
Proving Unrealizability
for Syntax-Guided Synthesis

Qinheping Hu1, Jason Breck1, John Cyphert1,
Loris D’Antoni1, Thomas Reps1,2

1 University of Wisconsin-Madison, Madison, USA
2 GrammaTech, Inc., USA

Abstract. We consider the problem of automatically establishing that a
given syntax-guided-synthesis (SyGuS) problem is unrealizable (i.e., has
no solution). Existing techniques have quite limited ability to establish
unrealizability for general SyGuS instances in which the grammar de-
scribing the search space contains infinitely many programs. By encoding
the synthesis problem’s grammar G as a nondeterministic program PG,
we reduce the unrealizability problem to a reachability problem such
that, if a standard program-analysis tool can establish that a certain
assertion in PG always holds, then the synthesis problem is unrealizable.
Our method can be used to augment existing SyGuS tools so that they

can establish that a successfully synthesized program q is optimal with
respect to some syntactic cost—e.g., q has the fewest possible if-then-
else operators. Using known techniques, grammar G can be transformed
to generate the set of all programs with lower costs than q—e.g., fewer
conditional expressions. Our algorithm can then be applied to show that
the resulting synthesis problem is unrealizable. We implemented the pro-
posed technique in a tool called nope. nope can prove unrealizability for
59/132 variants of existing linear-integer-arithmetic SyGuS benchmarks,
whereas all existing SyGuS solvers lack the ability to prove that these
benchmarks are unrealizable, and time out on them.

1 Introduction

The goal of program synthesis is to find a program in some search space that
meets a specification—e.g., satisfies a set of examples or a logical formula. Re-
cently, a large family of synthesis problems has been unified into a framework
called syntax-guided synthesis (SyGuS). A SyGuS problem is specified by a
regular-tree grammar that describes the search space of programs, and a logi-
cal formula that constitutes the behavioral specification. Many synthesizers now
support a specific format for SyGuS problems [1], and compete in annual syn-
thesis competitions [2]. Thanks to these competitions, these solvers are now quite
mature and are finding a wealth of applications [9].

Consider the SyGuS problem to synthesize a function f that computes the
maximum of two variables x and y, denoted by (ψmax2(f, x, y), G1). The goal is to

2 Authors Suppressed Due to Excessive Length

create ef—an expression-tree for f—where ef is in the language of the following
regular-tree grammar G1:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start, Start) | Not(BExpr) | And(BExpr,BExpr)

and ∀x, y.ψmax2(Jef K, x, y) is valid, where Jef K denotes the meaning of ef , and

ψmax2(f, x, y) := f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y).

SyGuS solvers can easily find a solution, such as

e := IfThenElse(GreaterThan(x, y), x, y).

Although many solvers can now find solutions efficiently to many SyGuS
problems, there has been effectively no work on the much harder task of proving
that a given SyGuS problem is unrealizable—i.e., it does not admit a solution.
For example, consider the SyGuS problem (ψmax2(f, x, y), G2), where G2 is the
more restricted grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start,Start) | x | y | 0 | 1
This SyGuS problem does not have a solution, because no expression generated
by G2 meets the specification.1 However, to the best of our knowledge, current
SyGuS solvers cannot prove that such a SyGuS problem is unrealizable.2

A key property of the previous example is that the grammar is infinite. When
such a SyGuS problem is realizable, any search technique that systematically
explores the infinite search space of possible programs will eventually identify a
solution to the synthesis problem. In contrast, proving that a problem is unre-
alizable requires showing that every program in the infinite search space fails
to satisfy the specification. This problem is in general undecidable [6]. Although
we cannot hope to have an algorithm for establishing unrealizability, the chal-
lenge is to find a technique that succeeds for the kinds of problems encountered
in practice. Existing synthesizers can detect the absence of a solution in cer-
tain cases (e.g., because the grammar is finite, or is infinite but only generate
a finite number of functionally distinct programs). However, in practice, as our
experiments show, this ability is limited—no existing solver was able to show
unrealizability for any of the examples considered in this paper.

In this paper, we present a technique for proving that a possibly infinite
SyGuS problem is unrealizable. Our technique builds on two ideas.

1 Grammar G2 only generates terms that are equivalent to some linear function of x
and y; however, the maximum function cannot be described by a linear function.

2 The synthesis problem presented above is one that is generated by a recent tool
called QSyGuS, which extends SyGuS with quantitative syntactic objectives [10].
The advantage of using quantitative objectives in synthesis is that they can be used
to produce higher-quality solutions—e.g., smaller, more readable, more efficient, etc.
The synthesis problem (ψmax2(f, x, y), G2) arises from a QSyGuS problem in which
the goal is to produce an expression that (i) satisfies the specification ψmax2(f, x, y),
and (ii) uses the smallest possible number of if-then-else operators. Existing SyGuS
solvers can easily produce a solution that uses one if-then-else operator, but cannot
prove that no better solution exists—i.e., (ψmax2(f, x, y), G2) is unrealizable.

Proving Unrealizability for Syntax-Guided Synthesis 3

1. We observe that unrealizability can often be proven using finitely many input
examples. In §2, we show how the example discussed above can be proven to
be unrealizable using four input examples—(0, 0), (0, 1), (1, 0), and (1, 1).

2. We devise a way to encode a SyGuS problem (ψ(f, x̄), G) over a finite set
of examples E as a reachability problem in a recursive program P [G,E]. In
particular, the program that we construct has an assertion that holds if and
only the given SyGuS problem is unrealizable. Consequently, unrealizability
can be proven by establishing that the assertion always holds. This property
can often be established by a conventional program-analysis tool.

The encoding mentioned in item 2 is non-trivial for three reasons. The following
list explains each issue, and sketches how they are addressed

1) Infinitely many terms. We need to model the infinitely many terms generated
by the grammar of a given synthesis problem (ψ(f, x̄), G).

To address this issue, we use non-determinism and recursion, and give an
encoding P [G,E] such that (i) each non-deterministic path p in the program
P [G,E] corresponds to a possible expression ep that G can generate, and (ii) for
each expression e that G can generate, there is a path pe in P [G,E]. (There is
an isomorphism between paths and the expression-trees of G)
2) Nondeterminism. We need the computation performed along each path p
in P [G,E] to mimic the execution of expression ep. Because the program uses
non-determinism, we need to make sure that, for a given path p in the program
P [G,E], computational steps are carried out that mimic the evaluation of ep for
each of the finitely many example inputs in E.

We address this issue by threading the expression-evaluation computations
associated with each example in E through the same non-deterministic choices.
3) Complex Specifications. We need to handle specifications that allow for nested
calls of the programs being synthesized.

For instance, consider the specification f(f(x)) = x. To handle this specifi-
cation, we introduce a new variable y and rewrite the specification as f(x) =
y ∧ f(y) = x. Because y is now also used as an input to f , we will thread both
the computations of x and y through the non-deterministic recursive program.

Our work makes the following contributions:

– We reduce the SyGuS unrealizability problem to a reachability problem to
which standard program-analysis tools can be applied (§2 and §4).

– We observe that, for many SyGuS problems, unrealizability can be proven
using finitely many input examples, and use this idea to apply the Counter-
Example-Guided Inductive Synthesis (CEGIS) algorithm to the problem of
proving unrealizability (§3).

– We give an encoding of a SyGuS problem (ψ(f, x̄), G) over a finite set of ex-
amples E as a reachability problem in a nondeterministic recursive program
P [G,E], which has the following property: if a certain assertion in P [G,E]
always holds, then the synthesis problem is unrealizable (§4).

