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Abstract. Entanglement in angular momentum degrees of freedom is a precious

resource for quantum metrology and control. Here we study the conversions of this

resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe

unknown rotations and the other particle is used as reference. When a large number

of pairs are given, we show that every rotated spin-J Bell state can be reversibly

converted into an equivalent number of rotated spin one-half Bell states, at a rate

determined by the quantum Fisher information. This result provides the foundation

for the definition of an elementary unit of information about rotations in space, which

we call the Cartesian refbit. In the finite copy scenario, we design machines that

approximately break down Bell states of higher spins into Cartesian refbits, as well as

machines that approximately implement the inverse process. In addition, we establish

a quantitative link between the conversion of Bell states and the simulation of unitary

gates, showing that the fidelity of probabilistic state conversion provides upper and

lower bounds on the fidelity of deterministic gate simulation. The result holds not

only for rotation gates, but also to all sets of gates that form finite-dimensional

representations of compact groups. For rotation gates, we show how rotations on

a system of given spin can simulate rotations on a system of different spin.
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1. Introduction

Quantum states that encode information in the angular momentum degree of freedom

are a valuable resource for quantum metrology [1, 2] and communication [3, 4]. But

depending on the task at hand, certain states can be more useful than others. In

situations where quantum communication is a scarce resource, it is natural to prefer

entangled states that convey precise information with the smallest number of particles.

In situations where joint operations are challenging to implement, it is more preferable

to encode information into product states, even if such encoding requires an overhead

in the number of particles. When different tasks are composed, it becomes useful to

switch from one encoding to another: for example, one may want to first transfer

directional information from a sender to a receiver (using the minimum amount of

quantum communication) and then to broadcast the information from the receiver to

a number of local users (using an encoding that allows to read out the information

locally). A device that implements the conversion between one encoding and the other

acts as an “adapter”, which converts information from a form that is easier to transmit

to a form that is easier to read out.

In this paper we focus on the conversions of maximally entangled bipartite states,

also known as Bell states. Bell states of systems with definite angular momentum are

faithful carriers of information about rotations in space: when a rotation R is applied

locally on one part of a Bell state |Φ〉, the resulting Bell state |ΦR〉 = (R ⊗ I)|Φ〉 is in

one-to-one correspondence with R. Even more specifically, the Bell states are optimal

for probing rotations among the states of systems with definite value of the angular

momentum [5, 6]. Bell states are also optimal for the task of storing/retrieving rotation

gates [7] and for correcting errors due to the lack of a shared reference frame of Cartesian

directions [8].

The conversion of Bell states is the paradigmatic example of optimal conversions

of quantum reference frames [9]. In this paper we study the Bell state example in

depth, determining the convertibility conditions and highlighting their physical meaning.

This work illustrates and complements the general theory of asymmetry as a resource

[10, 11, 12, 13, 14, 15, 16], offering a concrete case study that can be used for further

generalizations. Specifically, we investigate the problem of converting N copies of a

spin-J Bell state into M copies of a spin-K Bell state, while preserving the information

about local rotations. One example of this type of conversions is the cloning of Bell

states [17, 18, 19], corresponding to the case J = K and M > N . In the large N

limit, we show that a deterministic and reversible conversion can be achieved whenever

the quantum Fisher information is conserved at the leading order. Our result supports

a conjecture by Marvian and Spekkens [16], who suggested that, under the validity of

certain symmetry conditions, the conservation of the quantum Fisher information should

be sufficient for an asymptotically reversible conversion of quantum reference frames.

Since all the Bell pairs of spin-J particles are asymptotically interconvertible with

each other, we can regard the spin-1/2 Bell pair as the standard unit of information
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about rotations in space, or equivalently, about Cartesian reference frames. Borrowing

a term introduced by van Enk [20, 21], we call the spin-1/2 Bell pair a Cartesian refbit—

a bit of Cartesian reference frame.

We then consider two categories of machines: One category of machines break

down Bell states into Cartesian refbits. We name such machines quantum analysers.

The other category of machines perform the opposite conversion, merging groups of

Cartesian refbits into Bell states of higher angular momenta. We name these machines

quantum synthesisers.

Decomposing/recomposing quantum states into/from basic units of reference frame

has a number of interesting applications. For example, quantum analysers can be

used to distribute directional information to multiple receivers: Using a quantum

analyser, a high-precision gyroscope can be broken down into a number of elementary

gyroscopes, each carrying a unit of directional information. In this way, the original

information can be distributed to multiple receivers, who can then perform local

measurements. Essentially, the quantum analyser takes care of the hard part in the

readout and redistributes the information in a form that can be accessed locally.

Quantum synthesizers, instead, can be used to compress directional information into

a more compact form that is useful for storage into the quantum memory of a quantum

computer or for transmission via a quantum communication line.

In the non-asymptotic scenario we find that quantum analysers exhibit a number of

peculiar properties. For example, we find that individual Bell states are “unbreakable”,

meaning that no quantum analyser can convert a single Bell state into Cartesian refbits

with high level of accuracy. This fact is in stark contrast with the situation for spin-

J coherent states [22, 23], which can be reversibly broken down into M = 2J spin-

1/2 coherent states. The contrast is worth highlighting because, among the states of

systems with definite angular momentum, the spin coherent states are the best carriers

of information about individual directions [24], while the Bell states are the best carriers

of information about Cartesian reference frames [5, 6]. The contrast between spin

coherent and Bell states highlights a fundamental difference between the communication

of a single direction and the communication of a full Cartesian frame: while the best

states for communicating individual directions can be broken down into elementary

units, the best states for communicating Cartesian frames cannot. Heuristically, the

difference arises from the particular way in which Cartesian frames are encoded into Bell

states: rather than localizing the information about three directions onto three different

systems, the Bell state concentrates the information into one entangled pair. Such a

way to pack information is system-specific, and systems with different spin correspond

to different, inequivalent encodings.

Besides the conversions of Cartesian reference frames, our results determine how

rotation gates on a system of a given spin can be simulated by rotation gates on a system

with different spin. For example, imagine the scenario where a black box performs an

unknown rotation on a spin-1/2 particle. By using the blackbox for N times, a machine

can simulate the rotation of a higher angular momentum. But how large should N
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be in order to reproduce the desired rotation with high accuracy? And how many

times can the machine execute the rotation? To address these questions we derive a

general result, bounding the average performance of deterministic gate conversion with

the performance of a probabilistic Bell state conversion. Specifically, we show that the

two fidelities satisfy the relation(
F prob
Bell

)2
≤ F det

gate ≤ F prob
Bell , (1)

valid not only for rotations but also for every compact group of unitary transformations.

As a consequence, we show that a gate simulation can be achieved deterministically

with high fidelity if and only if the corresponding state conversion can be achieved

probabilistically with high fidelity. Once this fact is established, every result on the

probabilistic conversion of Bell states can be translated into a result on the deterministic

simulation of rotation gates. For example, we find that a single rotation of a spin-J

system cannot be used to simulate rotations on spin-1/2 systems. Our results provide

tools that can be applied also beyond the problem of simulating rotation gates. In

a broad perspective, they contribute to the study of quantum machines capable to

automatically learn how to perform desired tasks, such as learning an unknown unitary

gate [7] or learning a quantum measurement [25].

The paper is organised as follows. In Section 2, we introduce the general framework.

The deterministic conversions of Bell states are studied in Section 3, where we introduce

the notion of Cartesian refbit. The probabilistic conversions are then studied in Section

4. Then, we move to the problem of analyzing/synthesizing Bell states into/from

Cartesian refbits. In Section 5, we focus on the task of breaking angular momentum

Bell states into Cartesian refbits. In Section 6, we focus on the dual task of merging

Cartesian refbits into Bell states of higher angular momenta. Section 7 addresses the

simulation of rotation gates and its relation to spin conversions, providing general results

valid for arbitrary groups of unitary gates. Finally, the conclusions are drawn in section

8. The technical proofs are provided in the appendices, which can be skipped at a first

reading.

2. Bell state conversions

In this section we introduce the general problem of converting angular momentum Bell

states, defining the notation and the relevant figures of merit used in the paper.

2.1. The task

Imagine that an experimenter has access to a black box performing an unknown rotation

on a quantum system with definite angular momentum, specified by the quantum

number J . Let us denote by g ∈ SO(3) the rotation, and by Ug,J is the unitary matrix

that represents the rotation on the system’s Hilbert space.

For many applications, it is useful to imprint the rotation into the state of a

quantum system. For example, the application could be to communicate the direction of



Units of rotational information 5

Figure 1. Encoding a local rotation into a Bell state. A spin J system (in

red), acting as a probe, is entangled with another spin J system (in blue), acting as

a reference. The two systems are initially in the standard Bell state |ΦJ〉. Then, the

probe undergoes the unknown rotation g and the state of the composite system is

transformed into a rotated Bell state |Φg,J〉.

three Cartesian axes [26, 27, 28], to sense an unknown magnetic field [2], or to store the

rotation in the the memory of a quantum computer [7], to correct for an error [8, 7], or

to generate a quantum program for a programmable measurement device [29, 30]. For

a single use of the black box, the optimal way to imprint the rotation gate is illustrated

in Figure 1. Explicitly, one has to

(i) prepare a pair of spin-J systems in the standard Bell state

|ΦJ〉 :=

∑J
m=−J |J,m〉 ⊗ |J,m〉√

2J + 1
(2)

where {|J,m〉 | m = −J, . . . ,+J} are the eigenvectors of the z component of the

angular momentum operator.

(ii) let the first system undergo the rotation, so that the standard Bell state is

transformed into the rotated Bell state

|Φg,J〉 := (Ug,J ⊗ IJ) |ΦJ〉 , (3)

where IJ is the identity matrix.

By repeating this procedure on N pairs, the experimenter can generate N identical

copies of the rotated Bell state |Φg,J〉. At this point, the N copies represent a physical

token of the information about the rotation. Bell states corresponding to the same

rotation but to different values of the angular momentum represent different types of

tokens.

In the following we consider the task of converting one type of token into another.

Precisely, we will search for the optimal process that transforms N copies of a rotated

spin-J Bell state into M approximate copies of a rotated spin-K Bell state, while
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preserving the information about the rotation. Ideally, we aim at implementing the

transformation

|Φg,J〉⊗N → |Φg,K〉⊗M , ∀g ∈ SO(3) . (4)

In most cases, such transformation cannot be implemented perfectly. We will refer to the

task of approximating the desired transformation as “converting N copies of a rotated

spin-J Bell state into M copies the corresponding spin-K Bell state”. Implicitly, it is

understood that the rotation g in the input Bell state |Φg,J〉⊗N is unknown and therefore

the conversion mechanism should be independent of g.

2.2. Optimal quantum machines

In this paper we consider two ways of converting Bell states: by deterministic operations

and by probabilistic operations. A deterministic machine is described by a quantum

channel (completely positive trace-preserving map) C, transforming the state of the N

input pairs into the state of the M output pairs. The machine converts the N -copy

input state |Φg,J〉⊗N into the (generally mixed) output state C
(
|Φg,J〉〈Φg,J |⊗N

)
. Note

that, in general we allow the machine to perform global operations jointly on all the

input systems. The performance of the machine is measured by the average fidelity

between the output state and the desired M -copy state, namely

F det
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

∫
dg 〈Φg,K |⊗MC

(
|Φg,J〉〈Φg,J |⊗N

)
|Φg,K〉⊗M . (5)

A probabilistic machine is described by a quantum operation (completely positive

trace-non-increasing map) M. The occurrence of the probabilistic transformation M
is heralded by the outcome of a quantum measurement. We call this outcome the

“successful outcome”, meaning that, when the outcome occurs, the machine produces

an output according to the intended map M. In such a case, the output state is

ρ′g =
M
(
|Φg,J〉〈Φg,J |⊗N

)
Tr [M (|Φg,J〉〈Φg,J |⊗N)]

(6)

and the probability of success is

p(succ|g) = Tr
[
M
(
|Φg,J〉〈Φg,J |⊗N

)]
. (7)

Conditionally on the occurrence of the successful outcome, the performance of the

probabilistic machine is evaluated by the average fidelity between the output state and

the desired M -copy state, namely

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

∫
p (dg|succ) 〈Φg,K |⊗M ρ′g |Φg,K〉⊗M , (8)

where p (dg|succ) is the conditional probability distribution for the rotation

g. Specifically, the probability distribution can be expressed as p(dg|succ) =

p(succ|g) dg/psucc, where d g is the normalized Haar measure and

psucc =

∫
dg Tr

[
M
(
|Φg,J〉〈Φg,J |⊗N

)]
(9)
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is the total success probability. Combining the above relations, the probabilistic fidelity

reduces to

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

∫
dg 〈Φg,K |⊗MM

(
|Φg,J〉〈Φg,J |⊗N

)
|Φg,K〉⊗M∫

dg Tr [M (|Φg,J〉〈Φg,J |⊗N)]
. (10)

This expression will be often used in our analysis. In the end of the paper we will show

that the probabilistic fidelity in Eq. (10) provides bounds on a gate simulation task,

where the goal is to simulate M uses of a rotation on spin-K system with N uses of the

same rotation on a spin-J system.

3. Deterministic conversions

In this section we characterize the conversions of Bell states that can be achieved

deterministically. We first consider the simplest instance of the problem, involving

a single input Bell state and a single output Bell state. Then, we move to conversions

involving asymptotically many copies. In the asymptotic setting, we identify the

conservation of the quantum Fisher information as the necessary and sufficient condition

for a faithful conversion.

3.1. Single-copy conversions

Let us start from the simple case where the input of the conversion is a single copy of

a spin-J Bell state. In this case, the symmetry of the problem allows us to identify the

optimal conversion process and to give an analytical expression for the fidelity. Here we

focus on the results and on their physical interpretation, while the technical details are

provided in Appendix A.

In the single-copy case, it turns out that deterministic and probabilistic operations

perform equally well, no matter how small is the probability of success. The optimal

fidelity for converting one spin-J Bell state into one spin-K Bell state is

FBell

[
|Φg,J〉 → |Φg,K〉

]
=

2J + 1

(2K + 1) (2|J −K|+ 1)
. (11)

An important observation is that the conversion is never perfect, except in the trivial

cases J = K and/or K = 0. For all the other values of J and K the fidelity satisfies the

bound

FBell

[
|Φg,J〉 → |Φg,K〉

]
≤ 75% , (12)

where the equality is attained by setting J = 1 and K = 1/2. For large J or large K,

the fidelity tends to zero as the difference |J −K| becomes large.

