
139

Automatic Repair of Regular Expressions

RONG PAN, The University of Texas at Austin, USA

QINHEPING HU, University of Wisconsin-Madison, USA

GAOWEI XU, University of Wisconsin-Madison, USA

LORIS D’ANTONI, University of Wisconsin-Madison, USA

We introduce RFixer, a tool for repairing complex regular expressions using examples. Given an incorrect

regular expression and sets of positive and negative examples, RFixer synthesizes the closest regular expression

to the original one that is consistent with the examples. Automatically repairing regular expressions requires

exploring a large search space because practical regular expressions: i) are large, ii) operate over very large

alphabetsÐe.g., UTF-16 and ASCIIÐand iii) employ complex constructsÐe.g., character classes and numerical

quantifiers. RFixer’s repair algorithm achieves scalability by taking advantage of structural properties of

regular expressions to effectively prune the search space, and it employs satisfiability modulo theory solvers

to efficiently and symbolically explore the sets of possible character classes and numerical quantifiers. RFixer

could successfully compute minimal repairs for regular expressions collected from a variety of sources, whereas

existing tools either failed to produce any repair or produced overly complex repairs.

CCS Concepts: • Software and its engineering→ General programming languages; • Theory of computa-

tion → Regular languages.

Additional Key Words and Phrases: Program Repair, Regular Expressions, Program Synthesis

ACM Reference Format:

Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Automatic Repair of Regular Expressions.

Proc. ACM Program. Lang. 3, OOPSLA, Article 139 (October 2019), 29 pages. https://doi.org/10.1145/3360565

1 INTRODUCTION

One of the most profound impacts of computing has been to enable a broad range of disciplinesÐ
from linguistics to geologyÐto collect, store and analyze an ever expanding set of data about
the phenomena they study [Hey et al. 2009]. Similarly, jobs from advertising to machine main-
tenance are being transformed into data-centric occupations. As a result, providing support for
filtering, transforming, and analyzing data has become crucial. In this paper, we focus on helping
programmers write regular expressions, which not only are the de-facto tool for extracting data
from unstructured datasets, but are also part of the standardized computer science curriculum and
are taught in data science and theory of computation courses [url 2018].

We introduce RFixer, a tool for helping programmers repair regular expressions. We only consider
regular expressions that do not contain non-regular operatorsÐe.g., negative lookahead. Although
we do not consider non-regular operators, our tool is expressive enough to capture most of the

Authors’ addresses: Rong Pan, The University of Texas at Austin, USA, rpan@cs.utexas.edu; Qinheping Hu, Department of

Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI, 53706, USA; Gaowei Xu,

Department of Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI, 53706, USA;

Loris D’Antoni, Department of Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison,

WI, 53706, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART139

https://doi.org/10.1145/3360565

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

139:2 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

regular expressions appearing in practical applications.1 RFixer takes as input a regular expression
and a set of positive and negative examplesÐi.e., strings the regular expression should respectively
accept and reject. When the regular expression is incorrect on the examples, RFixer automatically
synthesizes the syntactically smallest repair of the original regular expression that is correct on the
given examples.

The problem tackled by RFixer is challenging because practical regular expressions i) are large,
ii) operate on very large alphabets consisting of upwards of hundreds of characters, and iii) employ
complex constructs such as character classes (e.g., [a-z0-9]) and numerical quantifiers (e.g.,
\d{8,15}, which describes a sequence of digits of length between 8 and 15 characters). The main
contribution of this paper is the first sound and complete algorithm for finding minimal repairs that
can scale to practical regular expressions. Our algorithm achieves scalability by taking advantage
of structural properties of regular expressions to localize what sub-expressions should be modified
and employs satisfiability modulo theory (SMT) solvers to efficiently and symbolically explore the
set of possible character classes and numerical quantifiers.

Algorithm. At the high level, RFixer operates as follows. Starting from the initial regular
expressionÐe.g., [a-z]{3,5}[0-9]∗Ðand positive and negative examplesÐe.g., P = {abc4, ac4}
and N = {a12}ÐRFixer generates a set of initial templatesÐi.e., regular expressions with holes.
On our example a possible template is ◦{▷, ◁}[0-9]∗ where ◦ is a hole that can be replaced by any
regular expression and ▷ and ◁ are quantifier holes that can be replaced by numbers. RFixer then
processes the templates in order of distance from the original expression and, for each template t ,
performs the following three steps.
Template pruning. RFixer performs a polynomial-time test to check whether the template t can