– We implement our technique in a tool nope using the ESolver synthesizer [2]
as the SyGuS solver and the SeaHorn tool [8] for checking reachability. nope

4 Authors Suppressed Due to Excessive Length

is able to establish unrealizability for 59 out of 132 variants of benchmarks
taken from the SyGuS competition. In particular, nope solves all bench-
marks with no more than 15 productions in the grammar and requiring no
more than 9 input examples for proving unrealizability. Existing SyGuS
solvers lack the ability to prove that these benchmarks are unrealizable, and
time out on them.

§6 discusses related work. Some additional technical material, proofs, and full
experimental results are given in Apps. A, B, and C, respectively.

2 Illustrative Example

In this section, we illustrate the main components of our framework for estab-
lishing the unrealizability of a SyGuS problem.

Consider the SyGuS problem to synthesize a function f that computes the
maximum of two variables x and y, denoted by (ψmax2(f, x, y), G1). The goal is to
create ef—an expression-tree for f—where ef is in the language of the following
regular-tree grammar G1:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start, Start) | Not(BExpr) | And(BExpr,BExpr)

and ∀x, y.ψmax2(Jef K, x, y) is valid, where Jef K denotes the meaning of ef , and

ψmax2(f, x, y) := f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y).

SyGuS solvers can easily find a solution, such as

e := IfThenElse(GreaterThan(x, y), x, y).

Although many solvers can now find solutions efficiently to many SyGuS
problems, there has been effectively no work on the much harder task of proving
that a given SyGuS problem is unrealizable—i.e., it does not admit a solution.
For example, consider the SyGuS problem (ψmax2(f, x, y), G2), where G2 is the
more restricted grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start,Start) | x | y | 0 | 1
This SyGuS problem does not have a solution, because no expression generated
by G2 meets the specification.3 However, to the best of our knowledge, current
SyGuS solvers cannot prove that such a SyGuS problem is unrealizable. As an
example, we use the problem (ψmax2(f, x, y), G2) discussed in §1, and show how
unrealizability can be proven using four input examples: (0, 0), (0, 1), (1, 0), and
(1, 1).

Our method can be seen as a variant of Counter-Example-Guided Inductive
Synthesis (CEGIS), in which the goal is to create a program P in which a
certain assertion always holds. Until such a program is created, each round of
the algorithm returns a counter-example, from which we extract an additional
3 Grammar G2 generates all linear functions of x and y, and hence generates an infinite
number of functionally distinct programs; however, the maximum function cannot
be described by a linear function.

Proving Unrealizability for Syntax-Guided Synthesis 5

1 int I_0;
2 void Start(int x_0 ,int y_0){
3 if(nd()){ // Encodes ‘‘Start ::= Plus(Start , Start)’’
4 Start(x_0 , y_0);
5 int tempL_0 = I_0;
6 Start(x_0 , y_0);
7 int tempR_0 = I_0;
8 I_0 = tempL_0 + tempR_0;
9 }

10 else if(nd()) I_0 = x_0; // Encodes ‘‘Start ::= x’’
11 else if(nd()) I_0 = y_0; // Encodes ‘‘Start ::= y’’
12 else if(nd()) I_0 = 1; // Encodes ‘‘Start ::= 1’’
13 else I_0 = 0; // Encodes ‘‘Start ::= 0’’
14 }
15

16 bool spec(int x, int y, int f){
17 return (f>=x && f>=y && (f==x || f==y))
18 }
19

20 void main(){
21 int x_0 = 0; int y_0 = 1; // Input example (0,1)
22 Start(x_0 ,y_0);
23 assert (!spec(x_0 ,y_0 ,I_0));
24 }

Fig. 1: Program P [G2, E1] created during the course of proving the unrealizability
of (ψmax2(f, x, y), G2) using the set of input examples E1 = {(0, 1)}.

input example for the original SyGuS problem. On the ith round, the current
set of input examples Ei is used, together with the grammar—in this case G2—
and the specification of the desired behavior—ψmax2(f, x, y), to create a candidate
program P [G2, Ei]. The program P [G2, Ei] contains an assertion, and a standard
program analyzer is used to check whether the assertion always holds.

Suppose that for the SyGuS problem (ψmax2(f, x, y), G2) we start with just
the one example input (0, 1)—i.e., E1 = {(0, 1)}. Fig. 1 shows the initial program
P [G2, E1] that our method creates. The function spec implements the predicate
ψmax2(f, x, y). (All of the programs {P [G2, Ei]} use the same function spec.) The
initialization statements “int x_0 = 0; int y_0 = 1;” at line (21) in proce-
dure main correspond to the input example (0, 1). The recursive procedure Start
encodes the productions of grammar G2. Start is non-deterministic; it contains
four calls to an external function nd(), which returns a non-deterministically cho-
sen Boolean value. The calls to nd() can be understood as controlling whether or
not a production is selected from G2 during a top-down, left-to-right generation
of an expression-tree: lines (3)–(8) correspond to “Start ::= Plus(Start, Start),”
and lines (10), (11), (12), and (13) correspond to “Start ::= x,” “Start ::= y,”
“Start ::= 1,” and “Start ::= 0,” respectively. The code in the five cases in the
body of Start encodes the semantics of the respective production of G2; in par-
ticular, the statements that are executed along any execution path of P [G2, E1]
implement the bottom-up evaluation of some expression-tree that can be gener-
ated by G2. For instance, consider the path that visits statements in the following

6 Authors Suppressed Due to Excessive Length

1 int I_0 , I_1 , I_2 , I_3;
2 void Start(int x_0 ,int y_0 ,...,int x_3 ,int y_3){
3 if(nd()){ // Encodes ‘‘Start ::= Plus(Start , Start)’’
4 Start(x_0 , y_0 , x_1 , y_1 , x_2 , y_2 , x_3 , y_3);
5 int tempL_0 = I_0; int tempL_1 = I_1;
6 int tempL_2 = I_2; int tempL_3 = I_3;
7 Start(x_0 , y_0 , x_1 , y_1 , x_2 , y_2 , x_3 , y_3);
8 int tempR_0 = I_0; int tempR_1 = I_1;
9 int tempR_2 = I_2; int tempR_3 = I_3;

10 I_0 = tempL_0 + tempR_0;
11 I_1 = tempL_1 + tempR_1;
12 I_2 = tempL_2 + tempR_2;
13 I_3 = tempL_3 + tempR_3 ;}
14 else if(nd()) { // Encodes ‘‘Start ::= x’’
15 I_0 = x_0; I_1 = x_1; I_2 = x_2; I_3 = x_3;}
16 else if(nd()) { // Encodes ‘‘Start ::= y’’
17 I_0 = y_0; I_1 = y_1; I_2 = y_2; I_3 = y_3;}
18 else if(nd()) { // Encodes ‘‘Start ::= 1’’
19 I_0 = 1; I_1 = 1; I_2 = 1; I_3 = 1;}
20 else { // Encodes ‘‘Start ::= 0’’
21 I_0 = 0; I_1 = 0; I_2 = 0; I_3 = 0;}
22 }
23

24 bool spec(int x, int y, int f){
25 return (f>=x && f>=y && (f==x || f==y))
26 }
27

28 void main(){
29 int x_0 = 0; int y_0 = 1; // Input example (0,1)
30 int x_1 = 0; int y_1 = 0; // Input example (0,0)
31 int x_2 = 1; int y_2 = 1; // Input example (1,1)
32 int x_3 = 1; int y_3 = 0; // Input example (1,0)
33 Start(x_0 ,y_0 ,x_1 ,y_1 ,x_2 ,y_2 ,x_3 ,y_3);
34 assert(!spec(x_0 ,y_0 ,I_0) || !spec(x_1 ,y_1 ,I_1)
35 || !spec(x_2 ,y_2 ,I_2) || !spec(x_3 ,y_3 ,I_3));
36 }

Fig. 2: Program P [G2, E4] created during the course of proving the un-
realizability of (ψmax2(f, x, y), G2) using the set of input examples E4 =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

order (for brevity, some statement numbers have been elided):

21 22 (Start 3 4 (Start 10)Start 6 (Start 12)Start 8)Start 23, (1)
where (Start and)Start indicate entry to, and return from, procedure Start,
respectively. Path (1) corresponds to the top-down, left-to-right generation of
the expression-tree Plus(x,1), interleaved with the tree’s bottom-up evaluation.