The optimal conversion process has an intuitive physical realization. The idea is

that a single spin-J system can be faithfully encoded into a system of 2J spin-1/2

particles, whose state is constrained to be in the symmetric subspace [31]. When J is

smaller than K, the initial 2J particles can be converted into 2K particles by using the

universal quantum cloning machine [32]. When J is larger than K, one has to discard
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Figure 2. Optimal single-copy Bell state converter. The figure illustrates the

action of an optimal machine converting a spin-J Bell state |Φg,J〉 into a spin-K Bell

state |Φg,K〉 for the J ≤ K case. Two identical sequences of operations are applied to

each of the two subsystems constituting the Bell pair: first, the encoding channel E
embeds the spin-J system into a system of 2J spin-1/2 systems (qubits). Then, the

universal cloning machine C optimally turns 2J qubits into 2K qubits. Finally, the

decoding channel D merges 2K qubits into a single spin-K system. A similar sequence

of operations allows us to achieve conversions with J > K, the only difference being

that on has to replace the universal cloning with a universal discarding, corresponding

to the partial trace over 2J − 2K qubits. In both cases, the optimal conversion only

requires local operations on the two subsystems of the Bell pair.

2(J − K) of the particles. In both cases, the protocol produces 2K spin-1/2 particles

in the symmetric subspace. Thanks to this fact, the 2K particles can be transformed

into a single spin-K system by a suitable decoding operation. The overall protocol is

illustrated in Figure 2.

Figure 2 shows that the optimal Bell state conversion is achieved by local operations,

performed independently on the two input spins. For K > J , there is an interesting

connection with the cloning problem considered in Refs. [33, 34], where the aim is to

locally clone the correlations between a system and a reference. It turns out that the

universal cloning machine is optimal both for the local cloning problem of Refs. [33, 34]

and for the problem of converting Bell states. In a sense, the conversion of the Bell state

|Φg,J〉 into the Bell state |Φg,K〉 can be viewed as the local cloning of correlations, with

cloning operations performed both on the system and on the reference.

One may wonder whether this is a generic feature of Bell state conversions.

We can imagine that, for every Bell pair, one spin is in Alice’s laboratory and the

other is in Bob’s laboratory. Then the question is: can Alice and Bob achieve the

optimal Bell state conversion by performing local operations in their laboratories and,

possibly, coordinating their operations through the communication of classical messages?

Interestingly, this is not the case for N > 1 or M > 1: later in the paper we will see

that, in general, joint operations are necessary in the multicopy scenario.

3.2. Asymptotic conversions

Here we consider asymptotic conversions where one is given a large number of spin-J

pairs, each pair in the same rotated Bell state. The goal is to produce as many many
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spin-K pairs as possible, under the condition that the joint state of all pairs should

resemble M perfect copies of the rotated spin-K Bell pair, with an error vanishing in

the asymptotic limit. In the asymptotic scenario, it turns out that Bell states with

different angular momenta can be interconverted reversibly, as shown by the following

Theorem.

Theorem 1 (Deterministic Bell state conversion). If the condition∣∣∣MK(K + 1)−NJ(J + 1)
∣∣∣ = ∆ (13)

holds with ∆ = O(N1−α) for some α > 0, then there exists a deterministic machine

that reversibly transforms N copies of the spin-J Bell state |Φg,J〉 into M copies of the

spin-K Bell state |Φg,K〉 with error vanishing as [∆/NJ(J + 1)]2 in the large N limit.

The idea of the proof is to decompose theN -copy input states into a superposition of

eigenstates with definite values of the quantum number of the total angular momentum.

When this is done, it turns out that the quantum number of the total angular

momentum is asymptotically distributed as a Gaussian with variance NJ(J + 1)/3,

times a polynomial prefactor. Specifically, for integer NJ one has the decomposition

|Φg,J〉⊗N =
NJ⊕
j=0

√
p
(N,J)
j

∣∣∣Ψ(N,J)
g,j

〉
, (14)

where j is the quantum number of the total angular momentum, |Ψ(N,J)
g,j 〉 is an eigenstate

of the square of the total angular momentum operator, and p
(N,J)
j is a probability

distribution, asymptotically equal to

p
(N,J)
j =

√
27(2j + 1)4

8πN3J3(J + 1)3
exp

[
− 3j2

2NJ(J + 1)

] [
1−O

(
1

N(J + 1)

)]
(15)

(see Appendix B and Appendix C for the derivation of Eqs. (14) and (15), respectively).

The same decomposition holds for the M -copy output space, except that the

variance of the Gaussian is MK(K+1)/3, instead of NJ(J+1)/3. To convert the input

state into the output state, we use a transformation that preserves the total angular

momentum, while transforming the state |Ψ(N,J)
g,j 〉 into the state |Ψ(M,K)

g,j 〉 for every value

of j. The conversion has high-fidelity if the Gaussian distributions of the input and

output states are close, which happens when MK(K + 1) is equal to NJ(J + 1) at the

leading order. The proof details can be found in Appendix D.

Theorem 1 tells us that spin-J Bell states can be reversibly converted into spin-K

Bell states, provided that the two quantities MK(K + 1) and NJ(J + 1) are close to

each other. In particular, this means that the ratio between the number of output and

input copies grows asymptotically as

M

N
=

J(J + 1)

K(K + 1)
+ ε , (16)

where ε vanishes as ∆/N .
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Note that, in general, the conversion of rotated Bell states cannot be achieved

by local operations. For local operations, the theory of pure state entanglement [35]

implies that the ratio M/N must be smaller than or equal to log(2J + 1)/ log(2K + 1).

This means that conversion of rotated Bell states requires global operations whenever

log(2J + 1)/ log(2K + 1) is smaller than J(J + 1)/[K(K + 1)]. When this is the case,

the conversion of rotated Bell states requires global operations, capable to generate

entanglement, while preserving the information about the rotation.

3.3. Conservation of the Fisher information

The condition (16) has an intuitive interpretation in terms of the amount of information

carried by the input and output states. Suppose that rotation g is parametrized in terms

of three rotation angles, corresponding to rotations around the axes x, y, and z. To

discover the three rotation angles θ = (θx, θy, θz), it is convenient to use an unbiased

measurement, that is, a measurement that on average returns the correct angles. The

precision of the measurement can be quantified by the covariance matrix Cθ, defined as

[Cθ]ij :=

∫
dθ p(θ̂|θ) (θ̂i − θi) (θ̂j − θj) , (17)

where θ̂ = (θ̂x, θ̂y, θ̂z) are the measured angles and p(θ̂|θ) is the conditional probability

distribution of measuring θ̂ when the true angles are θ. The covariance matrix can be

bounded in terms of the quantum Fisher information matrix Fθ, which for a pure state

|Ψθ〉 is defined as

[QFIθ]ij := 4Re
[
〈Φθ,i|Φθ,j〉 − 〈Φθ|Φθ,i〉〈Φθ,j|Φθ〉

]
, (18)

where we used the notation |Φθ,i〉 := ∂
∂θi
|Ψθ〉. The bound on the covariance matrix,

known as the quantum Cramér-Rao bound [36, 24, 37], has the form

Cθ ≥ QFI−1θ , (19)

where QFI−1θ denotes the inverse of the matrix QFIθ, and the notation A ≥ B means

that the all the eigenvalues of the matrix A − B are positive or zero. In particular,

the quantum Cramér-Rao bound implies that the variance for the measurement of the

angles θx θy, and θz are lower bounded by the diagonal entries of the inverse quantum

Fisher information matrix.

For the spin-J Bell states the quantum Fisher information matrix is independent

of θ and is given by [38]

QFI =
4NJ(J + 1)

3

 1 0 0

0 1 0

0 0 1

 . (20)

Since the quantum Fisher information matrix is proportional to the identity, we can

simply focus on the proportionality constant 4NJ(J + 1)/3 and refer to it as the

“quantum Fisher information”. We can now give an intuitive interpretation to the
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condition (16) on the asymptotic convertibility of Bell states. The condition is the

(approximate) conservation of the Fisher information from the input to the output: if

the quantum Fisher information of the input is approximately equal to the quantum

Fisher information of the output, then the transition is asymptotically possible and can

be implemented reversibly.

3.4. The Marvian-Spekkens conjecture

For families of pure states generated by rotations, the conservation of the quantum

Fisher information is equivalent to the conservation the covariance matrix of the angular

momentum operator. This condition was identified by Marvian and Spekkens [16] as a

necessary requirement for the reversible, asymptotic convertibility of pure states. In the

same work, Marvian and Spekkens conjectured that the conservation of the covariance

matrix should also be sufficient, provided that two additional symmetry requirements

are satisfied. In our settings, these requirements are trivial and therefore the Marvian-

Spekkens conjecture becomes that the conservation of the Fisher information is necessary

and sufficient for an asymptotically reversible conversion. Theorem 1 proves the validity

of this conjecture in the case of rotated Bell states.

In the Bell state case, we can also provide a strong converse to the Marvian-

Spekkens conjecture, showing that the quality of the conversion vanishes whenever

the conversion rate exceeds the value determined by the conservation of the Fisher

information. Specifically, we prove that every deterministic machine has to satisfy the

upper bound

F det
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
≤
[
NJ(J + 1)

MK(K + 1)

] 3
2

+O

(√
N

M3

)
. (21)

valid for large N and M . The derivation of the bound is provided in Appendix E.

According to the bound (21), a deterministic machine that over-produces Bell states will

incur in an error, proportional to the extent to which the conservation of the quantum

Fisher information has been violated. For example, a machine that produces Bell states

at a quadratic rate M ∝ N2 will necessarily have vanishing fidelity in the asymptotic

limit.

3.5. The Cartesian refbit

The asymptotic convertibility of Bell states provides the foundation for the definition

of an elementary unit of information about rotations in space. As a standard unit of

information, we choose the spin-1/2 Bell state |Φg,1/2〉. There are two reasons for this

choice:

(i) the spin-1/2 Bell state is the best state that carries faithful information about

rotations on the smallest quantum system
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(ii) in the asymptotic setting every spin-J Bell state can be reversibly converted into

spin-1/2 Bell states, at a rate determined by the conservation of the quantum Fisher

information.

Since the rotations in space are in one-to-one correspondence with Cartesian

reference frames, the spin-1/2 Bell state can be regarded as a unit of Cartesian reference

frame. We call such unit a Cartesian refbit, borrowing a term introduced by van Enk

[20, 21] in a slightly different, but closely related context. In Section 5 (Section 6)

we will study how Bell states converted into (generated from) Cartesian refbits in the

non-asymptotic setting. Before that, we will analyze the conversion of Bell states via

probabilistic operations.

4. Probabilistic conversions

In this Section we study the conditions for exact and approximate probabilistic

conversions of Bell states. The problem is interesting in view of the relation between

probabilistic Bell state conversions and deterministic gate simulations, discussed in the

end of the paper.

4.1. Exact probabilistic conversions

Let us start from the exact conversions, that is, the conversions that can be achieved

with unit fidelity. We focus on the N > 1 case, because the N = 1 case has already been

treated in Subsection 3.1. For N > 1, a necessary and sufficient condition for perfect

convertibility is the following:

Theorem 2 (Exact probabilistic conversion of angular momentum Bell states). A

probabilistic machine can perfectly convert N > 1 copies of a rotated spin-J Bell state

into M copies of corresponding spin-K Bell state if and only if NJ ≥MK.

The proof idea is similar to the proof idea of Theorem 1, with the only difference

that now our machine is not constrained to operate deterministically. Once again, we

decompose the input and output states into a superpositions of states with definite

values of the quantum number of the total angular momentum, as in Eq. (14). To fix

ideas, consider the case where both NJ and MK are integers. In this case, the angular

momentum number has integer values from 0 to NJ for the input state, and from 0 to

MK for the output state. If NJ is larger than MK, the input state contains a larger

set of values. Then, we can construct a perfect probabilistic machine that filters out

the states with values of the angular momentum larger than MK and uses the states

with angular momentum between 0 and MK as ingredients to reproduce exactly the

M -copy output state. Note that this machine is intrinsically probabilistic, because it

has to project the input state into a subspace, and also because it has to reshape the

relative weights of the terms in the quantum superposition (14). The details can be

found in Appendix F.
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The proof that the condition NJ ≤ MK is necessary for a perfect probabilistic

conversion is also provided in Appendix F. The proof idea is nicely linked with the

impossibility of cloning quantum states. Basically, we prove that a perfect Bell state

conversion with NJ < MK would allow us to perfectly convert 2NJ copies of a spin-1/2

Bell state into 2MK copies of the same state, in violation of the no-cloning theorem.

Theorem 2 tells us the maximum number of spin-K Bell states that can be extracted

perfectly from N copies of a spin-J Bell state. As long as we insist on having no error,

the ratio between the output and input copies must satisfy the bound

M

N
≤ J

K
, (22)

no matter how small is the probability of success.

In the following we will see that tolerating a small error allows one to achieve much

better scaling, with M growing quadratically, instead of linearly with N .

4.2. Asymptotic probabilistic conversions

In the limit of large N , the performance of the probabilistic Bell state conversion is

determined by the following Theorem:

Theorem 3 (Asymptotic probabilistic Bell state conversion). N copies of a rotated spin-

J Bell state can be probabilistically converted into M copies of the corresponding spin-K

Bell state with arbitrarily small error whenever NJ is large compared to
√
MK(K + 1).

Conversely, every machine with
√
MK(K + 1)� NJ must have non-vanishing error.

To understand the idea of the proof, it is useful to recall that the input and output

states can be decomposed into superpositions of states with different values of the total

angular momentum, as in Eq. (14). The weights in the superposition are proportional to

a Gaussian distribution with standard deviation equal to
√
NJ(J + 1)/3 for the input

state, and to
√
MK(K + 1)/3 for the output state. On the other hand, the support

of the input distribution reaches the value NJ . Hence, we can modify the weights

in the input state in such a way that they look like the weights in the output state,

for all the values of the angular momentum until first c
√
MK(K + 1)/3, where c is a

constant. In this way, we obtain a state that is identical to the desired output state

for all values of the angular momentum within c standard deviations. By choosing c

large enough, we can make the fidelity as large as we want. Summarizing, the condition

NJ �
√
MK(K + 1) guarantees a probabilistic conversion with high fidelity. The full

proof is provided in Appendix G, where we also show that the condition M � N2 leads

to unavoidable errors.

With respect to the deterministic machine of Theorem 1, the probabilistic machine

of Theorem 3 boosts the number of output copies from O(N) to O(N2). As it often

happens for probabilistic machines [39, 40, 41], the performance enhancement comes

at the price of a damped probability of success. For the probabilistic machine used in

Theorem 3, the probability of success can be upper bounded in terms of N , J , and the
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ratio R = M/N . Whenever the ratio exceeds the critical value

R∗ :=
J(J + 1)

K(K + 1)
, (23)

the probability of success is upper bounded as

psucc ≤
(
R

R∗

) 3
2

e−
3NJ

2(J+1)(1−
R∗
R ) . (24)

Hence, every ratio R ≥ R∗ leads to an exponentially vanishing probability of success.

In other words, every violation of the conservation of the quantum Fisher information

is exponentially suppressed in the large N limit.

Due to the exponentially vanishing probability, the probabilistic conversions are

not practically relevant in the asymptotic scenario. However, they are conceptually

important, because they determine the extreme boundary of what is possible in quantum

mechanics. Moreover, they are important as a technical tool for studying the the

simulation of rotation gates: in the end of the paper, we will show that the fidelity

of the probabilistic Bell state conversion gives upper and lower bounds on the fidelity

of the deterministic gate simulation.

