2, 5)→ (2, 4)→ (1, 4) 54 13

4 for sorted optimization and 4 for Pareto optimization. The sorted optimization
benchmarks ask to minimize first the number of occurrences of specified operator
(bvand in hacks and ite in array_search) and then the size of the solution. The
Pareto optimization benchmarks have the same objectives as sorted optimization
but here we are synthesizing a Pareto optimal solution instead of sorted optimal
one. The results are shown in Table 2. We do not present the results using CVC4
because it cannot solve any of the benchmarks.

The array_search times out since it is already hard on a single objective.
For the hackers_5 benchmarks, the initial solution is already optimized for the
first objective, so the problem degenerates to the single-objective optimization
problem. For the hackers_7 and hackers_17, we present the weights of the inter-
mediate solutions we can see that Pareto and Sorted optimizations yield different
solutions. To answer Q4, QuaSi can solve problems with multiple objec-
tives when the same problems are feasible with a single objective.

6 Related Work

Qualitative Synthesis Existing program synthesizers fall in three categories: (i) enu-
meration solvers, which typically output the smallest program [1], (ii) symbolic
solvers, which reduce the synthesis problem to a constraint solving problem and
output whatever program is produced by the constraint solver [21], (iii) prob-
abilistic synthesizers, which randomly search the space for a solution and are
typically unpredictable [18]. Since the introduction of the SyGuS format [2],
these techniques have been used to build several SyGuS solvers that have com-
peted in SyGuS competitions [4]. The most effective ones, which are used in this
paper are ESolver and EUSolver [1] (enumeration), and CVC4 [6] (symbolic).
Quantitative synthesis Domain-specific synthesizers typically employ hard-coded
ranking functions that guide the search towards a “preferable” program [17], but
these functions are typically hard to write and are decoupled from the functional
specification. Unlike QSyGuS, these synthesizers allow arbitrary ranking func-
tions to be expressed in general purpose languages, but typically only support
limited grammars for synthesis. Moreover, in many practical applications the

16

ranking functions are very simple. For example, the popular spreadsheet for-
mula synthesizer FlashFill [12] uses a ranking function to prefer small programs
with few constants. This type of objective is expressible in our framework.

The Sketch synthesizer supports optimization objectives over variables in
sketched programs [20]. This work differs from ours in that sketches are a differ-
ent specification mechanism from SyGuS. In Sketch the search space is encoded
as a program with holes to facilitate synthesis by constraint solving. Translating
SyGuS problems into sketches is non-trivial and results in poor performance.

The work closest to ours is Synapse [7], which combines sketching with an
approach similar to ours. For the same reasons as for Sketch, Synapse differs
from our work because it proposes a different search space mechanisms. How-
ever, there are a few analogies between our work and Synapse that are worth
explaining in detail. Synapse supports syntactic cost functions that are defined
using a decidable theory, and separately from the sketch search space. Synthesis
is done using an iterative search where sketches—i.e., set of partial programs
with holes—of increasing sizes are given to the synthesizer. At the high level,
the intermediate sketches are related to our notion of reduced grammars—i.e.,
they accept solution of weight less than a given constant. However, while our
algorithm generates reduced grammars automatically for a well-defined family
of semirings, Synapse requires the user to provide a function for generating the
intermediate sketches. Moreover, since Synapse requires cost functions that are
defined using a decidable theory, it would not support certain families of costs
QSyGuS supports—e.g., the probabilistic semiring.

Koukoutos et al. [15] have proposed the use of probabilistic tree grammars to
guide the search of enumerative synthesizers on applications outside of SyGuS.
Their algorithm enumerates all terms accepted by the grammar in decreasing
probability using a variant of the search algorithm A∗ and requires the grammar
to not contain transitions of weight 1 to avoid getting stuck. Probabilistic tree
grammars are a special case of QSyGuS and our algorithm does not impose
limitations of what weights can appear in the grammar. Moreover, our algorithm
does not require implementing a new solver when changing the cost semiring.