Note that with path (1), when control returns to main, variable I_0 has the
value 1, and thus the assertion at line (23) fails.

A sound program analyzer will discover that some such path exists in the
program, and will return the sequence of non-deterministic choices required to
follow one such path. Suppose that the analyzer chooses to report path (1); the
sequence of choices would be t, f, t, f, f, f, t, which can be decoded to create the

Proving Unrealizability for Syntax-Guided Synthesis 7

expression-tree Plus(x,1). At this point, we have a candidate definition for f :
f = x + 1. This formula can be checked using an SMT solver to see whether it
satisfies the behavioral specification ψmax2(f, x, y). In this case, the SMT solver
returns “false.” One counter-example that it could return is (0, 0).

At this point, program P [G2, E2] would be constructed using both of the
example inputs (0, 1) and (0, 0). Rather than describe P [G2, E2], we will describe
the final program constructed, P [G2, E4] (see Fig. 2).

As can be seen from the comments in the two programs, program P [G2, E4]
has the same basic structure as P [G2, E1].

– main begins with initialization statements for the four example inputs.
– Start has five cases that correspond to the five productions of G2.

The main difference is that because the encoding of G2 in Start uses non-
determinism, we need to make sure that along each path p in P [G2, E4], each of
the example inputs is used to evaluate the same expression-tree. We address this
issue by threading the expression-evaluation computations associated with each
of the example inputs through the same non-deterministic choices. That is, each
of the five “production cases” in Start has four encodings of the production’s
semantics—one for each of the four expression evaluations. By this means, the
statements that are executed along path p perform four simultaneous bottom-up
evaluations of the expression-tree from G2 that corresponds to p.

Programs P [G2, E2] and P [G2, E3] are similar to P [G2, E4], but their paths
carry out two and three simultaneous bottom-up evaluations, respectively. The
actions taken during rounds 2 and 3 to generate a new counter-example—and
hence a new example input—are similar to what was described for round 1.
On round 4, however, the program analyzer will determine that the assertion
on lines (34)–(35) always holds, which means that there is no path through
P [G2, E4] for which the behavioral specification holds for all of the input ex-
amples. This property means that there is no expression-tree that satisfies the
specification—i.e., the SyGuS problem (ψmax2(f, x, y), G2) is unrealizable.

Our implementation uses the program-analysis tool SeaHorn [8] as the as-
sertion checker. In the case of P [G2, E4], SeaHorn takes only 0.5 seconds to
establish that the assertion in P [G2, E4] always holds.

3 SyGuS, Realizability, and CEGIS

3.1 Background

Trees and Tree Grammars. A ranked alphabet is a tuple (Σ, rkΣ) where Σ is
a finite set of symbols and rkΣ : Σ → N associates a rank to each symbol. For
every m ≥ 0, the set of all symbols in Σ with rank m is denoted by Σ(m). In
our examples, a ranked alphabet is specified by showing the set Σ and attaching
the respective rank to every symbol as a superscript—e.g., Σ = {+(2), c(0)}. (For
brevity, the superscript is sometimes omitted.) We use TΣ to denote the set of all
(ranked) trees over Σ—i.e., TΣ is the smallest set such that (i) Σ(0) ⊆ TΣ , (ii) if

8 Authors Suppressed Due to Excessive Length

σ(k) ∈ Σ(k) and t1, . . . , tk ∈ TΣ , then σ(k)(t1, · · · , tk) ∈ TΣ . In what follows, we
assume a fixed ranked alphabet (Σ, rkΣ).

In this paper, we focus on typed regular tree grammars, in which each non-
terminal and each symbol is associated with a type. There is a finite set of types
{τ1, . . . , τk}. Associated with each symbol σ(i) ∈ Σ(i), there is a type assignment
aσ(i) = (τ0, τ1, . . . , τi), where τ0 is called the left-hand-side type and τ1, . . . , τi are
called the right-hand-side types. Tree grammars are similar to word grammars,
but generate trees over a ranked alphabet instead of words.

Definition 1 (Regular Tree Grammar). A typed regular tree grammar
(RTG) is a tuple G = (N,Σ, S, a, δ), where N is a finite set of non-terminal
symbols of arity 0; Σ is a ranked alphabet; S ∈ N is an initial non-terminal; a
is a type assignment that gives types for members of Σ ∪ N ; and δ is a finite
set of productions of the form A0 → σ(i)(A1, . . . , Ai), where for 1 ≤ j ≤ i, each
Aj ∈ N is a non-terminal such that if a(σ(i)) = (τ0, τ1, . . . , τi) then a(Aj) = τj.

In a SyGuS problem, each variable, such as x and y in the example RTGs
in §1, is treated as an arity-0 symbol—i.e., x(0) and y(0).

Given a tree t ∈ TΣ∪N , applying a production r = A → β to t produces
the tree t′ resulting from replacing the left-most occurrence of A in t with the
right-hand side β. A tree t ∈ TΣ is generated by the grammar G—denoted by
t ∈ L(G)—iff it can be obtained by applying a sequence of productions r1 · · · rn
to the tree whose root is the initial non-terminal S.

Syntax-Guided Synthesis. A SyGuS problem is specified with respect to a
background theory T—e.g., linear arithmetic—and the goal is to synthesize a
function f that satisfies two constraints provided by the user. The first con-
straint, ψ(f, x̄), describes a semantic property that f should satisfy. The second
constraint limits the search space S of f , and is given as a set of expressions
specified by an RTG G that defines a subset of all terms in T .

Definition 2 (SyGuS). A SyGuS problem over a background theory T is a
pair sy = (ψ(f, x̄), G) where G is a regular tree grammar that only contains
terms in T—i.e., L(G) ⊆ T—and ψ(f, x̄) is a Boolean formula constraining the
semantic behavior of the synthesized program f .

A SyGuS problem is realizable if there exists a expression e ∈ L(G) such
that ∀x̄.ψ(JeK, x̄) is true. Otherwise we say that the problem is unrealizable.

Theorem 1 (Undecidability [6]). Given a SyGuS problem sy, it is undecid-
able to check whether sy is realizable.

Counterexample-Guided Inductive Synthesis The Counterexample-Guided
Inductive Synthesis (CEGIS) algorithm is a popular approach to solving syn-
thesis problems. Instead of directly looking for an expression that satisfies the
specification ϕ on all possible inputs, the CEGIS algorithm uses a synthesizer
S that can find expressions that are correct on a finite set of examples E. If S
finds a solution that is correct on all elements of E, CEGIS uses a verifier V

Proving Unrealizability for Syntax-Guided Synthesis 9

to check whether the discovered solution is also correct for all possible inputs to
the problem. If not, a counterexample obtained from V is added to the set of
examples, and the process repeats. More formally, CEGIS starts with an empty
set of examples E and repeats the following steps:

1. Call the synthesizer S to find an expression e such that ψE(JeK, x̄)
def
= ∀x̄ ∈

E.ψ(JeK, x̄) holds and go to step 2; return unrealizable if no expression exists.
2. Call the verifier V to find a model c for the formula ¬ψ(JeK, x̄), and add c to

the counterexample set E; return e as a valid solution if no model is found.