5. Quantum analysers of rotational information

In this section we design machines that break down Bell states into Cartesian refbits.

These machines will be called quantum analysers.

5.1. Single Bell states are unbreakable

We start from the problem of breaking down a single Bell state into units of rotational

information. Here we show that, no matter how large is J , there is no way to convert the

information carried by a single spin-J Bell state into Cartesian refbits. Quantitatively,

we have the following

Proposition 1. No machine can break down a single spin-J Bell state into Cartesian

refbits with fidelity larger than 1/2 [1 + 1/(2J)].

Proposition 1 applies to both the deterministic and probabilistic machines. It shows

that the fidelity of the quantum analyzer is never equal to 1, except in the trivial case

where J is already equal to 1/2. For every other value of J , the fidelity is upper bounded

by 75% and converges to 50% in the large J limit.

Some insight into the physical origin of this result can be obtained by thinking of

the spin-J system as a system of 2J spin-1/2 particles, constrained to the symmetric

subspace. By discarding all particles but one, we can transform the original spin-J

system into a spin-1/2 system. However, this procedure will not transform a spin-J Bell

state into a spin-1/2 Bell state: instead, it will generate a noisy Bell state. The bigger

the total spin, the larger the noise will be. In this picture, the physical reason why
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Bell states are unbreakable is the intra-particle entanglement among the 2J particles

constituting the spin-J system. The complete proof can be found in Appendix H.

Proposition 1 shows that the reference frame information contained in the Bell

states is unbreakable. The fact highlights a fundamental difference between Cartesian

reference frames and reference frames for individual directions. Consider the spin

coherent states [22, 23], namely the states defined by

|J, J〉g := Ug,J |J, J〉 ,

where |J, J〉 denotes the eigenstate of the z component of the angular momentum

operator for the eigenvalue J . Among the states of a single spin-J system, the spin

coherent states are known to be the best carriers of information about a single direction

[24]. Spin coherent states can be perfectly broken down into elementary units: indeed, it

is immediate to see that there exists a quantum channel transforming the spin coherent

state |J, J〉g into 2J exact copies of the spin coherent state |1/2, 1/2〉g. In summary, the

information about a single direction can be broken down into elementary units, while

the information about a full Cartesian frame cannot.

5.2. Unlocking the refbits

Consider now the problem of breaking down N copies of a spin-J Bell state. Already

for N = 2, interesting phenomena occur. For example, a deterministic machine can

transform two copies of a spin-J Bell state into O(J2) refbits, with a fidelity of 85.6%

in the large J limit (Appendix I). Moreover, one can also construct a probabilistic

machine that achieves unit fidelity in the large J limit. In general, we have the following

Proposition:

Proposition 2. There exists a probabilistic machine that transforms N copies of a

rotated spin-J state into M Cartesian refbits with fidelity

F prob
Bell

[
|Φg,J〉⊗N → |Φg,1/2〉⊗M

]
≥ 1− (M + 1) exp

[
−2N2J2

M + 1

]
. (25)

The physical origin of the result is the same as in Theorem 3. The quantum number

of the total angular momentum goes from 0 to NJ for the input state, and each of these

values has a non-zero weight. On the other hand, the target output state has a Gaussian

distribution with variance O(
√
M). Hence, the input state can be turned into a good

approximation of the output state whenever NJ is large compared to
√
M . The bound

(J.2) follows from Hoeffding’s bound on the tails of the Gaussian distribution. The

explicit derivation is provided in Appendix J.

Proposition 2 tells us that the error vanishes whenever the condition M � N2J2

is satisfied. In short, a probabilistic machine can “unlock” the elementary units of

reference frame information contained in the Bell state, whenever N is larger than 1

and the product NJ is sufficiently large.
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6. Quantum synthesizers of rotational information

In this section we consider the task of generating Bell states from elementary units

of rotational information. Machines implementing this task will be called quantum

synthesisers.

Specifically, we study how N Cartesian refbits can be converted into a single spin-

K Bell state. For this task, we consider a simple protocol based on estimation and

re-reparation: given N Cartesian refbits, the protocol is to estimate the rotation and

to prepare the corresponding spin-K Bell state. Let us denote by ĝ the estimate of the

unknown rotation and let us assume that the machine prepares the Bell state |Φĝ,K〉
corresponding to the estimate. The action of the machine will be described by the

measure-and-prepare channel

CMP(ρ) :=

∫
dĝ |Φĝ,K〉〈Φĝ,K | Tr [Mĝ ρ] (26)

where {Mĝ} are the operators describing the measurement. We choose the optimal

measurement for the estimation of g. Such measurement is given by the operators

[42, 6]

Mĝ =

N/2∑
k,l=0

(2k + 1)(2l + 1) |Φĝ,k〉〈Φĝ,l| . (27)

Now, it is interesting to ask how fast can K grow as a function of N . By explicit

evaluation, we find out that the fidelity converges to 1 whenever K grows slower than√
N . In this case, the fidelity has the asymptotic expression

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
= 1− (2K + 1)2

4N
+O(N−1) , (28)

derived in Appendix K. Instead, when K is large compared to
√
N , the fidelity vanishes

as N/K2 in the asymptotic limit.

7. Simulating rotation gates

Our results on the conversion of Bell states have an application to the study of quantum

machines that use rotations on a given system to simulate rotations on another system.

An interesting example is that of machines that use qubit rotations to simulate rotations

of higher angular momenta. More generally, the problem is to simulate a unitary gate

through the use of another gate. Previous works on this type of simulation included the

cloning of unitary gates [43, 44, 45] and other manipulations, such as inversion, charge

conjugation, and controlization of unitary gates [46].

7.1. The gate simulation task

Suppose that we are given a black box implementing a unitary gate Ux, where the

parameter x is randomly drawn from some set X with probability px. Our goal is to
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implement another unitary gate Vx, possibly acting on a different system, using Ux as a

resource. The problem is how to simulate the gate Vx while actually using the gate Ux.

For example, Ux could be a rotation on a small system and Vx could be a rotation on a

larger system.

Now, suppose that we can use the gate Ux for N times and we want to simulate

M parallel uses of the gate Vx. To do this, we will need to build a quantum network

where the black box implementing the gate Ux is connected with other quantum devices,

suitably chosen to optimize the simulation. A network of this kind is shown in Figure

3.

We will first consider the case where the gate simulation network consists of

deterministic devices. In this case, the overall operation implemented by the network

is a quantum channel (trace-preserving completely positive map) C(N)
x , acting on M

identical systems. Ideally, the action of C(N)
x should resemble as much as possible the

action of M parallel queries to the gate Vx. To quantify the resemblance, we use the

entanglement fidelity [47], namely the fidelity between the output of the actual channel

and the output of the target channel when the two channels are applied locally to a

maximally entangled state.

Specifically, let |Φout〉 be the canonical Bell state defined by

|Φout〉 =

∑dout
n=1 |n〉 ⊗ |n〉√

dout
,

where dout is the dimension of the Hilbert space Hout, on which the target gate Vx acts.

When the channel C(N)
x is applied locally on M copies of the Bell state |Φout〉, it generates

the output state

Σ(det)
x =

(
C(N)
x ⊗ I⊗Mout

) (
|Φout〉〈Φout|⊗M

)
,

where we implicitly understand that the channel C(N)
x (respectively, I⊗Mout ) acts on the

first (respectively, second) system of each Bell pair inside the round bracket. For a fixed

value of the parameter x, the entanglement fidelity is

F det
x

[
(N,Ux)→ V ⊗Mx

]
= 〈Φ|⊗M (V †x ⊗ Iout)⊗M Σ(det)

x (Vx ⊗ Iout)⊗M |Φ〉⊗M ,

Figure 3. Network for gate simulation. The network (in blue) has N open slots

where N uses of the unitary channel Ux (in orange) can be inserted. When the gates

are in place, the network simulates M uses of the unitary channel Vx (in green).
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where the notation (N,Ux) means that the input resource consists of N uses of the gate

Ux, employed in an arbitrary (not necessarily parallel) disposition. Averaging over all

possible rotation gates, we obtain the fidelity

F det
gate

[
(N,Ux)→ V ⊗Mx

]
=
∑
x∈X

px F
det
x

[
(N,Ux)→ V ⊗Mx

]
. (29)

It is worth mentioning that the maximisation of the entanglement fidelity is equivalent

to the maximisation of the average fidelity between the outputs when the channels are

applied to a randomly drawn input state [47].

We will also consider networks of probabilistic devices, whose successful functioning

is heralded by a sequence of measurement outcomes. A probabilistic network will

transform the N input uses of the gate Ux into a (generally trace non-increasing)

quantum operation Q(N)
x acting on M identical systems. The probability that the

quantum operation Q(N)
x takes place on the Bell state |Φout〉⊗M is

p(succ|x) = Tr[(Q(N)
x ⊗ I⊗Mout ) (|Φout〉〈Φout|⊗M)] ,

where we implicitly understand that the quantum operationQ(N)
x acts on the first system

of each Bell pair. When the quantum operation takes place, the output state is

Σ(N)
x =

(Q(N)
x ⊗ I⊗Mout ) (|Φout〉〈Φout|⊗M)

Tr[(Qx ⊗ I⊗Mout ) (|Φout〉〈Φout|⊗M)]
.

For a given value of the parameter x, the entanglement fidelity is

F prob
x

[
(N,Ux)→ V ⊗Mx

]
= 〈Φ|⊗M(Vx ⊗ Iout)†⊗M Σ(N)

x (Vx ⊗ Iout)⊗M |Φ〉⊗M . (30)

Conditioning on the successful functioning of the devices in the network, the average

fidelity is

F prob
gate

[
(N,Ux)→ V ⊗Mx

]
=
∑
x∈X

p(x|succ)F prob
x

[
(N,Ux)→ V ⊗Mx

]
. (31)

In the following we will establish connections between the fidelities of gate

simulation and the fidelities of Bell state conversion.

7.2. Simulation of gates vs conversion of states

The Choi isomorphism sets up a one-to-one correspondence between unitary gates and

maximally entangled states, whereby the gate U is mapped into the state

|ΦU〉 := (U ⊗ I) |Φ〉 , |Φ〉 :=
1√
d

d∑
n=1

|n〉 ⊗ |n〉 . (32)

Operationally, the map U 7→ |ΦU〉 can be implemented deterministically by applying

the gate on one system of an Bell pair. Instead, the inverse map |ΦU〉 7→ U can only

be implemented probabilistically via conclusive teleportation [48], with a maximum

probability of success determined directly by the causality principle [49].

The above properties of the Choi isomorphism imply an elementary relation between

the task of simulating gates and the task of transforming Bell states:



Units of rotational information 19

Proposition 3. Let {Ux}x∈X and {Vx}x∈X be two sets of unitary gates and let {|ΦUx〉}x∈X
and {|ΦVx〉}x∈X be the corresponding sets of Bell states. Then, one has

F det
gate

[
(N,Ux)→ V ⊗Mx

]
≤ F prob

gate

[
(N,Ux)→ V ⊗Mx

]
= F prob

Bell

[
|ΦUx〉⊗N → |ΦVx〉⊗M

]
, (33)

where F prob
Bell

[
|ΦUx〉⊗N → |ΦVx〉⊗M

]
is the optimal fidelity for the probabilistic Bell state

conversion |ΦUx〉⊗N → |ΦVx〉⊗M .

The above proposition is quite generic, for it simply follows from the operational

properties of the Choi isomorphism. More interesting features arise when the unitaries

{Ux} and {Vx} form two group representations. These features will be discussed in the

remaining part of the paper.

7.3. Analytical expression of the fidelity

Let us consider first the case where a single use of the gate Ux is available, corresponding

to the case N = 1. For simplicity of notation, we also assume that the goal is to simulate

a single use of the gate Vx, although everything we will do holds also for M > 1 uses,

upon replacing Vx with V ′x := V ⊗Mx . In the following we assume that the two sets of

gates {Ux} and {Vx} are two representation of the same group G, and we write g ∈ G

in place of x ∈ X.

With this notation, we have the following

Theorem 4. For two group representations {Ug} and {Vg}, one has

F prob
gate

[
Ug → Vg

]
= F prob

Bell

[
|ΦUg〉 → |ΦVg〉

]
= max

l∈Irr(V⊗U)

 1

dout dl

 ∑
j∈Irr(U)

djm
(j)
l

 , (34)

where the maximum is over the irreducible representations contained in the

decomposition of the product representation {Vg ⊗ U g}, dout is the dimension of the

Hilbert space where Vg acts, dl is the dimension of the irreducible representation labelled

by l, the sum inside the round brackets is over the irreducible representations contained

in the decomposition of {Ug}, and m
(j)
l is the multiplicity of the representation {U (l)

g }
in the decomposition of {Vg ⊗ U

(j)

g }.

Quite naturally, the fidelity depends only on group-theoretic quantities. These

quantities are related to the structure of the input and output representations, and to

the way these representations are combined together. The exact value of the fidelity is

derived in Appendix L.

The probabilistic fidelity (34) takes an even simpler expression when the input gates

{Ug} form an irreducible representation. In this case, the sum over j consists of a single
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term and one is left with the expression

F prob
gate

[
Ug → Vg

]
= F prob

Bell

[
|ΦUg〉⊗N → |ΦVg〉⊗M

]
=

din
dout

[
max

l∈Irr(V⊗U)

ml

dl

]
, (35)

where ml is the multiplicity of the representation {U (l)
g } in the decomposition of

{Vg ⊗ U g}. As an illustration, consider the following example:

Example 1 (Cloning an unknown unitary gate). Imagine that an experimenter is given

access to a single use of an unknown unitary gate U , acting on a d-dimensional quantum

system. Imagine that the experimenter wants to simulate two uses of the same gate U .

If probabilistic operations are allowed, the fidelity is given by Eq. (35). To evaluate the

minimum over l, one has to decompose the representation {U ⊗U ⊗U}, which is easily

done using the machinery of Young diagrams. Specifically, one finds that the maximum

ratio ml/dl is obtained by choosing the representation {U}, which has dimension dl = d

and multiplicity ml = 2. Hence, the probabilistic fidelity has the expression

F prob
gate

[
U → U⊗2

]
= F prob

Bell

[
|ΦU〉 → |ΦU〉⊗2

]
=

2

d2
. (36)

The probabilistic fidelity is an upper bound to the deterministic fidelity, which has the

value [43]

F det
gate

[
U → U⊗2

]
=

1 +
√

1− 1
d2

d2
. (37)

Comparing the two fidelities, we observe that the advantage of using probabilistic

operations vanishes when the dimension of the system is large: the gap between the

deterministic and probabilistic fidelities vanishes as 1/d4.