ever result in a correct repair, otherwise it discards it. In our example, the template ◦{▷, ◁}[0-9]∗
is kept because . ∗ [0-9]∗ (. is the character class containing every character) accepts all posi-
tive examples and ∅[0-9]∗ rejects all negative examples. However, the template [a-z]{3,5}◦ is
discarded because no instantiation of it can accept the positive example ac4.
Simple completion. If the template is not discarded, RFixer tries to find a correct instantiation

of the template that replaces each hole of the form ◦ with a set of characters. We show that this
problem is NP-Hard and propose two SMT encodings for solving it. Our encodings are based on
the automata and declarative semantics of regular expressions and have different complexities and
orthogonal performance.
Template generation. Last, our algorithm adds to the set of unexplored templates with new

templates obtained by generating new holes in the current template using regular expression
operatorsÐe.g., expand ◦{▷, ◁}[0-9]∗ to (◦ | ◦){▷, ◁}[0-9]∗.

Evaluation. RFixer could produce minimal repairs that were consistent with the given examples
for 1,588/2,104 regular expressions with small alphabets from the personalized education website
Automata Tutor [Tutor 2015] (number of examples varying between 4 and 96 per expression), 23/25
real regular expressions collected from the regular expression forum RegExLib [RegExLib 2017]
(number of examples varying between 10 and 39 per expression), and 35/50 regular expressions
from Rebele et al. [2018] (number of examples varying between 17 and 75 per expression) with an
average time of 16.4 seconds. Most important, RFixer produced high-quality repairs. First, using
a counterexample-guided inductive synthesis algorithm RFixer could also produce semantically
correct (w.r.t. a specification) repairs for 1,156/2,104 Automata Tutor expressions. Second, the

1We analyzed a large public collection of regular expressions (https://github.com/lorisdanto/automatark/tree/master/regex)

from a variety applicationsÐe.g., string matching and deep-packet inspectionÐand only 724/6124 expressions used non-

regular operators.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:3

repairs produced by RFixer on the problems from Rebele et al. [2018] generalized well to left-out
example sets. In particular, RFixer’s F1 scores on left-out examples were on average 56% higher
than the F1 scores of the state-of-the-art tool from Rebele et al. [2018]!
Intended Use of RFixer. Our preliminary results show that RFixer could be used in a variety of

applications. First, RFixer can be deployed in tools like Automata Tutor [D’Antoni et al. 2015a]
and used to build feedback systems for helping students understand regular expressions. Second,
RFixer can be deployed as a helping tool for debugging regular expressions in systems like https:
//regexr.com/, which provide intuitive interfaces for people to experiment with regular expressions.
Even though in this scenario a full specification of the intended behavior of the regular expression is
not available, RFixer often produces high-quality repairs that have correct templates and generalize
to unseen data. In the rare cases where RFixer produces low-quality repairs, we believe programmers
can benefit from seeing suggestions on how to fix individual examples and use the suggestions to
generalize the fixes provided by RFixer.

Contributions. In summary, our contributions are:

• RFixer: the first sound and complete tool for producing minimal repairs from examples for
regular expressions with complex alphabets, character classes, and numerical quantifiers
(ğ 2).
• A synthesis algorithm that uses structural properties of regular expressions to efficiently prune
the search space of regular-expression templates and uses SMT solvers to avoid explicitly
searching the large space of character classes and numerical quantifiers (ğ 4 and 5). We
propose two SMT encodings with orthogonal performance for solving individual templates.
The encodings are based on different semantics of regular expressions: one based on automata
and one based on regular expression operators.
• A comprehensive evaluation of RFixer on three representative sets of benchmarks (ğ 6).
First, for 2,104 regular expressions over small alphabets submitted by students as homework
assignments in the tool Automata Tutor [Tutor 2015], RFixer successfully produced 1,588/2,104
repairs consistent with the given examples and 1,156/2,104 repairs equivalent to the correct
assignment solutions. Second, for 25 regular expressions over the ASCII alphabet from the
popular regular expressions website http://www.regexlib.com, RFixer successfully repaired
23/25. Third, for 50 regular expression over the ASCII alphabets from Rebele et al. [2018],
RFixer successfully repaired 35/50 expressions and produced repairs that on average had 56%
higher accuracy on left-out examples than those produced by the state-of-the-art tool from
Rebele et al. [2018].

2 ILLUSTRATIVE EXAMPLE

We illustrate the main ideas behind RFixer using a concrete example of an incorrect regular
expression collected from the regular expression website RegExLib [RegExLib 2017]. A user has
shared on the website the following regular expression that they claim correctly accepts valid
MasterCard™ numbers starting with the numbers 51 through 55.