Because SyGuS problems are only defined over first-order decidable theories,
any SMT solver can be used as the verifier V to check whether the formula
¬ψ(JeK, x̄) is satisfiable. On the other hand, providing a synthesizer S to find
solutions such that ∀x̄ ∈ E.ψ(JeK, x̄) holds is a much harder problem because
e is a second-order term drawn from an infinite search space. In fact, checking
whether such an e exists is an undecidable problem [6].

The main contribution of our paper is a reduction of the unrealizability
problem—i.e., the problem of proving that there is no expression e ∈ L(G)
such that ∀x̄ ∈ E.ψ(JeK, x̄) holds—to an unreachability problem (§4). This re-
duction allows us to use existing (un)reachability verifiers to check whether a
SyGuS instance is unrealizable.

3.2 CEGIS and Unrealizability

The CEGIS algorithm is sound but incomplete for proving unrealizability. Given
a SyGuS problem sy = (ψ(f, x̄), G) and a finite set of inputs E, we denote with
syE := (ψE(f, x̄), G) the corresponding SyGuS problem that only requires the
function f to be correct on the examples in E.

Lemma 1 (Soundness). If syE is unrealizable then sy is unrealizable.

Even when given a perfect synthesizer S—i.e., one that can solve a problem
syE for every possible set E—there are SyGuS problems for which the CEGIS
algorithm is not powerful enough to prove unrealizability.

Lemma 2 (Incompleteness). There exists an unrealizable SyGuS problem
sy such that for every finite set of examples E the problem syE is realizable.

Despite this negative result, we will show that a CEGIS algorithm can prove
unrealizability for many SyGuS instances (§5).

4 From Unrealizability to Unreachability

In this section, we show how a SyGuS problem for finitely many examples can
be reduced to a reachability problem in a non-deterministic, recursive program
in an imperative programming language.

10 Authors Suppressed Due to Excessive Length

4.1 Reachability Problems

A program P takes an initial state I as input and outputs a final state O,
i.e., JP K(I) = O where J·K denotes the semantic function of the programming
language. As illustrated in §2, we allow a program to contain calls to an exter-
nal function nd(), which returns a non-deterministically chosen Boolean value.
When program P contains calls to nd(), we use P̂ to denote the program that
is the same as P except that P̂ takes an additional integer input n, and each call
nd() is replaced by a call to a local function nextbit() defined as follows:

bool nextbit(){bool b = n%2; n=n»1; return b;}.

In other words, the integer parameter n of P̂ [n] formalizes all of the non-
deterministic choices made by P in calls to nd().

For the programs P [G,E] used in our unrealizability algorithm, the only
calls to nd() are ones that control whether or not a production is selected from
grammar G during a top-down, left-to-right generation of an expression-tree.
Given n, we can decode it to identify which expression-tree n represents.

Example 1. Consider again the SyGuS problem (ψmax2(f, x, y), G2) discussed in
§2. In the discussion of the initial program P [G2, E1] (Fig. 1), we hypothesized
that the program analyzer chose to report path (1) in P , for which the sequence
of non-deterministic choices is t, f, t, f, f, f, t. That sequence means that for P̂ [n],
the value of n is 1000101 (base 2) (or 69 (base 10)). The 1s, from low-order to
high-order position, represent choices of production instances in a top-down,
left-to-right generation of an expression-tree. (The 0s represent rejected possible
choices.) The rightmost 1 in n corresponds to the choice in line (3) of “Start ::=
Plus(Start, Start)”; the 1 in the third-from-rightmost position corresponds
to the choice in line (10) of “Start ::= x” as the left child of the Plus node; and
the 1 in the leftmost position corresponds to the choice in line (12) of “Start ::=
1” as the right child. By this means, we learn that the behavioral specification
ψmax2(f, x, y) holds for the example set E1 = {(0, 1)} for f 7→ Plus(x,1). ut

Definition 3 (Reachability Problem). Given a program P̂ [n], containing as-
sertion statements and a non-deterministic integer input n, we use reP to denote
the corresponding reachability problem. The reachability problem reP is satisfi-
able if there exists a value n that, when bound to n, falsifies any of the assertions
in P̂ [n]. The problem is unsatisfiable otherwise.

4.2 Reduction to Reachability

The main component of our framework is an encoding enc that given a SyGuS
problem syE = (ψE(f, x), G) over a set of examples E = {c1, . . . , ck}, outputs
a program P [G,E] such that syE is realizable if and only if reenc(sy,E) is
satisfiable. In this section, we define all the components of P [G,E], and state
the correctness properties of our reduction.
Remark: In this section, we assume that in the specification ψ(f, x) every occur-
rence of f has x as input parameter. We show how to overcome this restriction

Proving Unrealizability for Syntax-Guided Synthesis 11

in §A.1. In the following, we assume that the input x has type τI , where τI
could be a complex type—e.g., a tuple type.
Program construction. Recall that the grammar G is a tuple (N,Σ, S, a, δ). First,
for each non-terminal A ∈ N , the program P [G,E] contains k global variables
{g_1_A, . . . , g_k_A} of type a(A) that are used to express the values resulting
from evaluating expressions generated from non-terminal A on the k examples.
Second, for each non-terminal A ∈ N , the program P [G,E] contains a function

void funcA(τI v1, . . . , τI vk){ bodyA }

We denote by δ(A) = {r1, . . . , rm} the set of production rules of the form
A→ β in δ. The body bodyA of funcA has the following structure:

if(nd()) {Enδ(r1)}
else if(nd()) {Enδ(r2)}
. . .
else {Enδ(rm)}

The encoding Enδ(r) of a production r = A0 → b(j)(A1, · · · , Aj) is defined
as follows (τi denotes the type of the term Ai):

funcA1(v1,...,vk);
τ1 child_1_1 = g_1_A1; . . . ; τ1 child_1_k = g_k_Aj;
. . .
funcAj(v1,...,vk);
τj child_j_1 = g_1_A1; . . . ; τj child_j_k = g_k_Aj;
g_1_A0 = enc1b(child_1_1, . . . , child_1_k)
. . .
g_k_A0 = enckb (child_j_1, . . . , child_j_k)

Note that if b(j) is of arity 0—i.e., if j = 0—the construction yields k assignments
of the form g_m_A0 = encmb ().

The function encmb interprets the semantics of b on the mth input example.
We take Linear Integer Arithmetic as an example to illustrate how encmb works.

encm0(0) := 0 encm1(0) := 1
encmx(0) := vi encmEquals(2)(L,R) := (L=R)

encmPlus(2)(L,R) := L+R encmMinus(2)(L,R) := L-R
encmIfThenElse(3)(B,L,R) := if(B) L else R

We now turn to the correctness of the construction. First, we formalize the
relationship between expression-trees in L(G), the semantics of P [G,E], and
the number n. Given an expression-tree e, we assume that each node q in e is
annotated with the production that has produced that node. Recall that δ(A) =
{r1, . . . , rm} is the set of productions with head A (where the subscripts are
indexes in some arbitrary, but fixed order). Concretely, for every node q, we
assume there is a function pr(q) = (A, i), which associates q with a pair that
indicates that non-terminal A produced n using the production ri (i.e., ri is the
ith production whose left-hand-side non-terminal is A).

We now define how we can extract a number #(e) for which the program
P̂ [#(e)] will exhibit the same semantics as that of the expression-tree e. First,

12 Authors Suppressed Due to Excessive Length

for every node q in e such that pr(q) = (A, i), we define the following number:

#nd(q) =


1 0 · · · 0︸ ︷︷ ︸

i−1

if i < |δ(A)|

0 · · · 0︸ ︷︷ ︸
i−1

if i = |δ(A)|.