7.4. No probabilistic advantage for irreducible representations

When the input and output representations are irreducible, it turns out that there is no

difference between the performances of probabilistic and deterministic strategies. More

precisely, one has the following

Theorem 5. Let G be a group and let {Ug} and {Vg} be two unitary representations of

G. If the input representation {Ug} is irreducible, then one has

F det
Bell

[
Ug → Vg

]
= F prob

Bell

[
|ΦUg〉 → |ΦVg〉

]
. (38)

If both the input representation {Ug} and the output representation {Vg} are irreducible,

then one has

F det
gate

[
Ug → Vg

]
= F prob

gate

[
|ΦUg〉 → |ΦVg〉

]
. (39)

The proof idea comes from the symmetry of the problem. The key observation

is that the optimal probabilistic operations can be chosen to be invariant under the

action of the gates {Ug} and {Vg}. Irreducibility ensures that the probability that

the operations take place is independent on the input state. In turn, independence on

the input state means that each operation is proportional to a deterministic operation,
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which takes place with unit probability on every state. The difference between Bell

state conversions and gate simulations is only that the Bell state conversion involves

operations on input systems acted upon by the representation {Ug}, while the gate

simulation involves also operations where the input state can be acted upon by the

representation {Vg}. The details of the proof are provided in Appendix M.

Example 2 (Optimal cloning of Bell states). Suppose that we are given one copy of

a generic Bell state |ΦU〉 of two d-dimensional quantum systems, and that we want to

generate one more copy. This problem is to find the physical process that implements

the Bell state conversion |ΦU〉 → |ΦU〉⊗2 with maximum fidelity.

The problem of cloning Bell states was previously studied in terms of single-copy

fidelity [50]. Thanks to Theorem 5, we now know that the optimal two-copy fidelity is

F det
Bell

[
|ΦU〉 → |ΦU〉⊗2

]
=

2

d2
. (40)

cf. Eq. (36).

Example 3 (Optimal charge-conjugation). Suppose that we are given a black box

implementing the gate U and we want to use it to simulate the gate U , obtained from U

through complex conjugation in a fixed basis. In physics, U is sometimes regarded as the

result of charge-conjugation. Using Theorem 5, we know that the optimal deterministic

network performs equally well as the optimal probabilistic network, whose fidelity is given

by Eq. (35). The evaluation of the fidelity is simple: one has only to decompose the

representation {U ⊗ U}, which is known to have only two irreducible subspaces, the

symmetric subspace and the antisymmetric subspace, of dimensions ds = d(d+ 1)/2 and

da = d(d− 1)/2, respectively. The evaluation of Eq. (35) then yields the fidelity

F det
gate

[
U → U

]
=

2

d(d− 1)
, (41)

retrieving a result of Ref. [46]. Note that the fidelity is equal to 1 for two-dimensional

systems, where the gates U and U are unitarily equivalent.

7.5. Local and memoryless operations

We conclude our analysis of the N = 1 case with a sufficient condition for the realization

of the optimal Bell state conversion with local operations, and for the realization of the

optimal gate simulation through a network without internal memories, as in Figure 4.

Theorem 6. Let G be a group, let {Ug} and {Vg} be two unitary representations of G,

and let ml be the multiplicity of the irreducible representation {U (l)
g } in the decomposition

of {Vg ⊗U g}. If the maximum of ml/dl is attained by a representation with multiplicity

ml = 1, then

(i) the Bell state conversion |ΦUg〉 → |ΦVg〉 can be achieved by local operations whenever

{Ug} is irreducible.

(ii) the gate simulation Ug → Vg can be achieved by a network without internal memories

whenever {Ug} and {Vg} are irreducible
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A good illustration of all the features shown so far is the simulation of a rotation

on a spin-K system using a rotation on a spin-J system.

Example 4 (Rotate one spin to rotate another). Suppose that we have access to a gate

that rotates a spin-J system, can we use it to rotate a spin-K system with K 6= J?

Intuitively, one would expect that the answer is affirmative, as long as J is smaller

than K: after all, if we are able to rotate a bigger system, we should also be able to

rotate a smaller one. But this is not the case: the entanglement fidelity of the best gate

simulation is given by Eq. (35), which here gives

Fgate

[
Ug,J → Ug,K

]
=

2J + 1

(2K + 1) (2|J −K|+ 1)
, (42)

retrieving the result of Ref. [51]. Except in the trivial case where J and K are equal

or where K is zero, the fidelity is always bounded away from 1, even in the asymptotic

limit of large J and K. Specifically, one can easily see that the fidelity is upper bounded

by 75% for all values of J and K with J 6= K and K 6= 0. This upper bound also implies

an upper bound for the simulation of multiple uses of the same rotation: a single use

of the rotation Ug,J cannot simulate M uses of the rotation Ug,K with more than 75%

fidelity.

Besides the value of the fidelity, it is interesting to see how the optimal gate

simulation is achieved. In Fig. 5 we show an explicit quantum circuit attaining the

maximum fidelity. Again, the idea is to encode the state of a single spin-J system into

the state of 2J spin-1/2 particles and to use cloning and discarding in order to force the

number of particles to have the desired values.

7.6. Bounding the gate fidelity in terms of the Bell state fidelity

We conclude the paper with a fundamental result linking gate simulation and Bell state

conversion for arbitrary groups:

Theorem 7. Let G be a group and let {Ug} and {Vg} be two finite-dimensional unitary

representations of G. Then the fidelities for the gate simulation Ug → Vg and for the

state conversion |ΦUg〉 → |ΦVg〉 satisfy the bound

F det
gate

[
Ug → Vg

]
≥
(
F prob
Bell

[
|ΦUg〉 → |ΦVg〉

])2
. (43)

Figure 4. Gate simulation network without internal memories. The network

(in blue) exploits one use of the unitary channel Ug (in orange) to simulate one use of

the unitary channel Vg (in green) without the assistance of any internal memory.
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Figure 5. Optimal single-use rotation converter. The figure illustrates the

simulation of a single use of a spin-K rotation gate Ug,K using a spin-J rotation Ug,J

for the J ≥ K case. A sequence of operations are performed on any input system

of Ug,K to change its spin: first, the encoding channel E embeds the spin-K system

into a system of 2K spin-1/2 systems (qubits). Then, the universal cloning machine

C optimally turns 2K qubits into 2J qubits. Finally, the decoding channel D merges

2J qubits into a single spin-J system. The system’s spin now fits the spin-J rotation.

After applying Ug,J , the same sequence of operations is performed in reverse order and

input-output spins. A similar sequence of operations allows us to achieve conversions

with K > J , the only difference being that on has to replace the universal cloning with

a universal discarding, corresponding to the partial trace over 2K − 2J qubits.

The proof is provided in Appendix O. Theorem 7 has an important consequence:

for unitaries forming a group representation, a gate simulation can be achieved

deterministically with high entanglement fidelity if and only if the corresponding state

conversion can be achieved probabilistically with high fidelity. This fact follows from

the bound(
F prob
Bell

[
|ΦUg〉 → |ΦVg〉

])2
≤ F det

gate

[
Ug → Vg

]
≤ F prob

Bell

[
|ΦUg〉 → |ΦVg〉

]
, (44)

implied by Theorem 7 and Proposition 3.

Leveraging on the correspondence between gate simulation and state conversion,

we can directly derive a number of facts about the simulation of rotation gates:

(i) For large J , two uses of the same rotation on a spin J system can be used to

deterministically simulate O(J2) uses of the same rotation on spin 1/2 systems. The

quadratic factor comes from the fact that the simulation performance is evaluated

on average over all states. Our result means that O(J2) uses of the spin 1/2

rotation can be simulated with vanishing error on the typical input states, whose

total probability tends to one in the large J limit. However, there exist states

where the simulation does not work: for example, all states in subspaces with total

angular momentum of size J2.

(ii) In the large N limit, N uses of a spin-J rotation can be used to deterministically

simulate O(N2) uses of the corresponding spin-K rotation with exponentially

vanishing error in the large N limit. This result is reminiscent of previous results on

the super-replication of quantum gates [44, 45, 52], where the task was to simulate

multiple uses of a gate using a smaller number of queries to the same gate.

These two examples are just an illustration of the power of Theorem 7. The theorem can

be applied not only to rotation gates, but also to every other group of gates, including

phase gates [53], permutation gates [54], and the set of all unitary gates [55],
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8. Conclusions

We showed that Bell states of different angular momenta can be reversibly converted

into one another at a rate fixed by the Fisher information. The reversibility of the

conversion means that we can regard the Bell state of two spin-1/2 particles as the

Cartesian refbit, the elementary unit of information about rotations in space.

Not every state can be converted into Cartesian refbits, though. States that do not

carry faithful information about Cartesian reference frames cannot be converted into

Cartesian refbits, even if asymptotically many copies are available [16]. This fact can

be easily seen for spin coherent states: since a spin coherent state encodes only one

direction, having many identical copies will not help identifying the other two directions

needed to specify a full Cartesian frame. This observation opens up two directions for

future research. The first direction is to study the convertibility problem for states

that are in one-to-one correspondence with Cartesian reference frames, such as the

optimal states introduced in Refs. [26, 27, 6, 28]. Having good carriers of directional

information is important not only for quantum metrology, but also for the realization

of programmable quantum processors [56, 57] that perform rotations in space [8, 7, 42]

or carry out measurements in a desired basis [29, 30].

In this scenario, it is meaningful to establish the optimal asymptotic rate for the

conversion of a given state Cartesian refbits, and the optimal asymptotic rate for

the inverse process. We call these two rates the distillable refbits and the refbits of

formation, respectively, in analogy to the corresponding notions in the resource theory of

entanglement [58]. For angular momentum Bell states, we have shown that the distillable

refbits coincide with the refbits of formation, because every angular momentum Bell

state can be reversibly converted into refbits. Whether the equality holds for all faithful

carriers of Cartesian reference frames is a genuinely open question. Note that, in

principle, the equality between distillable refbits and refbits of formation could hold

even if the conversion is not implemented by reversible operations.

The second direction is to consider quantum states that carry only partial

information about rotations—for example, spin coherent states. Expanding the scope

of the ideas discussed in this paper, we propose to adopt the spin-1/2 coherent states

as units of directional information, or directional refbits. The choice is motivated by the

fact that i) the spin-1/2 coherent states are the optimal states of the smallest quantum

system carrying directional information, and ii) spin-J coherent states can be reversibly

converted into spin-1/2 coherent states. An interesting question is whether there exists

a canonical asymptotic decomposition of all quantum states into directional refbits.

If true, this result would lead to a dramatic simplification of the resource theory of

asymmetry.

The techniques developed in this work can be extended from rotations in space

to other groups of operations, including translations in time, charge conjugation, and

general unitary evolutions in finite dimensions. The key open question is whether every

theory of asymmetry admits a notion of elementary unit, in which every resource state
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can be asymptotically decomposed.
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Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen

channels. Physical Review Letters, 70(13):1895, 1993.

[49] Dina Genkina, Giulio Chiribella, and Lucien Hardy. Optimal probabilistic simulation of quantum

channels from the future to the past. Physical Review A, 85(2):022330, 2012.

[50] Evgueni Karpov, Patrick Navez, and NJ Cerf. Cloning quantum entanglement in arbitrary

dimensions. Physical Review A, 72(4):042314, 2005.

[51] Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and Michal Sedlák. Optimal

processing of reversible quantum channels. Physics Letters A, 378(26):1797–1808, 2014.

[52] Giulio Chiribella and Yuxiang Yang. Quantum superreplication of states and gates. Frontiers of

Physics, 11(3):110304, 2016.
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Appendix A. Single-copy conversions

Here we provide the derivation of our results on single-copy conversions. Specifically,

we show that
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(i) The optimal deterministic and probabilistic machine perform equally well in the

single-copy conversion. This is because the set of input states

{|Φg,J〉 = (Ug,J ⊗ I) |ΦJ〉 | g ∈ SO(3)}

is invariant under the action of the irreducible representation {Uh,J ⊗ Uk,J | h ∈
SO(3) , k ∈ SO(3)}. It is a general fact that probabilistic machines do not offer

any advantage whenever the set of input states is invariant under an irreducible

representation [39].

(ii) The optimal fidelity of the single-copy Bell state conversion is given by Eq. (11).

The proof of Eq. (11) follows from a general expression of the probabilistic

fidelity of single-copy Bell state conversions, derived in Eq. (35) of Section 7,

and summarized here for convenience. The expression applies to Bell states of the

form |ΦUg〉 := (Ug ⊗ Iin)|Φin〉 and |ΦVg〉 := (Vg ⊗ Iout)|Φout〉, where {Ug} and {Vg}
are two representations of a given group G, and |Φin〉 (respectively, |Φout〉) is the

canonical Bell state in the Hilbert space Hin ⊗Hin (respectively, Hout ⊗Hout), on

which the representation {Ug} (respectively, {Vg}) acts locally. With these settings,

the optimal probabilistic fidelity is

F prob
Bell

[
|ΦUg〉 → |ΦVg〉

]
=

din
dout

[
max

l∈Irr(V⊗U)

ml

dl

]
, (A.1)

where ml is the multiplicity of the irreducible representation {U (l)
g } in the

decomposition of the product representation {Vg ⊗ U g} (we direct the interested

reader to the textbook [63] for more details on the notions of irreducible

representation and multiplicity). Here we are interested in the case where the

group is G = SO(3) and the representations are Ug ≡ Ug,J and Vg ≡ Ug,K .

With these settings, the addition rules for the angular momenta imply that the

product representation {Vg ⊗U g} is decomposed into representations with angular

momentum l running from |J−K| to J+K. The dimension of such representations

is dl = 2l + 1, while the multiplicity is ml = 1 for every l. Hence, the maximum in

Eq. (A.1) is attained when l = |J −K|, thus implying

F prob
Bell

[
|Φg,J〉 → |Φg,K〉

]
=

2J + 1

(2K + 1)(2|J −K|+ 1)
,

as stated by Eq. (11).

(iii) The protocol described in Figure 2 is optimal. The protocol is based on local

operations that convert the input spin-J systems into output spin-K systems. Each

spin-J (spin-K) system is regarded as a composite system of 2J (2K) spin-1/2

particles, whose state is constrained to the symmetric subspace. The conversion

of the 2J input particles into 2K output particles is implemented by the quantum

channel C2J→2K , defined by the relation

C2J→2K(ρ) :=

{ (
2J+1
2K+1

)
P2K

(
ρ⊗ I⊗2(K−J)

)
P2K J ≤ K

TrJ−K [ρ] J > K



Units of rotational information 29

where P2K is the projector on the symmetric subspace of 2K spin-1/2 particles,

while ρ is a generic state of the input system.

Applying the channel C2J→2K on each of the two spin-J systems of the input Bell

state |Φg,J〉, we obtain the output state

ρ(out)g =
2J + 1

(2K + 1)2

J∑
j,j′=−J

K−J+j∑
k,k′=−K+J+j

(
2J
J+j

)(
2J
J+j′

)(
2K−2J

K−J+k−j

)(
2K−2J

K−J+k′−j

)√(
2K
K+k

)(
2K
K+k′

)(
2K

K+k+j′−j

)(
2K

K+k′+j′−j

)
× |K, k〉g〈K, k + j′ − j|g ⊗ |K, k′〉g〈K, k′ + j′ − j|g

for J ≤ K, or the output state

ρ(out)g =
1

2J + 1

J∑
j,j′=−J

−K+J+j∑
k,k′=K−J+j

(
2J−2K

J−K+j−k

)(
2J−2K

J−K+j−k′
)√(

2K
K+k

)(
2K
K+k′

)(
2K

K+k+j′−j

)(
2K

K+k′+j′−j

)(
2J
J+j

)(
2J
J+j′

)
× |K, k〉g〈K, k + j′ − j|g ⊗ |K, k′〉g〈K, k′ + j′ − j|g

for J > K. Here we defined

|K, k〉g := Ug,K |K, k〉

and we used the expression√(
2M

M +m

)
|M,m〉g =

∑
n

√(
2N

N + n

)(
2M − 2N

M −N +m− n

)
|N, n〉g|M −N,m− n〉g

valid for M ≥ N .