[51|52|53|54|55]{2}[0-9]{14}

However, the user has misunderstood the syntax of regular expressions and made a few mistakes
that cause the expression to misbehave on several inputs. In particular, when the pipe character |
is used within square brackets, it does not denote the union operator but the character ‘|’ itself
(i.e., the expression is equivalent to [12345|]{2}[0-9]{14}). After posting the incorrect regular
expression on the website, several users pointed out that the regular expression was incorrect and

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:4 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

5125632154125412 5225632154125412 5525632154125412 5525632154125412

5125632154125412 5325632154125412 5425632154125412 5425632154125412

5211632154125412

(a) Positive examples

1525632154125412 2525632154125412 3525632154125412 1599999999999999

4525632154125412 |525632154125412 3525632154125412 5625632154125412

4825632154125412 6011632154125412 6011-1111-1111-1111 5423-1111-1111-1111

341111111111111

(b) Negative examples

[51|52|53|54|55]{2}[0-9]{14}

(c) Incorrect expression

5[12345][0-9]{14}

(d) Repaired expression produced by RFixer

Fig. 1. Example of repair produced by RFixer.

provided several counterexamples. For example, a user mentioned that strings starting with 15 or
|5 are accepted even though they shouldn’t be.

Using these counterexamples, a user can ask RFixer to automatically repair the incorrect expres-
sion (Figure 1). When interacting with RFixer, a user provides a regular expression together with
positive and negative examples. The user then asks RFixer to repair the original expression and
RFixer computes the regular expression that correctly produces the matches and is łclosestž to the
original one. In this example, RFixer takes 16 seconds to output the following expression, which
correctly fixes the user’s mistakes.

5[12345][0-9]{14}

RFixer computes the repaired expression as follows. First, RFixer iteratively transforms the
original expression into templatesÐi.e., regular expressions with holes. Each template implicitly
represents all possible regular expressions that can be obtained by instantiating the values of the
holes. Enumerating templates instead of complete regular expressions addresses the problem of
explicitly enumerating complex regular expression features such as character classes and numerical
quantifiers. For example, the template ◦([0-9]{14}) is obtained by replacing the first character
class and its quantifier in the original expression with a hole. RFixer explores templates in order by
preferring templates that are closest to the original expression first. For every template, RFixer per-
forms a series of tests to decide whether the template will ever result in a correct regular expression
based on what kind of values the hole can assume. For example, the template ◦([0-9]{14}) cannot
result into a correct regular expression if we only replace the hole ◦ with a character class. RFixer
reaches this conclusion by observing that the regular expression .([0-9]{14})Ðin which the hole
has been replaced with the universal character class .Ðdoes not match all positive matches. RFixer
performs several other tests to further prune the search space of possible templates.
Second, RFixer needs to find concrete values to replace the holes with and produce a complete

regular expression. In the example, we assume that RFixer is now processing the template

(◦1◦2){▷, ◁}([0-9]){14}

In this stage, RFixer assumes that ◦1 and ◦2 can only be replaced with character classes, and
(▷, ◁) ∈ N × (N ∪ {∞}). RFixer generates an SMT formula to find what characters should belong to
the character classes that should instantiate the holes ◦1 and ◦2, and what numbers should belong
to N× (N∪ {∞}) to instantiate the holes ▷ and ◁. For example, the following constraint is generated

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:5

to denote that the final result should accept the string 5125632154125412: v5
1 ∧ v

1
2 ∧ ▷≤1 ∧ ◁≥1.

Here, v5
1 is set to true to denote that the character class for hole ◦1 should contain the character

5, and ▷ ≤ 1 denotes (◦1◦2) should repeat at most once. RFixer solves the generated constraint
and returns the correct expression mentioned above. On the same example, the synthesis tool
RegexGenerator++ [Bartoli et al. 2016] takes more than 100 seconds to produce the following
incorrect regular expression that is completely different from the original one:

\w[123]\14|\w427654851354895|[555][555]\w\w++

3 THE REPAIR PROBLEM

In this section, we formally define the regular expression repair problem.

Preliminaries. We assume a finite totally ordered alphabet Σ and use a,b, . . . to denote characters
in Σ. We usea1<a2 to denote that charactera1 appears beforea2 in the total order. In our applications,
Σ will be a common character setÐe.g., ASCII, UTF-16, or {0, 1}. A string is a finite sequence of
characters s = a1 . . . an ∈ Σ∗. The length of s is denoted as |s | = n. A language is a set of strings
L ⊆ Σ∗.