The number #nd(q) indicates what suffix of the value of n will cause funcA to
trigger the code corresponding to production ri. Let q1 · · · qm be the sequence of
nodes visited during a pre-order traversal of expression-tree e. The number corre-
sponding to e, denoted by #(e), is defined as the bit-vector #nd(qm) · · ·#nd(q1).

Finally, we add the entry-point of the program, which calls the function funcS
corresponding to the initial non-terminal S, and contains the assertion that
encodes our reachability problem on all the input examples E = {c1, . . . , ck}.

void main(){
τI x1 = c1; · · · ;τI xk = ck;
funcS(x1, . . . , xk);
assert

∨
1≤i≤k ¬ψ(f, ci)[g_i_S/f(x)]; // At least one ci fails }

Correctness. We first need to show that the function #(·) captures the correct
language of expression-trees. Given a non-terminal A, a value n, and input values
i1, . . . , ik, we use JfuncA[n]K(i1, . . . , ik) = (o1, . . . ok) to denote the values of the
variables {g_1_A, . . . , g_k_A} at the end of the execution of funcA[n] with the
initial value of n = n and input values x1, . . . , xk. Given a non-terminal A, we
write L(G,A) to denote the set of terms that can be derived starting with A.

Lemma 3. Let A be a non-terminal, e ∈ L(G,A) an expression, and {i1, . . . , ik}
an input set. Then, (JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik).

Each procedure funcA[n](i1, . . . , ik) that we construct has an explicit depen-
dence on variable n, where n controls the non-deterministic choices made by the
funcA and procedures called by funcA. As a consequence, when relating numbers
and expression-trees, there are two additional issues to contend with:

Non-termination. Some numbers can cause funcA[n] to fail to terminate.
For instance, if the case for “Start ::= Plus(Start, Start)” in program
P [G2, E1] from Fig. 1 were moved from the first branch (lines (3)–(8)) to the
final else case (line (13)), the number n = 0 = . . . 0000000 (base 2) would
cause Start to never terminate, due to repeated selections of Plus nodes.
However, note that the only assert statement in the program is placed at the
end of the main procedure. Now, consider a value of n such that reenc(sy,E)

is satisfiable. Defn. 3 implies that the flow of control will reach and falsify
the assertion, which implies that funcA[n] terminates. 4

4 If the SyGuS problem deals with the synthesis of programs for a language that
can express non-terminating programs, that would be an additional source of non-
termination, different from that discussed in item Non-termination. That issue
does not arise for LIA SyGuS problems. Dealing with the more general kind of
non-termination is postponed for future work.

Proving Unrealizability for Syntax-Guided Synthesis 13

Shared suffixes of sufficient length. In Ex. 1, we showed how for program
P [G2, E1] (Fig. 1) the number n = 1000101 (base 2) corresponds to the
top-down, left-to-right generation of Plus(x,1). That derivation consumed
exactly seven bits; thus, any number that, written in base 2, shares the suffix
1000101—e.g., 11010101000101—will also generate Plus(x,1).

The issue of shared suffixes is addressed in the following lemma:

Lemma 4. For every non-terminal A and number n such that
JfuncA[n]K(i1, . . . , ik) 6= ⊥ (i.e., funcA terminates when the non-deterministic
choices are controlled by n), there exists a minimal n′ that is a (base 2) suffix
of n for which (i) there is an e ∈ L(G) such that #(e) = n′, and (ii) for every
input {i1, . . . , ik}, we have JfuncA[n]K(i1, . . . , ik) = JfuncA[n′]K(i1, . . . , ik).

We are now ready to state the correctness property of our construction.

Theorem 2. Given a SyGuS problem syE = (ψE(f, x), G) over a finite set of
examples E, the problem syE is realizable iff reenc(sy,E) is satisfiable.

5 Implementation and Evaluation

nope is a tool that can return two-sided answers to unrealizability problems of
the form sy = (ψ,G). When it returns unrealizable, no expression-tree in L(G)
satisfies ψ; when it returns realizable, some e ∈ L(G) satisfies ψ; nope can also
time out. nope incorporates several existing pieces of software.

1. The (un)reachability verifier SeaHorn is applied to the reachability prob-
lems of the form reenc(sy,E) created during successive CEGIS rounds.

2. The SMT solver Z3 is used to check whether a generated expression-tree e
satisfies ψ. If it does, nope returns realizable (along with e); if it does not,
nope creates a new input example to add to E.

It is important to observe that SeaHorn, like most reachability verifiers, is
only sound for unsatisfiability—i.e., if SeaHorn returns unsatisfiable, the
reachability problem is indeed unsatisfiable. Fortunately, SeaHorn’s one-sided
answers are in the correct direction for our application: to prove unrealizability,
nope only requires the reachability verifier to be sound for unsatisfiability.

There is one aspect of nope that differs from the technique that has been
presented earlier in the paper. While SeaHorn is sound for unreachability, it
is not sound for reachability—i.e., it cannot soundly prove whether a synthesis
problem is realizable. To address this problem, to check whether a given SyGuS
problem syE is realizable on the finite set of examples E, nope also calls the
SyGuS solver ESolver [2] to synthesize an expression-tree e that satisfies syE .5

In practice, for every intermediate problem syE generated by the CEGIS
algorithm, nope runs the ESolver on syE and SeaHorn on reenc(sy,E) in par-
allel. If ESolver returns a solution e, SeaHorn is interrupted, and Z3 is used
5 We chose ESolver because on the benchmarks we considered, ESolver outperformed
other SyGuS solvers (e.g., CVC4 [3]).

14 Authors Suppressed Due to Excessive Length

to check whether e satisfies ψ. Depending on the outcome, nope either returns
realizable or obtains an additional input example to add to E. If SeaHorn
returns unsatisfiable, nope returns unrealizable.

Modulo bugs in its constituent components, nope is sound for both realiz-
ability and unrealizability, but because of Lemma 2 and the incompleteness of
SeaHorn, nope is not complete for unrealizability.
Benchmarks. We perform our evaluation on 132 variants of the 60 LIA bench-
marks from the LIA SyGuS competition track [2]. We do not consider the other
SyGuS benchmark track, Bit-Vectors, because the SeaHorn verifier is unsound
for most bit-vector operations–e.g., bit-shifting. We used three suites of bench-
marks. LimitedIf (resp. LimitedPlus) contains 57 (resp. 30) benchmarks in
which the grammar bounds the number of times an IfThenElse (resp. Plus) op-
erator can appear in an expression-tree to be 1 less than the number required to
solve the original synthesis problem. We used the tool Quasi to automatically
generate the restricted grammars. LimitedConst contains 45 benchmarks in
which the grammar allows the program to contain only constants that are co-
prime to any constants that may appear in a valid solution—e.g., the solution
requires using odd numbers, but the grammar only contains the constant 2. The
numbers of benchmarks in the three suites differ because for certain benchmarks
it did not make sense to create a limited variant—e.g., if the smallest program
consistent with the specification contains no IfThenElse operators, no variant
is created for the LimitedIf benchmark. In all our benchmarks, the grammars
describing the search space contain infinitely many terms.

Our experiments were performed on an Intel Core i7 4.00GHz CPU, with
32GB of RAM, running Lubuntu 18.10 via VirtualBox. We used version 4.8 of
Z3, commit 97f2334 of SeaHorn, and commit d37c50e of ESolver. The timeout
for each individual SeaHorn/ESolver call is set at 10 minutes.
Experimental Questions. Our experiments were designed to answer the ques-
tions posed below.

EQ 1. Can nope prove unrealizability for variants of real SyGuS bench-
marks, and how long does it take to do so?