Using the expressions of the output state ρ
(out)
g , we can now compute the fidelity of

the Bell state conversion. For J ≤ K, we obtain

FBell

[
|Φg,J〉 → |Φg,K〉

]
=

∫
dg 〈Φg,K |ρ(out)g |Φg,K〉

=
2J + 1

(2K + 1)3

∑
k,j,j′

(
2J
J+j

)(
2J
J+j′

)(
2K−2J

K−J+k−j

)2(
2K
K+k

)(
2K

K+k+j′−j

)
=

2J + 1

(2K + 1)3

∑
k,j

(
2J
J+j

)(
2K−2J

K−J+k−j

)(
2K
K+k

) ∑
j′

(
2J
J+j′

)(
2K−2J

K−J+k−j

)(
2K

K+k+j′−j

)
=

2J + 1

(2K + 1)3

∑
k,j

(
2J
J+j

)(
2K−2J

K−J+k−j

)(
2K
K+k

) · 2K + 1

2K − 2J + 1

=
2J + 1

(2K + 1)(2K − 2J + 1)
.

For J > K, we obtain

FBell

[
|Φg,J〉 → |Φg,K〉

]
=

1

(2J + 1)(2K + 1)

∑
k,j,j′

(
2J−2K

J−K+j−k

)2( 2K
K+k

)(
2K

K+k+j′−j

)(
2J
J+j

)(
2J
J+j′

)
=

1

(2J + 1)(2K + 1)

∑
k,j

(
2J−2K

J−K+j−k

)(
2K
K+k

)(
2J
J+j

) ∑
j′

(
2K

K+k+j′−j

)(
2J−2K

J−K+j−k

)(
2J
J+j′

)
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=
1

(2J + 1)(2K + 1)

∑
k,j

(
2J−2K

J−K+j−k

)(
2K
K+k

)(
2J
J+j

) · 2J + 1

2J − 2K + 1

=
2J + 1

(2K + 1)(2J − 2K + 1)
.

In both cases, the fidelity is equal to the optimal fidelity in Eq. (11).

Appendix B. Proof of Eq. (14): decomposition of the input Bell states

Proof. All throughout the paper we will make extensive use of the the double-ket

notation [59, 60], which associates operators with bipartite states according to the

correspondence A→ |A〉〉, where |A〉〉 is the bipartite state defined as

|A〉〉 :=
∑
m,n

Amn |m〉 ⊗ |n〉 , Amn := 〈m|A|n〉 .

Using this notation, the rotated Bell states can be expressed as

|Φg,J〉 =
|Ug,J〉〉√
2j + 1

.

To deal with the N -copy states |Φg,J〉⊗N we take advantage of the decomposition of the

corresponding tensor product Hilbert space. For simplicity, we assume N and M to be

even (anyways, the parity of N and M will not matter in the asymptotic limit) . For

each Bell pair, we denote by HJ,A (HJ,B) the Hilbert space of the first (second) spin.

Then, for x = A,B we have the decomposition

(HJ,x)
⊗N =

NJ⊕
j=0

(
Rj,x ⊗M(N,J)

j,x

)
, (B.1)

where j is the quantum number of the total angular momentum, Rj,x is a representation

space carrying the (2j+1)-dimensional irrep of SO(3), andM(N,J)
j,x is a multiplicity space,

where the group SO(3) acts trivially. Relative to this decomposition, the action of the

rotation gates U⊗Ng,J can be expressed as

U⊗Ng,J =
NJ⊕
j=0

(
Ug,j ⊗ Im(N,J)

j

)
, (B.2)

where {Ug,j} is the irreducible representation of SO(3) with quantum number j, acting

on the representation space Rj, while I
m

(N,J)
j

denotes the identity operator on the

multiplicity spaceM(N,J)
j . The dimension of the representation space Rj is dj = 2j+ 1.

The dimension of the multiplicity space M(N,J)
j , denoted by m

(N,J)
j , is called the

multiplicity of the irreducible representation {Ug,J} in the decomposition of the product

representation {U⊗Ng,J }. More details on the decomposition (B.2), sometimes called the

isotypic decomposition can be found in the classic textbook by Fulton and Harris [63].
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Using the decomposition (B.1), the Hilbert space of N Bell pairs can be decomposed

as

(HJ,A ⊗HJ,B)⊗N '
NJ⊕
j,j′=0

(
Rj,A ⊗Rj′,B ⊗M(N,J)

j,A ⊗M(N,J)
j′,B

)
,

where we rearranged the Hilbert spaces in such a way that the representation spaces

are on the left and the multiplicity spaces are on the right. Plugging Eq. (B.2) into the

double-ket notation, the N -copy input state can be represented as

|Φg,J〉⊗N =
|Ug,J〉〉⊗N√

dNJ

=
1√
dNJ

NJ⊕
j=0

|Ug,j〉〉 ⊗ |Im(J,N)
j
〉〉

=
NJ⊕
j=0

√
p
(N,J)
j

∣∣∣Ψ(N,J)
g,j

〉
, (B.3)

where |Ψ(N,J)
g,j 〉 is the state∣∣∣Ψ(N,J)

g,j

〉
:=
|Ug,j〉〉√

dj
⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

, (B.4)

dj := dimRj = 2j+ 1 and m
(N,J)
j := dimM(N,J)

j,J are the dimension and the multiplicity

of the representation {Ug,j}, respectively, and p
(N,J)
j is the probability distribution

p
(N,J)
j :=

djm
(N,J)
j

(2J + 1)N
. (B.5)

�

Note that the decomposition of Eq. (14) also applies to the output state, which

takes the form

|Φg,K〉⊗M =
MK⊕
k=0

√
p
(M,K)
k

∣∣∣Ψ(M,K)
g,k

〉
,

∣∣∣Ψ(M,K)
g,k

〉
:=
|Ug,k〉〉√
dk
⊗
|I
m

(M,K)
k
〉〉√

m
(M,K)
k

, (B.6)

where m
(M,K)
k is the multiplicity of the irreducible representation {Ug,k} in the

decomposition of the product representation {U⊗Mg,K }.

Appendix C. Proof of Eq. (15): asymptotic expression for p
(N,J)
j .

Proof. By definition, one has p
(N,J)
j = djm

(N,J)
j /(2J+1)N . To compute the multiplicity,

we use the standard group-theoretic formula [63]

m
(N,J)
j =

∫
dg Tr

[
U g,J

]N
Tr[Ug,j] ,
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which follows from the orthogonality of the irreducible characters [63]. Now, we

parametrize the rotation g in terms of the rotation angle ω and of the rotation axis

n. Integrating over all possible directions n, we obtain the expression

m
(N,J)
j =

∫ π

−π
dω

(2J + 1)N

π
sin

(2j + 1)ω

2
sin

ω

2

[
sin (2J+1)ω

2

(2J + 1) sin ω
2

]N
.

Since limN→∞

[
sin(J+ 1

2
)ω

(2J+1) sin ω
2

]N
= 0 for fixed nonzero ω ∈ [−π, π], we can constrain the

above integral to a small interval centred around the origin ω = 0. Hence, we have

m
(N,J)
j ≈

∫ δ

−δ
dω

(2J + 1)N

π
sin

(2j + 1)ω

2
sin

ω

2
exp

{
N ln

[
sin (2J+1)ω

2

(2J + 1) sin ω
2

]}
N � 1

where we set 1
N
� δ � 1. The Taylor expansion of ln

[
sin(J+ 1

2
)ω

(2J+1) sin ω
2

]
yields

ln

[
sin(J + 1

2
)ω

(2J + 1) sin ω
2

]
= −J(J + 1)

6
ω2 +O(ω4) .

Using this expansion, we can express m
(N,J)
j as

m
(N,J)
j =

(2J + 1)N

2π

∫ δ

−δ
dω [cos jω − cos(j + 1)ω] exp

[
−NJ(J + 1)

6
ω2

]
×
[
1 +O(δ4)

]
. (C.1)

It is straightforward to see that, since δ � 1/N , one has

lim
N→∞

∫ ∞
δ

dω [cos jω − cos(j + 1)ω] exp

[
−NJ(J + 1)

6
ω2

]
= 0.

On the other hand, the same integral with the range [−δ, δ] is non-vanishing in the large

N limit. As a consequence, we can expand the range of the integral in Eq. (C.1) from

[−δ, δ] to [−∞,∞], introducing only a negligible error. Adopting this expansion, we

obtain the following approximate value of the multiplicity:

m
(N,J)
j ≈ (2J + 1)N

2π

∫ ∞
−∞

dω [cos jω − cos(j + 1)ω] exp

[
−NJ(J + 1)

6
ω2

]
=

√
3(2J + 1)2N

2πNJ(J + 1)
exp

[
− 3j2

2NJ(J + 1)

] [
1− e−

3(2j+1)
2NJ(J+1)

]
.

By Taylor expansion of the last term, we finally obtain the asymptotic expression

m
(N,J)
j =

√
27(2J + 1)2N

8πN3J3(J + 1)3
exp

[
− 3j2

2NJ(J + 1)

] [
1−O

(
1

N(J + 1)

)]
.

Substituting the above into Eq. (B.5), we find that p
(N,J)
j is given by

p
(N,J)
j =

√
27(2j + 1)4

8πN3J3(J + 1)3
exp

[
− 3j2

2NJ(J + 1)

] [
1−O

(
1

N(J + 1)

)]
, (C.2)

as anticipated in Eq. (15). �
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Appendix D. Proof of Theorem 1: asymptotic convertibility via

deterministic reversible operations

Here we provide the proof of Theorem 1. The ingredients of the proof are collected in

the following subsections.

Appendix D.1. Covariant isometric channels

As an ansatz for the Bell state conversion, we consider covariant isometric channels,

namely channels that

(i) satisfy the covariance condition

C
(
U⊗Ng,J · U

⊗N†
g,J

)
= (Ug,K)⊗M C ( · ) (Ug,K)⊗M† ,∀g ∈ SO(3) ,

and

(ii) can be written as C(·) = V · V † for some isometry V .

Such channels are guaranteed to exist when NJ and MK are both integers, and NJ is

smaller than or equal to MK.

The maximum fidelity over all covariant isometric channels is given by the following

Proposition

Proposition 4. For NJ ≤MK, the fidelity of the optimal covariant isometric channel

is

F iso
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

(
NJ∑
j=0

√
p
(N,J)
j p

(M,K)
j

)2

, (D.1)

where p
(N,J)
j and p

(M,K)
k are the probabilities in the decompositions (B.3) and (B.6),

respectively. The optimal isometric channel is defined by the relation

V
∣∣∣Ψ(N,J)

g,j

〉
=
∣∣∣Ψ(M,K)

g,j

〉
∀j ∈ [0, NJ ] , ∀g ∈ SO(3) , (D.2)

where the states |Ψ(N,J)
g,j 〉 and |Ψ(M,K)

g,j 〉 are defined in Eqs. (B.3) and (B.6), respectively.

Proof. In terms of the isometry V , the covariance requirement amounts to the

relation

(Ug,K ⊗ Uh,K)⊗M V
(
U †g,J ⊗ U

†
h,J

)⊗N
= V ∀g, h ∈ SO(3). (D.3)

Hence, the fidelity of the isometric channel V(·) = V · V † is given by

Fiso

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=
∣∣〈ΦK |⊗M V |ΦJ〉⊗N

∣∣2
=

∣∣∣∣∣∣
min{NJ,MK}∑

j=0

√
p
(N,J)
j p

(M,K)
j

〈
Ψ

(N,J)
j

∣∣∣V ∣∣∣Ψ(M,K)
j

〉∣∣∣∣∣∣
2

≤

min{NJ,MK}∑
j=0

√
p
(N,J)
j p

(M,K)
j

2

.
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The bound is saturated by the isometry defined in Eq. (D.2), which is therefore optimal

over all covariant isometries. �

An alternative optimality proof can be obtained from an upper bound on the

fidelities of covariant isometric channels, derived by Marvian and Spekkens in Theorem

3 of Ref. [14].

Appendix D.2. Evaluation of the asymptotic fidelity

The asymptotic fidelity for the Bell state conversion can be computed by inserting the

asymptotic expression (C.2) into the expression for the fidelity (D.1). Suppose that

deviation ∆ := MK(K + 1) − NJ(J + 1) grows as N1−α with α ∈ (0, 1/4). Then, for

NJ ≤MK we obtain the asymptotic fidelity

F iso
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
= 1− 3∆2

8S2
−O

(
∆4

S4

)
−O

(
1√
S

)
, (D.4)

with S := NJ(J + 1). Note that the fidelity converges to 1 in the large N limit. The

condition α < 1/4 can be easily removed: if one can produce up to N1−α extra copies

with vanishing error, one can always discard some copies and reduce the number of extra

copy to N1−α′ with α′ ≥ 1/4. Note also that the condition NJ ≤ MK, used to derive

Eq. (D.1), can also be removed: if NJ > MK one can construct an isometry from a

subspace of the input space and complete the isometry with some other operation in

the orthogonal subspace. With this choice, the fidelity will have at least the value of

Eq. (D.4), meaning that the error will vanish at least as (∆/S)2. This concludes the

proof of Theorem 1. �

Appendix E. Derivation of Eq. (21): asymptotic upper bound on the

deterministic fidelity

Here we provide a bound on the fidelity of arbitrary quantum channels in the limit

of large N . The proof technique is a generalization of a technique introduced in our

previous work [19] for the cloning of qubit Bell states, corresponding to the J = K = 1/2

case.

Due to the symmetry of the problem, the optimal quantum channel C can be

assumed without loss of generality to be covariant, i.e. to satisfy the condition

(Ug,K ⊗ Uh,K)⊗M C = C (Ug,J ⊗ Uh,J)⊗N . (E.1)

In terms of the Choi operator C := (C ⊗ I)(|I〉〉〈〈I|), the covariance condition (E.1) can

be written as [
C, (Ug,K ⊗ Uh,K)⊗M ⊗ (U g,J ⊗ Uh,J)⊗N

]
= 0. (E.2)

Here U g,J is the complex conjugation of Ug,J .
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With this constraint, as well as the property of the Choi operator that C(ρ) =

Trin[(Iout ⊗ ρT )C], the fidelity (5) can be rewritten as

F det
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=
(
〈ΦK |⊗M ⊗ 〈ΦJ |⊗N

)
C
(
|ΦJ〉⊗N ⊗ |ΦK〉⊗M

)
.