Regular expressions. A regular expression is an expression formed using the operators

[C] r |r rr r {m,M }

where C ⊆ Σ is a set of characters,m ∈ N, and M ∈ N ∪ {∞}. We use R to denote the set of all
regular expressions. The language L(r) ⊆ Σ∗ of a regular expression r is inductively defined as
L([C]) = C , L(r1 |r2) = L(r1) ∪ L(r1), L(r1r2) = {s1s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}, and L(r {m,M }) =

{s1 . . . sn | m ≤ n ≤ M ∧ ∀i . si ∈ L(r)}. We can define common regular operators as follows: i)
∅ = [∅], ii) a = [{a}], iii) r? ≡ r {0,1}, iv) r ∗ ≡ r {0,∞}, v) r+ ≡ r {1,∞}, vi) r {i} ≡ r {i, i} where
i ∈ N, and vii) ε ≡ ∅{0,0}.

The operators ?,+, ∗, {m,M } and {i} are often called quantifiers. Practical regular expressions
support special operators called character classes to denote certain sets of characters. Common
character classes are intervals [c1−c2] denoting the set of characters {a | c1≤a≤c2} and alphabet
specific classes such as \d, which contains digits, and \s, which contains all space characters. In the
following, we assume that every expression of the form r {m,M } withm > 0 is such that ε < L(r).
When ε ∈ L(r), we can always rewrite r {m,M } as r {0,M }.

Distance between expressions. In this paper, we are interested in repairing regular expressions
and we will prefer solutions that are łclosež to the initial expression. Given an abstract syntax tree
τ , an edit τ [τ ′1/τ1, . . . ,τ

′
n/τn] replaces each subtrees τi of the AST τ with a new subtree τ ′i . The cost

of an edit is the sum of the number of nodes in every τi and τ
′
i .
2

Definition 3.1. The distance D (r1, r2) between two regular expressions r1 and r2 is the minimum
cost of an edit that transforms r1 into r2.

Example 3.2. Figure 2 shows the syntax trees τ1 and τ2 for the expressions r1 =

[51|52|53|54|55]{2}[0-9]{14} and r2 = (5[12345]){1}[0-9]{14} from Section 2. The tree τ2
can be obtained by replacing the subtree τ s1 = [C1] in τ1 with a new subtree τ ′s1 = concat([5], [C3])
and replacing the subtree τ s2 = {2} by τ

′s
2 = {1}. Since τ

s
1 , τ

′s
1 , τ s2 and τ ′s2 have 1, 3, 1 and 1 nodes

respectively, the distance D (r1, r2) between the two expressions is 1 + 3 + 1 + 1 = 6. Consider

2We choose a distance that captures the notion of replacing sub-expressions. Using a tree edit distance [Bille 2005] would

not work well in this settingÐe.g., the expressions (ab|cd) and (abcd) would have distance 1 from each other since one

can simply replace a union node with a concatenation node.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:6 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

concat

quantifier

[C1] {2}

quantifier

[C2] {14}

AST τ1 of the expression r1 .

concat

quantifier

concat

[5] [C3]

{1}

quantify

[C2] {14}

AST τ2 of the expression r2.

Fig. 2. Syntax trees of the original and repaired expression from Figure 1. Here,C1 = [51|52|53|54|55], C2 =

[0 - 9], and C3 = [12345]. In Figure 1, we omitted the quantifier {1} appearing in τ2 for clarity.

now r3 = (5[12345]){1}[0-9]{1}. This expression has distance D (r1, r3) = 6 + 1 + 1 = 8 from r1
because to obtain r3 from r1, we also need to replace {14} with {1}. □

Problem Statement. We are now ready to define our repair problem.

Definition 3.3 (Repair from examples). Given a finite set of positive examples P ⊆ Σ∗, a finite set of
negative examples N ⊆ Σ∗ such that P∩N = ∅, and a regular expression r , the repair-from-examples

problem is to find a regular expression r ′ that is consistent with examplesÐaccepts all positive
examples (i.e., P ⊆ L(r ′)) and rejects all negative examples (i.e., N ∩ L(r ′) = ∅)Ðand has minimal
distance from rÐi.e., there exist no r ′′ consistent with the examples such that D (r , r ′′) < D (r , r ′).

Notice that the solution to the repair problem might not be unique. Moreover, if we set r to any
expression of size 1 to start with, the repair problem becomes that of synthesizing the smallest
regular expression consistent with a set of examples, which is an NP-hard problem [Gold 1978].

Theorem 3.4. The repair-from-examples problem is NP-hard.