Finding: nope can prove unrealizability for 59/132 benchmarks. For the 59
benchmarks solved by nope, the average time taken is 15.59s. The time taken
to perform the last iteration of the algorithm—i.e., the time taken by SeaHorn
to return unsatisfiable—accounts for 87% of the total running time.

nope can solve all of the LimitedIf benchmarks for which the grammar al-
lows at most one IfThenElse operator. Allowing more IfThenElse operators in the
grammar leads to larger programs and larger sets of examples, and consequently
the resulting reachability problems are harder to solve for SeaHorn.

For a similar reason, nope can solve only one of the LimitedPlus bench-
marks. All other LimitedPlus benchmarks allow 5 or more Plus statements,
resulting in grammars that have at least 130 productions.

nope can solve all LimitedConst benchmarks because these require few
examples and result in small encoded programs.

Proving Unrealizability for Syntax-Guided Synthesis 15

EQ 2. How many examples does nope use to prove unrealizability and how
does the number of examples affect the performance of nope?

Note that Z3 can produce different models for the same query, and thus different
runs of NOPE can produce different sequences of example. Hence, there is no
guarantee that NOPE finds a good sequence of examples that prove unrealiz-
ability. One measure of success is whether nope is generally able to find a small
number of examples, when it succeeds in proving unrealizability.

Finding: Nope used 1 to 9 examples to prove unrealizability for the bench-
marks on which it terminated. Problems requiring large numbers of examples
could not be solved because either ESolver or SeaHorn timeouts—e.g., on the
problem max4, nope gets to the point where the CEGIS loop has generated 17
examples, at which point ESolver exceeds the timeout threshold.

2 3 4 7 8 9
10−1

100

101

102

examples

ti
m
e
(s
)

Fig. 3: Time vs examples.

Finding: The number of examples required to
prove unrealizability depends mainly on the ar-
ity of the synthesized function and the complex-
ity of the grammar. The number of examples
seems to grow quadratically with the number of
bounded operators allowed in the grammar. In
particular, problems in which the grammar allows
zero IfThenElse operators require 2–4 examples,
while problems in which the grammar allows one
IfThenElse operator require 7–9 examples.

Figure 3 plots the running time of nope against the number of examples
generated by the CEGIS algorithm. Finding: The solving time appears to grow
exponentially with the number of examples required to prove unrealizability.

6 Related Work

The SyGuS formalism was introduced as a unifying framework to express several
synthesis problems [1]. Caulfield et al. [6] proved that it is undecidable to deter-
mine whether a given SyGuS problem is realizable. Despite this negative result,
there are several SyGuS solvers that compete in yearly SyGuS competitions [2]
and can efficiently produce solutions to SyGuS problems when a solution exists.
Existing SyGuS synthesizers fall into three categories: (i) Enumeration solvers
enumerate programs with respect to a given total order [7]. If the given prob-
lem is unrealizable, these solvers typically only terminate if the language of the
grammar is finite or contains finitely many functionally distinct programs. While
in principle certain enumeration solvers can prune infinite portions of the search
space, none of these solvers could prove unrealizability for any of the benchmarks
considered in this paper. (ii) Symbolic solvers reduce the synthesis problem to
a constraint-solving problem [3]. These solvers cannot reason about grammars
that restrict allowed terms, and resort to enumeration whenever the candidate
solution produced by the constraint solver is not in the restricted search space.
Hence, they also cannot prove unrealizability. (iii) Probabilistic synthesizers ran-

16 Authors Suppressed Due to Excessive Length

domly search the search space, and are typically unpredictable [14], providing
no guarantees in terms of unrealizability.
Synthesis as Reachability. CETI [12] introduces a technique for encoding
template-based synthesis problems as reachability problems. The CETI encod-
ing only applies to the specific setting in which (i) the search space is described
by an imperative program with a finite number of holes—i.e., the values that the
synthesizer has to discover—and (ii) the specification is given as a finite number
of input-output test cases with which the target program should agree. Because
the number of holes is finite, and all holes correspond to values (and not terms),
the reduction to a reachability problem only involves making the holes global
variables in the program (and no more elaborate transformations).

In contrast, our reduction technique handles search spaces that are described
by a grammar, which in general consist of an infinite set of terms (not just val-
ues). Due to this added complexity, our encoding has to account for (i) the seman-
tics of the productions in the grammar, and (ii) the use of non-determinism to
encode the choice of grammar productions. Our encoding creates one expression-
evaluation computation for each of the example inputs, and threads these com-
putations through the program so that each expression-evaluation computation
makes use of the same set of non-deterministic choices.

Using the input-threading, our technique can handle specifications that con-
tain nested calls of the synthesized program (e.g., f(f(x)) = x). (§A.1.)

The input-threading technique builds a product program that perform mul-
tiple executions of the same function as done in relational program verification
[4]. Alternatively, a different encoding could use multiple function invocations
on individual inputs and require the verifier to thread the same bit-stream for
all input evaluations. In general, verifiers perform much better on product pro-
grams [4], which motivates our choice of encoding.
Unrealizability in Program Synthesis. For certain synthesis problems—e.g., reac-
tive synthesis [5]—the realizability problem is decidable. The framework tackled
in this paper, SyGuS, is orthogonal to such problems, and it is undecidable to
check whether a given SyGuS problem is realizable [6].

Mechtaev et al. [11] propose to use a variant of SyGuS to efficiently prune
irrelevant paths in a symbolic-execution engine. In their approach, for each path
π in the program, a synthesis problem pπ is generated so that if pπ is unrealizable,
the path π is infeasible. The synthesis problems generated by Mechtaev et al.
(which are not directly expressible in SyGuS) are decidable because the search
space is defined by a finite set of templates, and the synthesis problem can be
encoded by an SMT formula. To the best of our knowledge, our technique is the
first one that can check unrealizability of general SyGuS problems in which the
search space is an infinite set of functionally distinct terms.
Acknowledgment This work was supported, in part, by a gift from Rajiv
and Ritu Batra; by AFRL under DARPA MUSE award FA8750-14-2-0270 and
DARPA STAC award FA8750-15-C-0082; by ONR under grant N00014-17-1-
2889; by NSF under grants CNS-1763871 and CCF-1704117; and by the UW-
Madison OVRGE with funding from WARF.

Proving Unrealizability for Syntax-Guided Synthesis 17

References

1. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design (FMCAD), pages 1–8. IEEE, 2013.

2. R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. Sygus-comp 2016: results and
analysis. arXiv preprint arXiv:1611.07627, 2016.

3. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Cvc4. In International Conference on Computer
Aided Verification, (CAV), pages 171–177. Springer-Verlag, 2011.

4. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In International Symposium on Formal Methods (FM), pages 200–214.
Springer, 2011.

5. R. Bloem. Reactive synthesis. In Formal Methods in Computer-Aided Design
(FMCAD), pages 3–3, 2015.

6. B. Caulfield, M. N. Rabe, S. A. Seshia, and S. Tripakis. What’s decidable about
syntax-guided synthesis? arXiv preprint arXiv:1510.08393, 2015.

7. ESolver. https://github.com/abhishekudupa/sygus-comp14.
8. A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A framework for verifying C

programs (competition contribution). In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 447–450, 2015.

9. Q. Hu and L. D’Antoni. Automatic program inversion using symbolic transducers.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, (PLDI), pages 376–389, 2017.

10. Q. Hu and L. D’Antoni. Syntax-guided synthesis with quantitative syntactic ob-
jectives. In Computer Aided Verification - 30th International Conference, (CAV),
pages 386–403, 2018.

11. S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury. Symbolic execution
with existential second-order constraints. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 389–399, 2018.

12. T. Nguyen, W. Weimer, D. Kapur, and S. Forrest. Connecting program synthe-
sis and reachability: Automatic program repair using test-input generation. In
A. Legay and T. Margaria, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 301–318, 2017.