To evaluate the fidelity, we use Eqs. (B.3) and (B.6) to decompose the joint state

of the input and the output as

|ΦJ〉⊗N ⊗ |ΦK〉⊗M =

(
NJ⊕
j=0

√
p
(N,J)
j

|Ij〉〉√
dj
⊗
|I
m

(N,J)
j
〉〉

m
(N,J)
j

)
⊗

MK⊕
k=0

√
p
(M,K)
k

|Ik〉〉√
dk
⊗
|I
m

(M,K)
k
〉〉√

m
(M,K)
k


=

 NJ⊕
j=0

MK⊕
k=0

√
p
(N,J)
j p

(M,K)
k

|Ij〉〉√
dj
⊗ |Ik〉〉√

dk
⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

⊗
|I
m

(M,K)
k
〉〉√

m
(M,K)
k


=

NJ+MK⊕
l=0

|Il〉〉 ⊗ |αl〉 , (E.3)

with

|αl〉 :=
⊕

j,k:(j,k)→l

√
p
(M,K)
k p

(N,J)
j

dkdj

|I
m

(M,K)
k
〉〉√

m
(M,K)
k

⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

, (E.4)

(j, k) → l being a shorthand for the values of j and k satisfying the inequality

|k− j| ≤ l ≤ k+ j. Applying Schur’s lemma to Eq. (E.2), and taking into consideration

the decomposition of the states (E.3), the Choi operator can be assumed without loss

of generality to have the form

C =
NJ+MK⊕

l=0

(Il ⊗ Il ⊗ Al) (E.5)

Al =
⊕

j, k : (j, k)→ l,
j′, k′ : (j′, k′)→ l

[Al](j,k)(j′,k′)
|I(M)
k 〉〉〈〈I(M)

k′ |√
m

(M,K)
k m

(M,K)
k′

⊗
|I
m

(N,J)
j
〉〉〈〈I

m
(N,J)

j′
|√

m
(N,J)
j m

(N,J)
j′

. (E.6)

The fidelity is then bounded as

F det
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

NJ+MK∑
l=0

dl
∑

j, k : (j, k)→ l,
j′, k′ : (j′, k′)→ l

[Al](j,k)(j′,k′)

√
p
(M,K)
k p

(N,J)
j q

(M,K)
k′ p

(N,J)
j′

dkdjdk′dj′

≤
NJ+MK∑

l=0

dl

 ∑
j,k:(j,k)→l

ajkl

√
p
(M,K)
k p

(N,J)
j

dkdj

2

where ajkl :=
√

[Al](j,k)(j,k), having used the positivity of the matrix Al.

Now the problem is to upper bound the function

S =
NJ+MK∑

l=0

dls
2
l
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sl :=
∑

j,k:(j,k)→l

ajkl

√
p
(M,K)
k p

(N,J)
j

dkdj
.

under the trace preservation constraint∑
j,k:(j,k)→j

d2l a
2
jkl = d2j ∀j ∈ {0, ..., NJ}.

The method of Lagrange multipliers shows that the optimal coefficients {ajkl} satisfy

ajkl =
sl
dlλj

√
pK,Mk pJ,Nj
dkdj

,

where λj ≥ 0 are the multipliers. Then the trace preservation condition becomes∑
k,l:(k,l)→j

s2l p
(M,K)
k p(N,J)j

dkdj
= λ2jd

2
j ∀j ∈ {0, . . . , NJ}.

Combining the expressions for the fidelity, for sl and for the optimal coefficients

{ajkl}, we then obtain

S =
NJ+MK∑

l=0

dlsl

 ∑
j,k:(j,k)→l

ajkl

√
p
(M,K)
k p

(N,J)
j

dkdj


=

NJ+MK∑
l=0

sl

 ∑
j,k:(j,k)→l

slp
(M,K)
k p

(N,J)
j

λjdkdj


=

NJ∑
j=0

1

λj

∑
k,l:(k,l)→j

s2l p
(M,K)
k p

(N,J)
j

dkdj

=
NJ∑
j=0

d2jλj. (E.7)

Now that the upper bound of the fidelity depends only on λj, we continue the derivation

by noticing that

sl =
∑

j,k:(j,k)→l

ajkl

√
p
(M,K)
k p

(N,J)
j

dkdj

=
∑

j,k:(j,k)→l

slp
(M,K)
k p

(N,J)
j

λjdkdjdl
,

which, for sl 6= 0, implies that {λj} are determined by the set of constraints

dl =
∑

j,k:(j,k)→l

p
(M,K)
k p

(N,J)
j

λjdkdj
. (E.8)

Notice that for any λj 6= 0 there exists at least one sl 6= 0, which we define as l(j),

such that λj appears in the l-th constraint. Defining the set Hl := {j|l(j) = l} we turn
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the constraints (E.8) into

dl =
∑
j∈Hl

p
(N,J)
j

λjdj

∑
k:(j,k)→l

p
(M,K)
k

dk
. (E.9)

Again, we optimize S under the set of constraints (E.9) using Lagrangian

multipliers, Eq. (E.7) yielding

S ≤
NJ+MK∑

l=0

1

dl

∑
j∈Hl

√√√√p(N,J)jdj
∑

k:(j,k)→l

p
(M,K)
k

dk

2

≤

(
max

k∈{0,...,MK}

p
(M,K)
k

d2k

)
NJ+MK∑

l=0

1

dl

∑
j∈Hl

√
p
(N,J)
j dj

∑
k:(j,k)→l

dk

2

≤

(
max

k∈{0,...,MK}

p
(M,K)
k

d2k

)
NJ+MK∑

l=0

(∑
j∈Hl

√
p
(N,J)
j dj

)2

≤

(
max

k={0,...,MK}

p
(M,K)
k

d2k

)(∑
j∈Hl

√
p
(N,J)
j dj

)2

having used the inequality dldj ≥
∑

k:(j,k)→l dk in the third inequality. Finally, the

fidelity is upper bounded as

F det
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
≤

(
max

k∈[0,MK]

p
(M,K)
k

d2k

)(
NJ∑
j=0

√
p
(N,J)
j dj

)2

=

√
27

8πM3K3(K + 1)3

×

√
27

8πN3J3(J + 1)3

[∫ NJ

0

dj (2j + 1)2 e−
3j2

2NJ(J+1)

]2
=

[
NJ(J + 1)

MK(K + 1)

] 3
2

+O

(√
N

M3

)
.

One can immediately see from the above bound that the deterministic fidelity vanishes

in the asymptotic limit if M � N .

Appendix F. Proof of Theorem 2: necessary and sufficient condition for

perfect probabilistic conversion

Appendix F.1. The proof of sufficiency

The sufficiency of the condition NJ ≥ MK (with N > 1) can be proved by

straightforwardly. If NJ and MK have the same parity, we use the pure quantum
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operation M(ρ) = WρW †, where W is the operator defined by the relation

W
∣∣∣Ψ(N,J)

g,j

〉
=

√√√√(min
k

p
(N,J)
k

p
(M,K)
k

)
p
(M,K)
j

p
(N,J)
j

∣∣∣Ψ(M,K)
g,j

〉
, (F.1)

required to be valid for all j that pN,j 6= 0 and for every g ∈ SU(2). For N > 1, the

fidelity of this quantum operation can be derived by substituting the expression of M
into Eq. (10). The result is

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=


1 MK ≤ NJ

∑NJ
k=0 q

(M,K)
k MK > NJ .

(F.2)

This proves that the condition MK ≤ NJ guarantees a perfect probabilistic conversion

when NJ and MK have the same parity.

Let us consider now the case where NJ and MK does not have the same parity.

If MK is smaller than NJ , a perfect conversion can be accomplished by the following

protocol:

(i) First analyze the spin-J Bell states into 2NJ copies of spin-1/2 Bell states;

(ii) discard one copy of the spin-1/2 Bell state;

(iii) transform the remaining states into M spin-K Bell states.

The transformations in (i) and (iii) can be accomplished perfectly, using the machine

(F.1).

Appendix F.2. Proof of necessity.

Here we show that no probabilistic machine can achieve perfect conversion when

NJ < MK. The idea is that, if such a machine existed, it would violate the probabilistic

version of the no-cloning theorem [61].

Let us first consider the case when M > 1. Suppose that we are given 2NJ copies

of an unknown spin-1/2 Bell state |Φg,1/2〉. Then, the sufficient condition in Appendix

F.1 guarantees that we can probabilistically convert the 2NJ spin-1/2 Bell states into N

copies of the spin-J Bell state |Φg,J〉, without any error. At this point, we can apply the

machine C, getting M copies of |Φg,K〉. But then, the sufficient condition in Appendix

F.1 would imply that we can generate 2MK perfect copies of the state |Φg,1/2〉. The

overall process is a perfect cloning of the spin-1/2 Bell state |Φg,1/2〉 since MK > NJ .

This contradicts with the fact that only states drawn from a set of linearly independent

states can be perfectly cloned, using probabilistic machines [61].

Finally we consider the case when M = 1. If there exists such a machine

that perfectly implements the conversion |Φg,J〉⊗N → |Φg,K〉, then the conversion

|Φg,J〉⊗2N → |Φg,K〉⊗2 can also be perfectly implemented by using the machine twice.

Applying again the previous argument we reach the contradiction.
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Appendix G. Proof of theorem 3: asymptotic probabilistic Bell state

conversions

Appendix G.1. Direct part

Here we show that the condition (NJ)2 � MK(K + 1) is sufficient for asymptotic

convertibility with vanishing error. To this purpose, we consider as an ansatz the

quantum operation defined in Eq. (F.1). The fidelity of this particular operation,

already evaluated in Eq. (F.2), takes the form

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=

NJ∑
k=0

p
(M,K)
k (G.1)

when MK is larger than NJ . In this case, one has the bound

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
= 1−

MK∑
k=NJ+1

p
(M,K)
k

≥ 1− 3M erfc

[√
3N2J2

2MK(K + 1)

]

≥ 1−
√

6M3K(K + 1)

πN2J2
exp

[
− 3N2J2

2MK(K + 1)

]
,

where erfc(x) := (2/
√
π)
∫∞
x
e−t

2
dt is the complementary error function. From the above

inequalities, we can see that an asymptotically faithful conversion is achieved whenever

(NJ)2 �MK(K + 1).

Appendix G.2. Converse part

We now show that the condition (NJ)2 � MK(K + 1) is necessary for Bell state

conversions with asymptotically vanishing error. To this purpose, we first derive an

explicit formula for the optimal probabilistic fidelity.

Lemma 1. The probabilistic fidelity for the Bell state conversion |Φg,J〉⊗N → |Φg,K〉⊗M
is

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
= max

l∈{0,...,NJ+MK}

 1

dMK dl

 l+MK∑
j=max{0, l−MK}

djm
(M,K,j)
l

 , (G.2)

where m
(M,K,j)
l is the multiplicity of the irreducible representation {Ug,l} in the

decomposition of the representation {U⊗Mg,K ⊗ U g,j}.

Proof. The derivation is based on an expression for the optimal fidelity [62], which

here takes the form

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
=
∥∥∥(I⊗MK ⊗ I⊗MK ⊗ τ−

1
2 )ρ (I⊗MK ⊗ I⊗MK ⊗ τ−

1
2 )
∥∥∥
∞
, (G.3)
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where ‖ · ‖∞ is the operator norm (in this case equal to the maximum eigenvalue of the

operator inside the bars), τ is the average input state

τ =

∫
dg |Φg,J〉〈Φg,J |⊗N ,

with average with respect to the normalized Haar measure dg, and ρ is the average

output-input state

ρ =

∫
dg |Φg,K〉〈Φg,K |⊗M ⊗ |Φg,K〉〈Φg,K |⊗N .

The state τ can be computed from the decomposition of the input state in Eq.

(B.3). Using Schur’s lemma [63] we obtain

τ =
NJ⊕
j=0

p
(N,J)
j

Ij
dj
⊗ Ij
dj
⊗
|I
m

(N,J)
j
〉〉〈〈I

m
(N,J)
j
|

m
(N,J)
j

.

The inverse square root τ−1/2 is then given by

τ−1/2 =
NJ⊕
j=0

√√√√ d2j

p
(N,J)
j

Ij ⊗ Ij ⊗
|I
m

(N,J)
j
〉〉〈〈I

m
(N,J)
j
|

m
(N,J)
j

.

Hence, we have the relation

I⊗MK ⊗ I⊗MK ⊗ τ−
1
2 =

=
NJ⊕
j=0

√√√√ d2j

p
(N,J)
j

I⊗MK ⊗ I⊗MK ⊗ Ij ⊗ Ij ⊗
|I
m

(N,J)
j
〉〉〈〈I

m
(N,J)
j
|

m
(N,J)
j

=
NJ⊕
j=0

MK+j⊕
l,l′=0

√√√√ d2j

p
(N,J)
j

Il ⊗ Il′ ⊗ Im(M,K,j)
l

⊗ I
m

(M,K,j)

l′
⊗
|I
m

(N,J)
j
〉〉〈〈I

m
(N,J)
j
|

m
(N,J)
j

(G.4)

where m
(M,K,j)
l is the multiplicity of the representation {Ug,l} in the decomposition of

the representation {U⊗Mg,K ⊗ U g,j}.
Let us compute the average input-output state ρ. To this purpose, we first

decompose the input state as in Eq. (B.3), obtaining

|Φg,K〉⊗M ⊗ |Φg,J〉⊗N =
|Ug,K〉〉⊗M√

dMK
⊗ |U g,J〉〉⊗N√

dNJ

=
|Ug,K〉〉⊗M√

dMK
⊗

 NJ⊕
j=0

√
p
(N,J)
j

|U (j)

g 〉〉√
dj
⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j


=

NJ⊕
j=0

MK+j⊕
l=0

√
p
(N,J)
j p

(M,K,j)
l

|Ug,l〉〉√
dl
⊗
|I
m

(M,K,j)
l

〉〉√
m

(M,K,j)
l

⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

, (G.5)

where we defined the probability distribution

p
(M,K,j)
l :=

dlm
(M,K,j)
l

dMK dj
.
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Exchanging the order of the two summations in Eq. (G.5) we obtain the expression

|Φg,K〉⊗M ⊗ |Φg,J〉⊗N =
NJ+MK⊕

l=0

|U (l)
g 〉〉√
dl
⊗ |µl〉 , (G.6)

where the vector |µl〉 is define as

|µl〉 :=
l+MK⊕

j=max{0,l−MK}

√
p
(M,K,j)
l p

(N,J)
j

|I
m

(M,K,j)
l

〉〉√
m

(M,K,j)
l

⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

. (G.7)

Using Eq. (G.6), we can now compute the average state ρ, which reads

ρ =

∫
dg |Φg,K〉〈Φg,K |⊗M ⊗ |Φg,J〉〈Φg,J |⊗N

=
NJ+MK⊕

l=0

Il
dl
⊗ Il
dl
⊗ |µl〉〈µl| . (G.8)

Combining this expression with Eqs. (L.2) and (L.5), we obtain the relation

(Iout ⊗ Iout ⊗ τ−
1
2 )ρ (Iout ⊗ Iout ⊗ τ−

1
2 )

=
NJ+MK⊕

l=0

Il
dl
⊗ Il
dl
⊗ |µ′l〉〈µ′l| , (G.9)

with

|µ′l〉 :=
l+MK⊕

j=max{0,l−MK}

√
d2j p

(M,K,j)
l

|I
m

(M,K,j)
l

〉〉√
m

(M,K,j)
l

⊗
|I
m

(N,J)
j
〉〉√

m
(N,J)
j

.