Proof. Gold showed that synthesizing the smallest regular expression consistent with a set of
examples is an NP-Complete problem [Gold 1978]. This problem trivially reduces to the repair-
from-examples problem in which the initial regular expression is the expression r = ε . □

4 REPAIR ALGORITHM

We now present our algorithm for solving the repair-from-examples problem. Our algorithm
enumerates regular-expression templates with holes of increasing distance from the original
expression and tries to find a łsimplež completion of such templates that is a solution to the repair
problem. We first define templates and then describe the structure of our enumeration algorithm.

Definition 4.1 (Template). A template is an expression in the grammar

t := [C] | t |t | tt | t {m,M } | t {▷, ◁} | ◦

where ◦ is a hole (resp. (▷, ◁) is a quantifier hole) from a set of holes H◦, (resp. a set of quantifier
holes H▷◁).

Holes of the form ◦ always appear as a leaf in expressions and can be replaced with any reg-
ular expression while quantifier holes ▷, ◁ can be replaced with any two possible values for
the m,M quantifiers. Given a template t with holes ◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k), we write
t⟨r1, . . . , rn , (m1,M1), . . . , (mk ,Mk)⟩, to denote the result of replacing each hole with concrete
ri ∈ R and (mj ,Mj) ∈ N × (N ∪ {∞}). Intuitively, a template denotes an infinite set of possi-
ble regular expressions; formally the set of induced concrete regular expressions of a template t

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:7

Algorithm 1: RFixer search algorithm

/* r: regular expression, P positive examples, N negative examples */

1 function RegExRepair(r , P ,N)

2 Q ←getInitialTemplates(r)

3 while true do

4 t ← Q .pop()

5 if L(t⊥) ∩ N = ∅ and P ⊆ L(t⊤) then

6 if P ⊆ L(tΣ) then

7 Φ←GenerateConstraint(t , P ,N)

8 if Solve(Φ)=SAT then

9 return solutionOf (ϕ,t)

10 Q .push(expandHoles(t))

11 Q .push(addOrReduceHoles(t))

with holes ◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k) is con(t) = {t⟨r1, . . . , rn , (m1,M1), . . . , (mk ,M)⟩ | ri ∈

R,mj ∈ N,Mj ∈ N ∪ {∞}}.

Example 4.2. Consider the templates t1=◦([0-9]{14}) and t2=◦1◦2([0-9]{14}) from Sec-
tion 2. The two regular expressions in Figure 2 are actually two possible completions of
t1: [51|52|53|54|55][0-9]{14} = t1⟨[51|52|53|54|55]⟩, and t2: [5][12345][0-9]{14} =

t2⟨[5][12345]⟩. □

The notion of distance from Definition 3.1 naturally lifts to templates and their abstract syntax
trees. Our template search algorithm is shown in Algorithm 1. The algorithm maintains a queue Q
of templates sorted by cost. The initial set of templates (line 2) is obtained by either replacing a
character class [C] in r with a hole ◦, or replacing a quantifier {m,M } with {▷, ◁}.

In the main loop, the algorithm extracts a template t from the queue and performs the following
three steps:

1. Template pruning Check if the template t can ever result in a correct repair (line 5, Sec. 4.1).
2. Simple completion Check if there exists a solution in which holes of the form ◦ are replaced

with sets of characters [C] (lines 6-9, Sec. 4.2).
3. Template generation Generate new templates using regular expression operators (line 10,11,

Sec. 4.3).

4.1 When to Discard a Template

We propose a simple technique for efficiently discarding templates that are guaranteed to not result
into a solution (Step 1 of the algorithm). Our technique is based on the fact that regular expressions
only use monotonic operators3Ði.e., given a template t with a hole ◦, and two regular expressions
r1 and r2, the following holds:

If L(r1) ⊆ L(r2) then L(t⟨r1⟩) ⊆ L(t⟨r2⟩).

We generalize this idea in the following theorem.

3 Regular expressions support negation at the character class level, but not at the expression level. We still consider this

form of negation to be monotonic, since character classes using negation can easily be rewritten to remove negation.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:8 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

Theorem 4.3. Given a template t with holes ◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k), let

t⊥ = t⟨∅, . . . , ∅, (1,0), . . . , (1,0)⟩ and t⊤ = t⟨[Σ]∗, . . . , [Σ]∗, (0,∞), . . . , (0,∞)⟩.

If r ∈ con(t), then L(t⊥) ⊆ L(r) ⊆ L(t⊤).