13. H. Qinheping, B. Jason, C. John, D. Loris, and T. Reps. Proving unrealizability
for syntax-guided synthesis. arXiv preprint arXiv:1905.05800, 2019.

14. E. Schkufza, R. Sharma, and A. Aiken. Stochastic program optimization. Commun.
ACM, 59(2):114–122, 2016.

A Additional Material

A.1 Encoding in the Presence of Nested Function-Invocations

In §4.2, we presented a simplified encoding that relied on the specification ψ(f, x)
to only involve function invocations of the form f(x), where x represents the
input parameter of the function to be synthesized. In this section, we show with
a simple example how such a restriction can be overcome.

18 Authors Suppressed Due to Excessive Length

Consider the following semantic specification that involves multiple invoca-
tions of the function f on different arguments, as well as nested function calls:

ψ1(f, x)
def
= f(f(x)) = f(x+ x).

By introducing new input variables and performing the proper refactoring, we
can rewrite ψ1 as the following specification, where f is always called on a single
input variable:

ψ2(f, x, y1, y2, y3, y4)
def
=

[
f(x) = y1 ∧ f(y1) = y2
∧ x+ x = y3 ∧ f(y3) = y4

]
→ y2 = y4.

It is now easy to adapt our encoding to operate over this new specification.
First, the program P [G,E] will now operate over input examples of the form
c = {w1, . . . , wk}, where each example c is a tuple corresponding to the values
of variables {x, y1, y2, y3, y4}. Second, the program will need to compute the
values of all possible calls of f on the various input parameters. Hence, for every
expression f(z) in ψ2, non-terminal A, and example wi, the program P [G,E] will
have a global variable z_i_A computing the value of the expression generated
by A parametrized by z, with respect to the values in input example wi.

For instance, assume that the input grammar has a production A→ π1 that
generates an access on the first parameter of the function to be synthesized, and
assume that we currently only have one input example. The corresponding code
for the production would be

funcA (int v_x, int v_y1, int v_y2, int v_y3, int v_y4) {
if(nd()) {

x_1_A = v_x; // Computing f(x)
y1_1_A = v_y1; // Computing f(y1)
y3_1_A = v_y3; // Computing f(y3)

}
...

In summary, thanks to the ability to execute a finite number of inputs in
lock-step, our encoding can handle specifications that contain nested function-
invocations.

A.2 Overcoming a Quirk of SeaHorn

Because SeaHorn is unsound for satisfiability, it can report that some
expression-tree satisfies behavioral specification ψ, when in fact no such
expression-tree exists. In effect, SeaHorn overapproximates the set of reach-
able states, and erroneously concludes that the assertion in reenc(sy,E) can be
falsified (i.e., all example inputs satisfy ψ). We encountered this situation in our
experiments; for some unknown reason, when the following two productions were
included in the grammar, SeaHorn would report that reenc(sy,E) was satisfi-
able in cases when it should have reported unsatisfiable :

BExpr ::= Not(BExpr) | And(BExpr,BExpr) (2)
For the examples on which this happened, we found that we could delete

these two productions, which resulted in a grammar of equivalent expressiveness.

Proving Unrealizability for Syntax-Guided Synthesis 19

That is, because the grammar still contained the IfThenElse operator, for all ex-
pressions e1, e2, e3, and e4, the expression IfThenElse(Not(e1), e2, e3) is equiva-
lent to IfThenElse(e1, e3, e2), and the expression IfThenElse(And(e1, e2), e3, e4)
is equivalent to IfThenElse(e1, IfThenElse(e2, e3, e4), e4). When we ran the same
SyGuS problem sy with productions (2) removed from the grammar, SeaHorn
reported that reenc(sy,E) was unsatisfiable. Because SeaHorn is sound for un-
satisfiability, the latter is the correct answer, and demonstrates that SyGuS
problem sy (in both modified and unmodified form) is unrealizable.

Because the expressibility of the grammar is unchanged with and without
productions (2), these examples demonstrate that the effect is caused by some
overapproximation made by SeaHorn, triggered by productions (2) and the
encoding described in §4.2.

B Proofs of Theorems

Lemma 1 (Soundness). If syE is unrealizable then sy is unrealizable.

Proof. For every expression e and input c̄ we have that ψ(JeK, c̄) ⇒ ψE(JeK, c̄)
and by contraposition ¬ψE(JeK, c̄)⇒ ¬ψ(JeK, c̄). Hence, the lemma holds. ut

Lemma 2 (Incompleteness). There exists an unrealizable SyGuS problem
sy such that for every finite set of examples E the problem syE is realizable.

Proof. Let syeq = (ψeq(f, x), Geq) be the SyGuS problem over the theory of
linear-integer arithmetic such that ψeq(f, x)

def
= f(x) = x; that is, ψeq(f, x) is a

predicate denoting that f should implement the identity function. Let Geq be
the following grammar:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | 0 | 1
BExpr ::= Equals(x,Start)

The problem syeq is unrealizable. Because the grammar does not contain the
variable x, every expression e = L(Geq) can only produce a finite number of
constant outputs. However, for every set of examples E = {n1, . . . , nk} the
following expression eE ∈ L(Geq) is a valid solution to syE (i.e., ψEeq(JeEK, x)
holds):

IfThenElse(Equals(x, T (n1)), T (n1),
IfThenElse(Equals(x, T (n2)), T (n2), . . . , T (nk) . . .)

where T (n) is the expression-tree corresponding to 0 + 1 + . . .+ 1︸ ︷︷ ︸
n

. Hence, the

CEGIS algorithm will never terminate for syeq. ut

Lemma 3. For every non-terminal A, expression e ∈ L(G,A), and input set
{i1, . . . , ik},

(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik)

20 Authors Suppressed Due to Excessive Length

Proof. The proof is by structural induction on e. Let q denote the root of e, and
A → σ(j)(A1, . . . , Aj) denote the production instance at q. Note that #(e) =
#(ej) · · ·#(e1)#nd(q).

Suppose that e = q is a leaf node; that is, the tree at q is an instance of a
production of the form A→ q(0). Because #(e) = #nd(q

(0)), for every input set
{i1, . . . , ik}, funcA[#(e)] selects the branch in funcA that captures the semantics
of A→ q(0). In that code, e is evaluated on the k values {i1, . . . , ik}. Therefore,
(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik) holds.

Inductive step: Let e = σ(j)(e1, . . . , ej), where the property to be shown is
assumed to hold for each of the el. For each el, let ql be the root of el.

The procedure funcA[#(e)] uses #nd(q) to select the branch B in funcA that
captures the semantics of the production A → σ(j)(A1, . . . , Aj). For every in-
put set {i1, . . . , ik}, the induction hypothesis ensures that the following property
holds: for 1 ≤ l ≤ j, (JelK(i1), . . . , JelK(ik)) = JfuncAl[#(el)]K(i1, . . . , ik). There-
fore, each call to a procedure funcAl in B computes the k intermediate answers
that correspond to the evaluation of el on the k values {i1, . . . , ik}. The code in
B that follows the final call to funcAj uses the collections of intermediate results
to finish k computations of the semantics of A → σ(j)(A1, . . . , Aj). Therefore,
(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik) holds. ut

Lemma 4. For every non-terminal A and number n such that
JfuncA[n]K(i1, . . . , ik) 6= ⊥ (i.e., funcA terminates when the non-deterministic
choices are controlled by n), there exists a minimal n′ that is a (base 2) suffix
of n for which (i) there is an e ∈ L(G) such that #(e) = n′, and (ii) for every
input {i1, . . . , ik},

JfuncA[n]K(i1, . . . , ik) = JfuncA[n′]K(i1, . . . , ik).