7 Conclusion

We presented QSyGuS, a general framework for defining and solving SyGuS
problems in the presence of quantitative objectives over the syntax of the pro-
grams. QSyGuS is (i) natural : requires minimal modification to the SyGuS
format, (ii) general : it supports complex but practical types of weights, (iii) for-
mal : it is grounded in the theory of weighted tree grammars, (iv) effective: our
tool QuaSi can solve quantitative variations of existing SyGuS benchmarks
with little overhead. In the future, we plan to extend our framework to han-
dle probabilistic objectives and quantitative objectives over the semantics of the
program—e.g., synthesize programs that satisfy most of the specification.
Acknowledgements The authors were supported by National Science Foundation
Grants CCF-1637516, CCF-1704117 and a Google Research Award.

17

References

1. ESolver. https://github.com/abhishekudupa/sygus-comp14.
2. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 1–8. IEEE,
2013.

3. R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. Results and analysis of
SyGuS-comp’15. arXiv preprint arXiv:1602.01170, 2016.

4. R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. Sygus-comp 2016: results and
analysis. arXiv preprint arXiv:1611.07627, 2016.

5. R. Alur, A. Radhakrishna, and A. Udupa. Scaling enumerative program synthesis
via divide and conquer. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 319–336. Springer, 2017.

6. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Cvc4. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidelberg,
2011. Springer-Verlag.

7. J. Bornholt, E. Torlak, D. Grossman, and L. Ceze. Optimizing synthesis with
metasketches. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’16, pages 775–788, New
York, NY, USA, 2016. ACM.

8. B. Caulfield, M. N. Rabe, S. A. Seshia, and S. Tripakis. What’s decidable about
syntax-guided synthesis? CoRR, abs/1510.08393, 2015.

9. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

10. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer
Publishing Company, Incorporated, 1st edition, 2009.

11. M. Droste and H. Vogler. Weighted tree automata and weighted logics. Theoretical
Computer Science, 366(3):228 – 247, 2006. Automata and Formal Languages.

12. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 317–330, 2011.

13. S. Gulwani. Programming by examples: Applications, algorithms, and ambiguity
resolution. In Automated Reasoning - 8th International Joint Conference, IJCAR
2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, pages 9–14, 2016.

14. Q. Hu and L. D’Antoni. Automatic program inversion using symbolic trans-
ducers. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017, pages 376–389, 2017.

15. M. Koukoutos, M. Raghothaman, E. Kneuss, and V. Kuncak. On repair with
probabilistic attribute grammars. CoRR, abs/1707.04148, 2017.

16. V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. Verifying and syn-
thesizing constant-resource implementations with types. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 710–728, May 2017.

17. O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program syn-
thesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

http://www.grappa.univ-lille3.fr/tata

18

2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages
107–126, 2015.

18. E. Schkufza, R. Sharma, and A. Aiken. Stochastic program optimization. Commun.
ACM, 59(2):114–122, 2016.

19. R. Singh and S. Gulwani. Predicting a correct program in programming by exam-
ple. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pages 398–414,
2015.

20. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In Proceedings of PLDI’13, pages 15–26,
New York, NY, USA, 2013. ACM.

21. A. Solar-Lezama. Program sketching. International Journal on Software Tools for
Technology Transfer, 15(5):475–495, Oct 2013.

A Format Examples

The following are three examples of QSyGuS file formats.

A.1 max_ite(2,3)

(set -weight (w1 TROP))
(set -logic LIA)

(declare -var x Int)
(declare -var y Int)
(synth -fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1
(+ Start Start)
(- Start Start)
((ite StartBool Start Start) : 1)))

(StartBool Bool ((and StartBool StartBool)
(or StartBool StartBool)
(not StartBool)
(<= Start Start)
(= Start Start)
(>= Start Start)))))

(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))

(weight -constraint (and (<= w1 3) (<= 2 w1)))
(optimize w1)

(check -synth)

A.2 hackers_17_prob

(set -weight (w1 PROB))
(set -logic BV)

(define -fun hd17 ((x (BitVec 32))) (BitVec 32)
(bvand (bvadd (bvor x (bvsub x #x00000001)) #x00000001) x))

(synth -fun f ((x (BitVec 32))) (BitVec 32)
((Start (BitVec 32) (((bvnot Start):0.125)

((bvxor Start Start):0.125)