Proof. We first show by induction on the size of templates that, for any template of the form
t⟨◦⟩ and regular expressions r1 and r2, the relation L(r1) ⊆ L(r2) implies that L(t⟨r1⟩) ⊆ L(t⟨r2⟩).
The base case is that if t⟨◦⟩ = ◦, then

L(t⟨r1⟩) = L(r1) ⊆ L(r2) = L(t⟨r2⟩).

The inductive step consists of three cases:

• if t⟨◦⟩ = t1⟨◦⟩ | t2 for some templates t1 and t2, then

L(t⟨r1⟩) = L(t1⟨r1⟩ | t2) = L(t1⟨r1⟩) ∪ L(t2) ⊆ L(t1⟨r2⟩) ∪ L(t2) = L(t⟨r2⟩);

• if t⟨◦⟩ = t1⟨◦⟩t2 for some templates t1 and t2, then

L(t⟨r1⟩) = {s1s2 |s1 ∈ L(t1⟨r1⟩) ∧ s2 ∈ L(t2)} ⊆ {s1s2 |s1 ∈ L(t1⟨r2⟩) ∧ s2 ∈ L(t2)} = L(t⟨r2⟩);

• if t⟨◦⟩ = (t ′⟨◦⟩){m,M } for somem andM , then

L(t⟨r1⟩) = {s1 · · · sc |m ≤ c ≤ M ∧ ∀i ≤ c .si ∈ L(t
′⟨r1⟩)}

⊆ {s1 · · · sc |m ≤ c ≤ M ∧ ∀i ≤ c .si ∈ L(t
′⟨r2⟩)} = L(t⟨r2⟩).

Similarly, we can prove that, for any template of form t⟨▷, ◁⟩, the relation (m1,M1) ⊆ (m2,M2)

implies that t⟨(m1,M1)⟩ ⊆ t⟨(m2,M2)⟩. The trick here is that, assuming the quantified sub-
expression in t⟨▷, ◁⟩ is r ′, we can substitute r ′{▷, ◁} with ◦ to get a new template t ′⟨◦⟩ and then
L(t ′⟨r ′{m1,M1}⟩) ⊆ L(t ′⟨r ′{m2,M2}⟩) since L(r

′{m1,M1}) ⊆ L(r ′{m2,M2}).
For any regular expression r = t⟨r1, . . . , rn , (m1,M1), . . . , (mk ,Mk)⟩, we denote r (i) the reg-

ular expression derived by substituting the first i holes (or quantifier holes if i > n) with ∅

(or (1, 0) respectively). Note that t⊥ = r (n+k) and r = r (0) . We prove that L(r (i)) ⊆ L(r (i−1))

for all i by induction on i . The base case can be shown by defining a new template t ′⟨◦i ⟩ =

t⟨◦, r2, . . . , rn , (m1,M1), . . . , (mk ,Mk)⟩ with which we have L(r (1)) = L(t ′⟨∅⟩) ⊆ L(t ′⟨ri ⟩) = L(r (0))

from the first claim we showed above. The inductive steps L(r (i)) ⊆ L(r (i−1)) can be shown in a

similar way that defining a new template by substituting ri with ◦ in r (i−1) .
The other direction L(r) ⊆ L(t⊤) can be proved in the same way. □

Intuitively, Theorem 4.3 states the following: if we treat the set con(t) as a lattice with respect
to language inclusion, then t⊥ and t⊤ are the bottom and top elements of the lattice.4 Using this
property we obtain the following corollary, which allows us to efficiently discard templates that
are guaranteed to not result in a repair.

Corollary 4.4. Given a template t , a finite set of positive examples P ⊆ Σ∗, and a finite set of

positive examples N ⊆ Σ∗, if L(t⊥)∩N , ∅ or P ⊈ L(t⊤), there exists no regular expression r ∈ con(t).

Intuitively, to test whether a template t can result in a successful repair, we can just test whether
t⊥ rejects all negative examples and t⊤ accepts all positive examples.

4Notice that r {1, 0} is equivalent to ∅, for every r .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:9

4.2 Finding Simple Template Completions

In this section, we present the crucial idea that makes our repair procedure practical and propose
two constraint-based encodings for finding whether there exists a solution for t in which holes of
the form ◦ can only be replaced with sets of characters [C].

Definition 4.5 (Simple Completion). Given a template t with holes
◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k), the set of simple completions of t is defined as conC (t) =

{t⟨[C1], . . . , [Cn], (m1,M1), . . . , (mk ,Mk))⟩ | Ci ⊆ Σ,mj ∈ N,Mj ∈ N ∪ {∞}}.

Notice that, given a template t of cost k (w.r.t. to the initial regular expression), every simple
completion that replaces each hole with a value different from that the one appearing in the original
expression also has cost k .
First, finding a simple completion for a template is an NP-complete problem.