We now reached the conclusion. In order to compute the fidelity, Eq. (G.3) tells us

that we must compute the maximum eigenvalue of the operator in Eq. (G.9). The

eigenvalues are

λl =
1

d2l
〈µ′l|µ′l〉

=
1

d2l

l+MK∑
j=max{0,l−MK}

d2j p
(M,K,j)
l

=
l+MK∑

j=max{0,l−MK}

djm
(M,K,j)
l

dMK dl

Maximizing over l, we obtain

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
= max

l∈{0,...,NJ+MK}

 1

dMK dl

 l+MK∑
j=max{0, l−MK}

djm
(M,K,j)
l

 .(G.10)

�

Our second step is to derive an upper bound on the probabilistic fidelity. The

bound is as follows:
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Lemma 2. For MK ≥ NJ , the optimal probabilistic fidelity for the Bell state

conversion |Φg,J〉⊗N → |Φg,K〉⊗M is upper bounded as

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
≤ 1 + P

2
P := max

x≥0

(
x+NJ∑
k=x

p
(M,K)
k

)
, (G.11)

with the convention that p
(M,K)
k = 0 if k is larger than MK.

We are now ready to prove the converse part of Theorem 3. Using Eq. (G.10), we

obtain

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
= max

l∈{0,...,NJ+MK}

MK∑
k=0

p
(M,K)
k f

(l)
k (G.12)

where f
(l)
k is the function defined by

f
(l)
k :=

1

dkdl

min{NJ,k+l}∑
j=|k−l|

dj .

Note that the coupling of angular momenta guarantees that the function g
(l)
N,k is upper

bounded as

f
(l)
k ≤ 1 , ∀N, k, l . (G.13)

Moreover, one has the relations

f
(l)
k = 0 for l > NJ and k < l −NJ , (G.14)

f
(l)
k ≤

1

2
for l > NJ and k > l , (G.15)

and

f
(l)
k ≤

1

2
for l ≤ NJ and k > NJ . (G.16)

Taking the above conditions into account, the fidelity can be upper bounded as

F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
≤ 1 + P

2
P := max

x≥0

(
x+NJ∑
k=x

p
(M,K)
k

)
. (G.17)

�

Eq. (G.17) tells us that the fidelity F prob
Bell

[
|Φg,J〉⊗N → |Φg,K〉⊗M

]
can approach 1

only if the probability P approaches 1. Now, for large M , the probability distribution

p
(M,K)
k is approximately a polynomial times a normal distribution with standard devia-

tion O
(√

MK(K + 1)
)

, cf. Eq. (C.2). Hence, the probability P can approach 1 only

if the size of the interval [x, x + NJ ] is comparable with
√
MK(K + 1). Instead, if

the ratio between NJ and
√
MK(K + 1) tends to zero, then the probability P tends

to zero, too. In that case, the fidelity tends to the constant value F prob
Bell = 1/2. This

concludes the proof of Theorem 3. �
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Appendix H. Upper bound on the fidelity of quantum analyzers with N = 1

For machines taking a single copy as input, we have already seen in Appendix A that

deterministic and probabilistic machines have the same optimal fidelity.

Now, recall that the single-copy fidelity is an upper bound to the global fidelity,

because one can always discard all the output copies but one, thus obtaining a machine

that produces a single output copy. Hence, we obtain the bound

FBell

[
|Φg,J〉 → |Φg,1/2〉⊗M

]
≤ 2J + 1

4J
∀M ∈ N ,

which follows from inserting the value K = 1/2 into Eq. (11).

Appendix I. Deterministic analyzer for two copies of a spin-J Bell state

To break down the two copies of the Bell state, we use the reversible machine defined in

Proposition (4). In the large J limit, this machine can produce a number of Cartesian

refbits growing like J2 with a non-vanish fidelity. The exact value of the fidelity for

M = bαJ2c is plotted in Figure I1 for various values of α.

20 40 60 80
J0.82

0.83

0.84

0.85

0.856

F

Figure I1. Optimal reversible analyzer for two copies of a spin-J Bell state.

The figure shows the exact values of the fidelity in Eq. (D.1) as a function of J . For

each solid line, the number of output copies is set to M = bαJ2c, with a particular value

of α. Specifically, the red line represents the fidelity for the optimal value α = 2.241,

which approaches 0.856 (the dashed line) as J grows large. The blue line represents

the fidelity for α = 2.1, and the green line represents the fidelity for α = 2.4.

For large J , the maximum fidelity is obtained for α ≈ 2.241 and has the value

F iso
Bell

[
|Φg,J〉⊗2 → |Φg,1/2〉⊗b2.241J

2c
]
≈ 85.6% , J � 1 . (I.1)

To see this, we insert the expressions

p
(N,J)
j =

2j + 1

(2J + 1)2
and p

(M,K)
j =

√
8(2j + 1)4

πN3
exp

[
−2j2

N

] [
1−O

(
j

N

)]
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into the expression of the fidelity [Eq. (D.1)]. At the leading order, we obtain the

equality

F iso
Bell

[
|Φg,J〉⊗2 → |Φg,1/2〉⊗bαJ

2c
]

=

√
2α2

π
γ2
(

5

4
,

4

α

)
,

where γ(s, x) :=
∫ x
0
ts−1e−tdt is the lower incomplete Gamma function. Maximizing

over α, we obtain that fidelity 85.6%, achieved for α = 2.241.

Appendix J. Probabilistic analyzer for N copies of a spin-J Bell state

To obtain the desired result, we use the probabilistic machine defined by Eq. (F.1). The

fidelity of this machine is given by Eq. (F.2), which in the present case becomes

F prob
[
|Φg,J〉⊗2 → |Φg,1/2〉⊗M

]
=

NJ∑
k=0

p
(M,1/2)
k , N ≥ 2 . (J.1)

Now, the probability distribution p
(M,1/2)
k has the explicit form

p
(M,1/2)
k =

(2k + 1)2

2M(M + 1)

(
M + 1

M/2 + k + 1

)
,

leading to the bound

F prob
[
|Φg,J〉⊗N → |Φg,1/2〉⊗M

]
= 1−

M/2∑
k=NJ+1

p
(M,1/2)
k

≥ 1− (M + 1) exp

[
−2N2J2

M + 1

]
(J.2)

following from Hoeffding’s inequality [64].

Appendix K. A measure-and-prepare synthesizer of Bell states

Here we evaluate the fidelity of the measure-and-prepare synthesizer proposed in Section

6.

Inserting the expression of the measure-and-prepare channel [Eqs. (26) and (27)]

into the fidelity formula (5), we obtain the relation

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
=

∫
dĝ |〈Φĝ,K |ΦK〉|2

∣∣∣∣∣∣
N/2∑
k=0

√
p
(N,J)
k Tr [Uĝ,k]

∣∣∣∣∣∣
2

.

Then, parametrizing the rotation g in terms of the rotation angle (denoted by ω)

and the rotation axis, we obtain the explicit expression

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
=

1

π

∫ π

−π
dω

sin2
(
2K+1

2
ω
)

(2K + 1)2
f(ω) ,

where f(ω) is given by

f(ω) :=

∣∣∣∣∣∣
N/2∑
j=0

√
p
(N,J)
j Tr [Uĝ,j]

∣∣∣∣∣∣
2

.
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For large N , the function f(ω) can be computed explicitly as

f(ω) =

√
πN3

2
e−

Nω2

2

[(
ω cos ω

2

sin ω
2

)2

+
2ω cos ω

2

N sin ω
2

+O(N−2)

]
,

having used Eq. (15) for the probability distribution p
(N,J)
j . Note that f(ω) decays

exponentially fast for Nω2 � 1. Hence, we can express the measure-and-prepare fidelity

as

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
=

1

π

∫ π

−π
dω

sin2
(
2K+1

2
ω
)

(2K + 1)2
f(ω)

=

√
8πN3

π(2K + 1)2

∫ 1√
N1−δ

− 1√
N1−δ

dω sin2

(
2K + 1

2
ω

)
e−

Nω2

2

×
[
1 +O

(
1

N

)]
, (K.1)

where δ > 0 is an arbitrary constant.

Let us analyze the large N asymptotics. First of all, we show that the fidelity

vanishes whenever K is large compared to
√
N . This is an immediate consequence of

the bound

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
≤
√

8πN3

π(2K + 1)2

∫ +∞

−∞
dω e−

Nω2

2

[
1 +O

(
1

N

)]
=

4N

(2K + 1)2

[
1 +O

(
1

N

)]
,

which follows from Eq. (K.1).

Now, suppose thatK grows asNα for some α < 1/2. Picking δ so that α < (1−δ)/2,

we can guarantee the condition (2K + 1)ω � 1 within the domain of integration in Eq.

(K.1). Hence, we can Taylor-expand sin2
(
2K+1

2
ω
)
, thus obtaining

FMP
Bell

[
|Φg,1/2〉⊗N → |Φg,K〉

]
= 1− (2K + 1)2

4N
+O(N−1)

In conclusion, every Bell state with spin K = O(
√
N) can be synthesized almost

perfectly in the large N limit.

Appendix L. Proof of Theorem 4: analytical expression of the probabilistic

fidelity

Proof. The proof uses the expression of the ultimate probabilistic fidelity derived in

Ref. [62]. The expression reads

F prob
Bell =

∥∥∥(Iout ⊗ Iout ⊗ τ−
1
2 )ρ (Iout ⊗ Iout ⊗ τ−

1
2 )
∥∥∥
∞
, (L.1)

where ‖ · ‖∞ is the operator norm (in this case equal to the maximum eigenvalue of the

operator inside the bars), τ is the average input state

τ =

∫
dg |ΦUg〉〈ΦUg | ,
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(the average is with respect to the normalized Haar measure dg and the |ΦUg〉 denotes

the complex conjugate of the vector |ΦUg〉), and ρ is the average output-input state

ρ =

∫
dg |ΦVg〉〈ΦVg | ⊗ |ΦUg〉〈ΦUg | .

Using the double-ket notation and the isotypic decomposition [63]

Ug =
⊕

j∈Irr(U)

(
U (j)
g ⊗ Imj

)
,

the state |ΦUg〉 can be expressed as

|ΦUg〉 =
|U g〉〉√
din

=
1√
din

⊕
j∈Irr(U)

|U (j)

g 〉〉 ⊗ |Imj〉〉 ,

where we reordered the tensor factors in order to have the two representation spaces on

the left and the two multiplicity spaces on the right. Applying Schur’s lemma [63], the

average state τ be explicitly calculated as

τ =
1

din

⊕
j∈Irr(U)

Ij ⊗ Ij ⊗ |Imj〉〉〈〈Imj |
dj

,

where din is the dimension of the input Hilbert space and Ij is the identity matrix on

the representation space where the representation {U (j)
g } acts. The inverse square root

τ−1/2 is then given by

τ−1/2 =
√
din

⊕
j∈Irr(U)

√
dj
mj

Ij ⊗ Ij ⊗ |Imj〉〉〈〈Imj |
mj

.

Hence, we have the relation

Iout ⊗ Iout ⊗ τ−
1
2 =

=
√
din

⊕
j∈Irr(U)

√
dj
mj

Iout ⊗ Iout ⊗ Ij ⊗ Ij ⊗ |Imj〉〉〈〈Imj |
mj

=
√
din

⊕
j∈Irr(U)

⊕
l,l′∈Irr

(
V⊗U(j)

)
√

dj
mj

Il ⊗ Il′ ⊗ Im(j)
l
⊗ I

m
(j)

l′
⊗ |Imj〉〉〈〈Imj |

mj

(L.2)

where again we reordered the tensor factors in order to have all the representation spaces

on the left and all the multiplicity spaces on the right.

Computing the average state ρ is a bit more complex. First, we express the product

state |ΦVg〉 ⊗ |ΦUg〉 as

|ΦVg〉 ⊗ |ΦUg〉 =
|Vg〉〉√
dout
⊗ |U g〉〉√

din

=
1√

dindout

⊕
j∈Irr(U)

|Vg〉〉 ⊗ |U
(j)

g 〉〉 ⊗ |Imj〉〉
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=
1√

dindout

⊕
j∈Irr(U)

⊕
l∈Irr

(
V⊗U(j)

) |U (l)
g 〉〉 ⊗ |Im(j)

l
〉〉 ⊗ |Imj〉〉 , (L.3)

with the usual reordering of the tensor factors. Here, m
(j)
l is the multiplicity of the

representation {U (l)
g } in the decomposition of the representation {Vg ⊗ U

(j)

g }.
Note that we have m

(j)
l = 0 when the representation {U (l)

g } does not appear in the

decomposition of {Vg ⊗ U
(j)

g }. In this case, we adopt the convention I
m

(j)
l

= 0, which

allows us to exchange the order of the two summations in Eq. (L.3), obtaining

|ΦVg〉 ⊗ |ΦUg〉 =
1√

dindout

⊕
l∈Irr(V⊗U)

⊕
j∈Irr(U)

|U (l)
g 〉〉 ⊗ |Im(j)

l
〉〉 ⊗ |Imj〉〉

=
1√

dindout

⊕
l∈Irr(V⊗U)

|U (l)
g 〉〉 ⊗ |αl〉 ,

with

|αl〉 :=
⊕

j∈Irr(U)

|I
m

(j)
l
〉〉 ⊗ |Imj〉〉 , (L.4)

We are now ready to compute the average state ρ, which reads

ρ =

∫
dg |ΦVg〉〈ΦVg | ⊗ |ΦUg〉〈ΦUg |

=
1

dindout

⊕
l∈Irr(V⊗U)

Il ⊗ Il ⊗ |αl〉〈αl|
dl

. (L.5)

Combining with Eqs. (L.2) and (L.5), we obtain the relation

(Iout ⊗ Iout ⊗ τ−
1
2 )ρ (Iout ⊗ Iout ⊗ τ−

1
2 )

=
1

dout

⊕
l∈Irr(V⊗U)

Il ⊗ Il ⊗ |α′l〉〈α′l|
dl

, (L.6)

with

|α′l〉 :=
⊕

j∈Irr(U)

√
dj
mj

|I
m

(j)
l
〉〉 ⊗ |Imj〉〉 .

We now reached the conclusion. In order to compute the fidelity, Eq. (L.1) tells us that

we must compute the maximum eigenvalue of the operator in Eq. (L.6). The eigenvalues

are

λl =
〈α′l|α′l〉
doutdl

=
∑

j∈Irr(U)

djm
(j)
l

doutdl
.