19

((bvand Start Start):0.125)
((bvor Start Start) : 0.125)
((bvneg Start):0.125)
((bvadd Start Start):0.25)
((bvmul Start Start):0.25)
((bvudiv Start Start):0.25)
((bvurem Start Start):0.25)
((bvlshr Start Start):0.25)
((bvashr Start Start):0.25)
((bvshl Start Start):0.25)
((bvsdiv Start Start):0.25)
((bvsrem Start Start):0.25)
((bvsub Start Start):0.25)
x
#x0000001F
#x00000001
#x00000000
#xFFFFFFFF))))

(declare -var x (BitVec 32))
(constraint (= (hd17 x) (f x)))
(optimize w1)
(check -synth)

A.3 hackers_17_pareto

(set -weight (w1 TROP) (w2 TROP))
(set -logic BV)

(define -fun hd17 ((x (BitVec 32))) (BitVec 32)
(bvand (bvadd (bvor x (bvsub x #x00000001)) #x00000001) x))

(synth -fun f ((x (BitVec 32))) (BitVec 32)
((Start (BitVec 32) (((bvnot Start): 0 1)

((bvxor Start Start): 0 1)
((bvand Start Start): 1 1)
((bvor Start Start) : 0 1)
((bvneg Start):0 1)
((bvadd Start Start):0 1)
((bvmul Start Start):0 1)
((bvudiv Start Start):0 1)
((bvurem Start Start):0 1)
((bvlshr Start Start):0 1)
((bvashr Start Start):0 1)
((bvshl Start Start):0 1)
((bvsdiv Start Start):0 1)
((bvsrem Start Start):0 1)
((bvsub Start Start):0 1)
x
#x0000001F
#x00000001
#x00000000
#xFFFFFFFF))))

(declare -var x (BitVec 32))
(constraint (= (hd17 x) (f x)))
(optimize (PARETO w1 w2))
(check -synth)

B Benchmarks

The following are the full description of benchmarks presented in Table 1.

max_ite(a,b) These benchmarks extend the SyGuS benchmark max2 by re-
stricting the number of if statements between a and b and then require to

20

minimize the total size of the solution. These benchmarks operate over the
semiring Trop×S Trop, but only impose one minimization objective.

parity_not minimizes number of not in corresponding SyGuS benchmark.
max3_ite minimizes number of ite in corresponding SyGuS benchmark.
Rest of Trop minimizes size of the solution in corresponding SyGuS benchmark.
hackers_a_prob Probabilistic extensions of corresponding SyGuS benchmarks

(Prob semiring). The probability scheme we use assigns probability 1
8 to shift

operators, probability 1
4 to arithmetic operators and 1

2 to logical operators.
The goal is to find the most probable solution.

C Proofs of Theorems

Theorem 1 Given an unambiguous WTG G over a semiring S such thatMS,G =
(S′,⊗, 1), and a weight s ∈ S, the construction of G�s terminates if the set {s′ |
s′ � s ∧ w ∈ S′} is finite. Moreover, if the set of weights weights(G) is mono-
tonically increasing with respect to �—i.e. for every s ∈ S and s′ ∈ weights(G),
s � s⊗ s′—then L(G�s) contains exactly every tree t such that wG(t) � s.

Proof. We first show that each step of the algorithm terminates. Steps 1 and 2
terminate since the grammar G is finite. Step 3 only produces nonterminals that
belongs to N × {s′ | s′ � s ∧ w ∈ S′} which is also finite.

We now prove soundness. It is straightforward to prove the following claim
by induction: for every nonterminal (A, s) ∈ N ′, tree t ∈ TΣ , we have that d ∈
der((A, s′), t) iff there exists a derivation d′ ∈ der(A, t) such that dw(d′) = s′

and s′ � s. Because G is unambiguous, every tree has at most one derivation.
Therefore dw(d′) = wG(t) and wG(t) � s. ut

Theorem 2 Given a WTG G over Trop and a weight s ∈ Z, the construction
of GTrop

≤s terminates if G contains no loop with with cumulative negative weight.
Moreover, GTrop

≤s contains exactly every tree t such that wG(t) ≤ s.

Proof. First, we show that any tree with weight ≤ s must be accepted by GTrop
≤s .