Theorem 4.6. Given a template t a set of positive examples P ∈ Σ∗, and a set of negative examples

N ∈ Σ∗, checking whether there exists a regular expression r ∈ conC (t) consistent with P and N is an

NP-complete problem.

Proof. This problem is in NP since, given a regular expression, we can check if it is consistent
with example sets P and N [Kilpeläinen and Tuhkanen 2003] and if it is in conC (t).

We show that this problem is NP-hard by reducing 3-SAT to it. Recall that a 3-SAT problem is to
determine the satisfiability of a formula in conjunctive normal form where each clause is limited to
three literals. Consider a 3-SAT problem with formula

ϕ = C1 ∧ · · · ∧Cm ,

where Ck is clause of form (lk1 ∨ l
k
2 ∨ l

k
3) and a literal l ij is either x or ¬x for some variable x . Let

X = {xi }
n
i=1 denote the variables in ϕ where n is the number of variables.

Now we construct a template t and two example sets N and P and then prove that ϕ is satisfiable
iff there exists a completion of t consistent to N and P . Without losing of generality, we assume
that Σ = {0, 1, 2}.

Before constructing t , we introduce an auxiliary template tB :=
(

(◦1 ◦
∗
2 2) | (◦

∗
3 ◦4 2)

)∗
. Intuitively,

the template tB represents Boolean variables. With a positive example 01020102 and a negative
example 01121102, a completion of tB consistent with these two examples can only be either in
the set T := {tB⟨{0}, {0, 1},C3,C4⟩|1 < C3 ∨ 0 < C4} or F := {tB⟨C1,C2, {0, 1}, {0}⟩|0 < C1 ∨ 1 < C2}. If
a completion r ∈ F (or T), we say r assign false (or true, respectively) to the Boolean variable tB
represents.
We let the template t := t1t2 to be the concatenation of two sub-template t1 and t2 where

t1 ≜ x1tBx2tB · · · xntB,

and

t2 ≜ l11tBl
1
2tBl

1
3tB · · · l

m
1 tBl

m
2 tBl

m
3 tB.

Intuitively, there is a tB following each variable and literal and tB represents the Boolean variables
or literals it follows, e.g., the variable xi should be set to true (or false) if the the completion of the
tB following xi is in T (or F, respectively).

Then we add five types of examples to P and N .

(1) A positive example x1α · · · xnαl
1
1α · · · l

m
3 α where α := 01020102.

(2) A negative example x1α · · · xi−1αxiβxi+1α · · · l
m
3 α for each i ∈ [1..n] where β := 01121102.

(3) A negative example x1α · · · xnαl
1
1α · · · l

i
j β · · · l

m
3 α for each i ∈ [1..m] and j ∈ [1..3].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:10 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

(4) For each literal l ij = xk with some variable xk , two negative examples

x1α · · · xk0 · · · l
1
1α · · · l

i
j 1 · · · l

m
3 α and x1α · · · xk1 · · · l

1
1α · · · l

i
j 0 · · · l

m
3 α where 0 := 01120112

and 1 := 11021102.
Similarly, for each literal l ij = ¬xk we add two negative examples

x1α · · · xk0 · · · l
1
1α · · · l

i
j 0 · · · l

m
3 α and x1α · · · xk1 · · · l

1
1α · · · l

i
j 1 · · · l

m
3 α ;

(5) For each i ∈ [1..m], we add a negative example x1α · · · l
i
10l

i
20l

i
30 · · · l

m
3 α .

Then a complete expression r ∈ conC (t) is consistent with P and N iff r satisfies following
constraints:

(1) For each i ∈ [1..n], the completion of the template tB following xi is either in T or F;
(2) For each i ∈ [1..m] and j ∈ [1..3], the completion of the template tB following l

i
j is either in

T or F;
(3) For each literal l ij = xk , the completion of the template tB following xk and the template tB

following l ij are in the same set F or T. Similarly, for each literal l ij = ¬xk , the completion of

the template tB following xk and the template tB following l
i
j are in different sets;

(4) For each i ∈ [1..m] there exists a j ∈ [1..3] such that the completion of the template tB
following l ij is in T.

Note that the size of the template t and the size of the examples sets N and P are all polynomials
ofm. If ϕ can be satisfied by an assignment π , we can construct a regular expression consistent
with N and P . For each variable xk ∈ X , we complete the template tB following xk and the template
tB following any l ij = xk (or ¬xk) with an expression in T (or F) if π (xk) = 1 (or 0, respectively).