Maximizing over l one then obtains the desired expression

F prob
Bell

(
|ΦUg〉 → |ΦVg〉

)
= max

l∈Irr(V⊗U)

 1

doutdl

 ∑
j∈Irr(U)

djm
(j)
l

 . (L.7)
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�

Appendix M. Proof of Theorem 5: irreducibility implies no probabilistic

advantage

Proof. Let us start from the case of the Bell state conversion. We use a general

result from Ref. [39], stating that the optimal probabilistic and deterministic operations

perform equally well whenever the set of input states is invariant under the action of an

irreducible group representation. Thanks to this result, we only need to show that the

set of input states {|ΦUg〉} is invariant under the action of an irreducible representation.

In our case, the irreducible representation is {Uh ⊗ Uk}, where the elements h and

k vary independently over the group G, and Uk is the complex conjugate of Uk with

respect to a fixed basis, regarded as the “computational basis”. The irreducibility of

the representation {Uh⊗Uk} is immediate from the assumption that the representation

{Ug} is irreducible.

The invariance of the set {|ΦUg〉} is immediate from the relation

(Uh ⊗ Uk) |ΦUg〉 =
|UhUgU †k 〉〉√

din
= |ΦUhgk−1 〉 ,

valid for arbitrary group elements g, k, and h. Hence, the result of Ref. [39] guarantees

that there is no difference in performance between probabilistic and deterministic

operations.

Figure M1. Gate simulation network. The figure illustrates the general form of

a network connected with a black box implementing the gate Ug. Here A and B are

generic quantum operations, heralded by the outcomes of two probabilistic processes.

Let us consider now the case of gate simulations, implemented by quantum networks

of the form of Figure M1. A convenient way to describe the gate simulation network

is to use the method of quantum combs [65, 66], which associates the network with a

positive operator R acting on the four Hilbert spaces

H0 ' Hout , H1 ' Hin , H2 ' Hin , H3 ' Hout ,

where Hin is the space on which the gate Ug acts, and Hout is the gate on which Vg acts.
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In terms of the operator R, the probabilistic fidelity is given by

F prob
gate =

∫
dg
(
〈〈Vg|30 ⊗ 〈〈U g|21

)
R
(
|Vg〉〉30 ⊗ |U g〉〉21

)
∫

dg Tr30

[
〈〈U g|21R |U g〉〉21

] , (M.1)

where the subscripts identify the Hilbert spaces to which the vectors belong, and Tr30
denotes the partial trace over the Hilbert space H3 ⊗H0. The symmetry of Eq. (M.1)

implies that, without loss of generality, the optimal network can be chosen with an

operator R satisfying the condition

[R, Vh,3 ⊗ Uh,2 ⊗ Uk,1 ⊗ V k,0] = 0 , ∀h ∈ G , ∀k ∈ G . (M.2)

Now, Eq. (M.2) implies that the network has the same performance of a deterministic

network. To prove this, we recall that a network is deterministic if and only if its

operator R satisfies the conditions [65, 66]

Tr3[R] = I2 ⊗R′ and Tr1[R
′] = I0 , (M.3)

for some nonnegative operator R′ acting on H1 ⊗ H0. Now, Eq. (M.2) yields the

condition

[Tr3[R], Uh,2 ⊗ Uk,1 ⊗ V k,0] = 0 , ∀h ∈ G ,∀k ∈ G ,

which in turn implies the condition

Tr3[R] = I2 ⊗R′

having used Schur’s lemma and the fact that {Uh} is an irreducible representation.

Moreover, the operator R′ must satisfy the condition

[R′, Uk,1 ⊗ V k,0] = 0 , ∀k ∈ G ,

which implies

[Tr1[R
′], V k,0] = 0 , ∀k ∈ G ,

and, in turn,

Tr1[R
′] = λ I0 ,

for some constant λ. The last equality is a consequence of Schur’s lemma, applied to

the irreducible representation {V k}.
Defining Rdet := R/λ, we then have that Rdet is the operator of a determinis-

tic quantum network. From Eq. (M.1) it is immediate that the deterministic network

with operator Rdet has the same fidelity of the probabilistic network with operator R. �

Appendix N. Proof of Theorem 6: when local operations and memoryless

networks are optimal

Proof. Let us start from the case of the Bell state conversion. The proof uses the Choi

isomorphism, which associates the quantum channel C to the operator C, acting on
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Hout1 ⊗ Hout2 ⊗ Hin1 ⊗ Hin2, where the subscripts 1 and 2 label the two spaces in the

input and output Bell pairs. Note that, in order to be the Choi operator of a quantum

channel, the operator C must be positive and must satisfy the normalization condition

Trout1,out2[C] = Iin1 ⊗ Iin2 . (N.1)

In terms of the Choi operator, the fidelity for the Bell state conversion |ΦUg〉 → |ΦVg〉
can be written as [62]

FBell = Tr[C ρ] ,

where ρ is the state

ρ =

∫
dg |ΦVg〉〈ΦVg | ⊗ |ΦUg〉〈ΦUg |

=
1

dindout

⊕
l∈Irr(V⊗U)

Il ⊗ Il ⊗ |αl〉〈αl|
dl

, with 〈αl|αl〉 = ml (N.2)

cf. Eq. (L.5). Recall that there is no difference between the probabilistic fidelity and

the deterministic fidelity, since the representation {Ug} is irreducible (cf. Theorem 5).

Hence, the maximum fidelity for the deterministic Bell state conversion |ΦUg〉 → |ΦVg〉
is given by Eq. (35), which provides the expression

F det
Bell =

din
dout

[
max

l∈Irr(V⊗U)

ml

dl

]
, (N.3)

where ml is the multiplicity of the representation {U (l)
g } in the decomposition of

{Vg⊗U g}. By direct inspection, one can see that the optimal fidelity is attained by the

operator

Copt = d2in

(
Il∗
dl∗
⊗ Il∗
dl∗
⊗ |αl∗〉〈αl∗ |
〈αl∗ |αl∗〉

)
,

where l∗ is the value of l that maximizes the ratio ml/dl. Note that the operator Copt

is positive and satisfies Eq. (N.1): indeed, one has

Trout1,out2[C] = d2in Trout2

[
Trout1

[
Il∗
dl∗
⊗ Il∗
dl∗
⊗ |αl∗〉〈αl∗|
〈αl∗|αl∗〉

]]
= din Iin1 ⊗ Trout2

[
Il∗
dl∗
⊗ TrM1

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]]
, (N.4)

where we applied Schur’s lemma to the irreducible representation {Ug}, and TrM1

denotes the partial trace over the multiplicity spaces resulting from the coupling of

first systems in the input and output Bell pairs. Finally, we apply again Schur’s lemma

to the irreducible representation {Ug}, obtaining

Trout1,out2[C] = din Iin1 ⊗ Trout2

[
Il∗
dl∗
⊗ TrM1

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]]
= Iin1 ⊗ Iin2 TrM1⊗M2

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
= Iin1 ⊗ Iin2 Tr

[
|αl∗〉〈αl∗ |
〈αl∗ |αl∗〉

]
= Iin1 ⊗ Iin2 . (N.5)
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Hence, Copt is the Choi operator of a quantum channel. If ml∗ = 1, the Choi operator

Copt has the product form Copt = A⊗B, with

A = B =
din
dl∗

Il∗ .

Here, A is the Choi operator of a channel A transforming system in1 into system out1,

while B is the Choi operator of a channel B transforming system in2 into system out2.

In conclusion, the optimal Bell state conversion is implemented with local operations

performed independently on the two systems of the input Bell pair.

Let us consider now the case of the gate simulation. The gate simulation network

is described by a quantum comb R, which can be chosen without loss of generality to

satisfy the commutation relation (M.2). In terms of the quantum comb R, the fidelity

can be written as

Fgate =
din
dout

Tr[Rρ] ,

where ρ is the state in Eq. (N.2). Again, there is no difference between probabilistic and

deterministic fidelity, because the representations {Ug} and {Vg} are both irreducible

(cf. Theorem 5). Hence, the maximum fidelity is provided by Eq. (35), which yields

F det
gate =

din
dout

[
max

l∈Irr(V⊗U)

ml

dl

]
, (N.6)

By direct inspection, we find that the optimal fidelity is attained by the operator

Ropt = dindout

(
Il∗
dl∗
⊗ Il∗
dl∗
⊗ |αl∗〉〈αl∗ |
〈αl∗ |αl∗〉

)
,

where l∗ is the value of l that maximizes the ratio ml/dl. The operator R represents a

deterministic quantum network, because the conditions (M.3) are satisfied: Indeed, one

has

Tr3[R] = dindout Tr3

[
Il∗
dl∗
⊗ Il∗
dl∗
⊗ |αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
= dout I2 ⊗

Il∗
dl∗
⊗ TrM32

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
, (N.7)

where we applied Schur’s lemma to the irreducible representation {Ug} and we used the

notation TrM32 to denote the partial trace over the multiplicity spaces resulting from

the coupling of systems 3 and 2. Eq. (N.7) implies that we have Tr3[R] = I2 ⊗R′ with

R′ = dout
Il∗
dl∗
⊗ TrM32

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
.

Moreover, we have

Tr1[R
′] = dout Tr1

[
Il∗
dl∗
⊗ TrM32

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]]
= I0 TrM32⊗M10

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
= I0 Tr

[
|αl∗〉〈αl∗|
〈αl∗|αl∗〉

]
= I0 , (N.8)
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the second equality following from Schur’s lemma applied to the representation {Vg}.
This concludes the proof that R represents a deterministic quantum network.

If ml∗ = 1, the quantum comb Ropt has the product form Ropt = dindout

(
Il∗
dl∗
⊗ Il∗

dl∗

)
,

where the first factor acts on the Hilbert spaces H3 and H2, while the second acts on the

Hilbert spaces H1 and H0. This means that the optimal network consists of a quantum

channel A from system 0 to system 1, followed by a quantum channel B from system 2

to system 3, the two channels having the Choi operators

A =
din
dl∗
Il∗ and B =

dout
dl∗

Il∗ ,

respectively. Note that no quantum memory is needed between A and B. �

Appendix O. Proof of Theorem 7: lower bound on the gate fidelity

Proof. We have to prove the bound

F det
gate

[
Ug → Vg

]
≥
(
F prob
Bell

[
|ΦUg〉 → |ΦVg〉

])2
,

where F det
gate is the ultimate deterministic fidelity of the gate simulation Ug → Vg and

F prob
Bell is the optimal fidelity of the corresponding spin conversion |ΦUg〉 → |ΦVg〉.

To derive the bound we start from the decomposition of the representations {Ug}
and {Vg}. Explicitly, we write

Ug =
⊕

j∈Irr(U)

(
U (j)
g ⊗ Imj

)
Vg =

⊕
k∈Irr(V )

(
U (k)
g ⊗ Ink

)
. (O.1)

In addition, we decompose the representation U
(k)
g ⊗ U

(j)

g as

U (k)
g ⊗ U

(j)

g =
⊕

l∈Irr
(
U(k)⊗U(j)

)
(
U (l)
g ⊗ Im(k,j)

l

)
, (O.2)

where m
(k,j)
l is the multiplicity of the irreducible representation {U (l)

g } in the

decomposition of the product representation {U (k)
g ⊗ U

(j)

g }. The dimensions of the

representation and multiplicity spaces in Eqs. (O.1) and (O.2) determine the optimal

fidelity. The exact formula is given by Proposition 5 of [51], which yields the expression

F det
gate = max

{hk,l}

∑
l∈Irr(V⊗U)

 ∑
k∈Irr(V )

√√√√ ∑
j∈Irr(U)

n2
kdkdjmjm

(k,j)
l

dld2out
· hk,l

2

,

where {hk,l} is a set of coefficients satisfying the constraints hk,l ≥ 0 and
∑

l hk,l = 1∀k.

Choosing hk,l = δll∗ for some fixed (but otherwise arbitrary) l∗, we get a lower bound of

the gate simulation fidelity. Specifically, we have

F det
gate

[
Ug → Vg

]
≥ max

l∗∈Irr(V⊗U)

 ∑
k∈Irr(V )

qk

√√√√ ∑
j∈Irr(U)

djmjm
(k,j)
l∗

dkdl∗

2

qk :=
dknk
dout
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≥ max
l∗∈Irr(V⊗U)

 ∑
k∈Irr(V )

qk

√√√√ ∑
j∈Irr(U)

djm
(k,j)
l∗

dkdl∗

2

. (O.3)

Now, we use the standard group-theoretic formula for the multiplicities [63], which can

be computed as

m
(k,j)
l =

∫
dg χ(l)

g χ
(k)
g χ(j)

g (O.4)

in terms of the characters χ
(j)
g := Tr[U

(j)
g ], χ

(k)
g := Tr[U

(k)
g ] and χ

(l)
g := Tr[U

(l)
g ].

A trivial rearrangement of the terms gives

m
(k,j)
l =

∫
dg χ(l)

g χ
(k)
g χ(j)

g

=

∫
dg χ(j)

g χ(k)
g χ(l)

g

= m
(k,l)
j , (O.5)

where m
(k,l)
j is the multiplicity of the irreducible representation {U (j)

g } in the

decomposition of the product representation {U (k)
g ⊗ U

(l)

g }.
On the other hand, the decomposition

Rk ⊗Rl =
⊕

j∈Irr
(
U(k)⊗U(l)

)
(
Rj ⊗M(k,l)

j

)
(O.6)

implies the relation

dkdl =
∑

j∈Irr
(
U(k)⊗U(l)

) djm
(k,l)
j =

∑
j∈Irr

(
U(k)⊗U(l)

) djm
(k,j)
l ,

which in turn implies the inequality∑
j∈Irr(U) djm

(k,j)
l

dkdl
≤

∑
j∈Irr

(
U(k)⊗U(l)

) djm(k,j)
l

dkdl
= 1 ,

and therefore √∑
j∈Irr(U) djm

(k,j)
l

dkdl
≥
∑

j∈Irr(U) djm
(k,j)
l

dkdl
.

Using the above property, we can reduce the fidelity bound (O.3) to

F det
gate

[
Ug → Vg

]
≥ max

l∗∈Irr(V⊗U)

 ∑
k∈Irr(V )

qk

√√√√ ∑
j∈Irr(U)

djm
(k,j)
l∗

dkdl∗

2

≥ max
l∗∈Irr(V⊗U)

 ∑
k∈Irr(V )

qk
∑

j∈Irr(U)

djm
(k,j)
l∗

dkdl∗

2

= max
l∗∈Irr(V⊗U)

 1

dout

∑
j∈Irr(U)

dj
∑

k∈Irr(V )

m
(k,j)
l∗

mk

dl∗

2



Units of rotational information 54

= max
l∗∈Irr(V⊗U)

 1

doutdl∗

 ∑
j∈Irr(U)

djm
(j)
l∗

2

,

where m
(j)
l∗

is the multiplicity of the irreducible representation {U (l∗)
g } in the decomposi-

tion of the product representation {Vg⊗U
(j)

g }. The last term in the inequality is exactly

the fidelity of the Bell state conversion, as given by Eq. (L.7). �
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