We do so by showing that if a tree t is not accepted by GTrop
≤s —i.e., t has some

subtree β with weight greater than s + SH—the weight of t must be greater
than s. Note that the modified algorithm can track weights ≤ s + |SH| in the
intermediate nonterminals but still accept only trees with weight ≤ s. Accord-
ing to the definition, the weight of t is the sum of all rules used to derived
t, that is, wG(t) = wG(β) + wG(t[B/β]) where t[B/β] ∈ TΣ∪{B} is the re-
sult of substituting the node corresponding to β with B. Then if t[B/β] con-
tains loops, we can eliminate all loops from it to get a tree t′[B/β] such that
wG(t[B/β]) ≥ wG(t

′[B/β]) because loops have non-negative weights. If t[B/β]
contains no loop, its weight wG(t[B/β]) ≥ −ckn+1 = −SH since the size of
t[B/β] is no more than kn+1 (the height of t[B/β] is no more than n since there
is no loop in it) and each production used to derive t[B/β] has weight greater
than −c. Therefore, using the fact that wG(t[B/β]) ≥ −SH, we have that the
weight of t is wG(β) + wG(t[B/β]) > s+ SH + wG(t[B/β]) ≥ s.

21

Now, we show that the algorithm terminates. We observe that there is only
a finite number of trees without loops so the set of their weights is also finite,
namely the minimum weight of any tree without loops is w∗. On the other hand,
for any tree t containing loops, the weight w of t must be greater or equal to
the weight of some tree without loops—i.e., w > w∗. This is because we can
eliminate loops, whose weights are non-negative, from t and the obtained tree
has greater or equal weight to t. So the weights of nonterminal produced by
our constructions are fall in the range [w∗, s + SH] which is finite. Finally, the
construction only needs to produce finite number of nonterminals and will always
terminate. ut

Theorem 3 Given an unambiguous WTG G over the semiring S = S1 ×S S2

with Pareto partial order �p= par(�1,�2) and a weight s = (s1, s2) ∈ S,
if the constructions GS1

�1s1
and GS2

�2s2
terminate, then the construction of G�s

terminates.

Proof. We first show by induction that if a nonterminal (X,w1, w2) is pro-
duced in the construction of GS

�s, the nonterminals (X,w1) and (X,w2) must
be produced in the construction of GS1

�s1 and GS1

�s1 respectively. For the base
case, we consider the nonterminals (X,w1, w2) produced in step 2 with pro-
duction p. The condition µ(p) � s in the step 2 implies that µ1(p) � s1
and µ2(p) � s2 which means that (X,w1) and (X,w2) are also produced in
the construction of the corresponding grammar. Then, for every nonterminal
(X,w1, w2) produced in the step 3 with rule p and {(Xi, w

(1)
i , w

(2)
i)}i ⊆ N ′

where (w1, w2) := µ(p) ⊗
⊗

i(w
(1)
i , w

(2)
i) � (s1, s2), according to the induction

hypothesis, nonterminals in {(Xi, w
i
1)}i and {(Xi, w

i
2)}i are already produced

in the grammars GS1

�s1 and GS2

�s2 . Therefore, we can apply the step 3 with p

and nonterminals GS1

�s1 (or GS2

�s2) to produce a new nonterminal (X,w1) (or
(X,w2)). Note that w1 = µ(p)⊗

⊗
i w

(1)
i � s1, and w2 = µ(p)⊗

⊗
i w

(2)
i � s2,.

Since both of the constructions of GS1

�1s1
and GS2

�2s2
terminate, the number

of nonterminals they produce, namely n1 and n2, must be finite. We have shown
that the number of nonterminals produced in GS

�s is less than n1 × n2, which is
also finite. At last, the construction of GS

�s terminates. ut

	Syntax-Guided Synthesis with Quantitative Syntactic Objectives
	Introduction
	Illustrative Example
	SyGuS with Quantitative Objectives
	Weights over Semirings
	Weighted Tree Grammars
	QSyGuS

	Solving QSyGuS Problems via Grammar Reduction
	From QSyGuS to SyGuS
	Finding an Optimal Solution

	Implementation and Evaluation
	Effectiveness of QSyGuS Solver
	Solving Time for Different Iterations
	Solution Weight across Iterations
	Multi-Objective Optimization

	Related Work
	Conclusion
	Format Examples
	max_ite(2,3)
	hackers_17_prob
	hackers_17_pareto

	Benchmarks
	Proofs of Theorems