Proof. Assume that the computation JfuncA[n]K(i1, . . . , ik) terminates. Let
b1, . . . , bj be the finite sequence of bits drawn by nd() throughout the com-
putation.
Proof of (i): Let e be the expression-tree generated top-down, left-to-right using
the sequence b1, . . . , bj . Let n′ be the binary number bj · · · b1. Because #(e) is
the concatenation, in right-to-left order, of the sequence of #(·) values for the
nodes of e visited during a pre-order traversal, #(e) = n′.
Proof of (ii): Property (ii) holds because n and n′ agree on the (base 2)
suffix bj · · · b1, and exactly j bits are used during the executions of both
funcA[n](i1, . . . , ik) and funcA[n′](i1, . . . , ik)—which also shows that n′ =
bj · · · b1 (base 2) is minimal. ut

Theorem 2. Given a SyGuS problem syE = (ψE(f, x), G) over a finite set of
examples E,

syE is realizable ⇐⇒ reenc(sy,E) is satisfiable

Proof. ⇒ direction: Assume that syE is realizable. Then there exists an ex-
pression e ∈ L(G) = L(G,S) such that ∀x ∈ E.ψ(JeK, x). By Lemma 3, for
every {i1, . . . , ik}, (JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik). Hence, the

Proving Unrealizability for Syntax-Guided Synthesis 21

assertion in program enc(sy,E) is false and the reachability problem reenc(sy,E)

is satisfiable.
⇐ direction: Assume that reenc(sy,E) is satisfiable. Then there exists a value
of n that makes the assertion in program enc(sy,E) false (i.e., the specification
holds for all inputs ci ∈ E). By Lemma 4, there exists a minimal n′ for which the
program has equivalent semantics (in particular, the assertion in enc(sy,E) is
still false), and there exists an expression e ∈ L(G) such that #(e) = n′. Hence,
e is a solution to SyGuS problem syE ; i.e., syE is realizable. ut

C Supplementary Evaluation Results

The complete results of our evaluation are shown in Tables 1 and 2. For brevity,
in Table 1 we omit consecutive benchmarks on which nope times out—e.g.,
the “. . . ” between benchmarks max4 and max15 represents 10 benchmarks from
max5 to max14 for which nope times out.

The tables present the number of nonterminals and the number of pro-
ductions in the grammar of each benchmark, the number of examples used
to prove unrealizability, the total time taken by nope, and the time taken by
SeaHorn for the last (un)reachability problem. For benchmarks on which nope
times out, the value given for “number of examples” is the number of examples
generated by the CEGIS loop when nope times out.

22 Authors Suppressed Due to Excessive Length

Table 1: Performance of nope on LimitedIf and LimitedPlus benchmarks. 7
denotes a timeout.

Problem number of number of number of total SeaHorn
nonterminals productions examples time (s) time (s)

L
im

it
ed

If

max2 1 5 4 1.48 0.53
max3 3 15 9 58.57 50.21
max4 5 34 17 7 7
. . . 7 7

max15 27 348 1 7 7
array_sum_2_5 1 5 3 0.69 0.17
array_sum_2_15 1 5 3 0.87 0.21
array_sum_3_5 3 15 7 101.44 87.92
array_sum_3_15 3 15 7 134.87 118.77
array_sum_4_5 5 34 14 7 7
array_sum_4_15 5 34 16 7 7

. . . 7 7
array_sum_10_5 19 149 1 7 7
array_sum_10_15 19 149 1 7 7
array_search_2 3 15 7 112.78 87.32
array_search_3 5 34 17 7 7

. . . 7 7
array_search_15 27 348 1 7 7
mpg_example1 1 7 3 1.12 0.38
mpg_example2 9 60 17 7 7
mpg_example3 5 34 12 7 7
mpg_example4 5 34 19 7 7
mpg_example5 9 60 11 7 7
mpg_guard1 1 6 2 0.43 0.18
mpg_guard2 1 6 2 0.49 0.19
mpg_guard3 1 6 2 0.46 0.17
mpg_guard4 1 6 2 0.58 0.18

mpg_ite1 3 15 8 369.57 361.21
mpg_ite2 5 29 11 7 7

L
im

it
ed

P
lu

s

array_sum_2_5 19 89 1 7 7
. . . 7 7

array_sum_10_5 461 15515 1 7 7
array_sum_2_15 59 382 1 7 7

. . . 7 7
array_sum_8_15 641 25211 1 7 7
mpg_example1 59 382 1 7 7
mpg_example2 21 101 1 7 7
mpg_example3 143 2118 1 7 7
mpg_example4 443 14374 1 7 7
mpg_example5 351 9746 1 7 7
mpg_guard1 7 24 1 7 7
mpg_guard2 9 34 1 7 7
mpg_guard3 11 41 1 7 7
mpg_guard4 13 53 1 7 7

mpg_ite1 9 34 1 7 7
mpg_ite2 13 53 1 7 7

mpg_plane1 2 5 3 0.69 0.13
mpg_plane2 17 60 1 7 7
mpg_plane3 29 122 1 7 7

Proving Unrealizability for Syntax-Guided Synthesis 23

Table 2: Performance of nope on LimitedConst benchmarks. 7 denotes a time-
out.

Problem number of number of number of total SeaHorn
nonterminals productions examples time (s) time (s)

L
im

it
ed

C
o
n
st

array_search_2 2 9 2 0.78 0.32
array_search_3 2 10 3 1.26 0.43
array_search_4 2 11 3 1.25 0.22
array_search_5 2 12 3 1.01 0.50
array_search_6 2 13 3 0.87 0.41
array_search_7 2 14 3 0.85 0.26
array_search_8 2 15 3 0.97 0.36
array_search_9 2 16 3 0.70 0.48
array_search_10 2 17 3 0.80 0.37
array_search_11 2 18 3 1.09 0.32
array_search_12 2 19 3 1.13 0.25
array_search_13 2 20 3 0.73 0.29
array_search_14 2 21 3 0.77 0.42
array_search_15 2 22 3 1.06 0.23
array_sum_2_5 2 8 2 1.30 0.77
array_sum_2_15 2 8 2 1.46 0.83
array_sum_3_5 2 9 2 1.31 0.86
array_sum_3_15 2 9 2 1.28 0.75
array_sum_4_5 2 10 2 2.52 0.60
array_sum_4_15 2 10 2 1.35 0.56
array_sum_5_5 2 11 2 1.41 0.72
array_sum_5_15 2 11 2 1.43 0.44
array_sum_6_5 2 12 2 2.37 0.55
array_sum_6_15 2 12 2 1.56 0.70
array_sum_7_5 2 13 2 0.76 0.59
array_sum_7_15 2 13 2 1.87 0.78
array_sum_8_5 2 14 2 1.33 0.63
array_sum_8_15 2 14 2 1.53 0.67
array_sum_9_5 2 15 2 1.50 0.40
array_sum_9_15 2 15 2 1.44 0.79
array_sum_10_5 2 16 2 2.29 0.74
array_sum_10_15 2 16 2 0.87 0.43

mpg_example1 2 8 1 0.36 0.17
mpg_example2 2 9 4 0.50 0.30
mpg_example3 2 9 1 0.57 0.33
mpg_example4 2 10 1 0.44 0.16
mpg_example5 2 8 1 0.99 0.36
mpg_guard1 2 9 6 3.08 1.19
mpg_guard2 2 9 4 2.49 1.35
mpg_guard3 2 9 4 1.83 0.50
mpg_guard4 2 9 4 24.18 21.67

mpg_ite1 2 9 1 0.33 0.19
mpg_ite2 2 9 1 0.41 0.25

mpg_plane2 2 9 1 0.47 0.32
mpg_plane3 2 9 1 0.74 0.51

	Proving Unrealizability for Syntax-Guided Synthesis