The resulting expression is in conC (t) and consistent with P and N .
On the other hand, if ϕ is unsatisfiable and there exists a regular expression r ∈ conC (t)

consistent with P and N , we can extract an assignment π from r using the following construction
such that π satisfies ϕ which leads to a contradiction: for each k ∈ [1..n], let π (xk) = 1 (or 0) if the
completion of the template tB following xk is in T (or F, respectively). The assignment π satisfies ϕ
because of the property 4 of t , i.e., there is a T expression in each clause. □

We propose a pruning mechanism for simple template completions similar to the one presented
in Section 4.1.

Theorem 4.7. Given a template t with holes ⟨◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k), let tΣ be defined

t⟨[Σ], . . . , [Σ], (0,∞), . . . , (0,∞)⟩. If r ∈ conC (t), then L(r) ⊆ L(tΣ).

Proof. The same proof of Theorem 4.3 can be used to prove this theorem since {[C]} is a subset
of R and [C] ⊆ [Σ] for any C . □

Theorem 4.7 states that, if the test tΣ fails, no correct simple completion exists.

Example 4.8. Consider the example strings shown in Figure 1 and two templates t1 =

◦{2}[0 - 9]{14} and t2 = (◦◦){▷, ◁}[0 - 9]{14} in Example 4.16. The expression t2Σ =

([Σ][Σ]){0,∞}[0 - 9]{14} accepts all positive examples in Figure 1. Also, there exists a simple
completion C1 = [5] and C2 = [12345] such that (C1C2){1}[0 - 9]{14} is consistent with all exam-
ples. The expression t1Σ = [Σ]{2}[0 - 9]{14} also accepts all positive examples in Figure 1. However

there exists no simple completion for t1 because, for any [C] ⊆ Σ, C{2}[0 - 9]{14} must match both
the positive example 5125632154125412 and the negative example 1525632154125412. □

If the tΣ-test passes, we can move on to check whether a simple completion exists. Given the
hardness of the problem (Theorem 4.6), we resort to an SMT-based approach and propose two SMT
encodings with complementary complexities for the problem of finding simple completions. Our

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:11

first SMT encoding (Section 4.2.1) generates constraints using the runs of the input examples on
the automaton corresponding to the given regular expression. Our second encoding (Section 4.2.2)
generates constraints using the inductive semantics of the regular expression.

4.2.1 Automaton-directed SMT Encoding. Our first technique is based on the following idea: Given
a template t , we construct an automatonAt that is parametric in the holes in t . For a string s , we can
łrunž s through the automaton At and collect information about what simple completions of the
holes can cause s to be accepted by At . We use the collected information to generate a constraint
Φs for which the satisfying assignment are simple completions that cause s to be accepted by the
template t . In this section, we detail the construction of such an automaton and show how to
generate constraints from it to find simple completions.

Automata. A nondeterministic finite automaton with counters K and holes

◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷k , ◁k) (NFAC) is a tuple A = (Q,q0,δ , F) where Q is a finite set of
states, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. Between any two states there is at
most one transition and each transition (q, l ,q′) ∈ δ has one of the following labels l :

• [C]: a transition that can be crossed by any symbol in the set C;
• ◦i : a transition that can be crossed by any symbol;
• ε : an ε-transition;
• k++: an ε-transition that increases the value of counter k by 1;
• m ≤ k ≤ M/k ← 0: an ε-transition that is triggered if the value of k is betweenm and M ,
and sets the value of k to 0;
• ▷i ≤ k ≤ ◁i/k ← 0: an ε-transition that sets the value of k to 0;

Intuitively, the holes in the automaton are treated like their values in the test tΣ. Given a string
s = a0 · · ·an ∈ Σ

∗, an ϵ-loop-free accepting run ρ of s in A is a tuple (q̄, f ,д) where q̄ is a sequence
of states q0 · · ·qN , f : [0..n] 7→ [0..N] is a mapping from positions in the string to positions in the
run, and д : [0..N] × K 7→ N is a mapping from positions in the run to counter values such that i)
qN ∈ F is a final state, ii) for every k ∈ K , the initial counter value д(0,k) is 0, iii) for every i < i ′,
we have f (i) < f (i ′); iv) for every i ≤ n, there exists a set C ⊆ Σ such that (qf (i), [C],qf (i)+1) ∈ δ
and ai ∈ C; v) for every j < N for which there does not exists an i ≤ n such that f (i) = j, then
(qj , l ,qj+1) ∈ δ and l matches one of the following cases:

• l = ε : then for every k ∈ K , д(j,k) = д(j + 1,k);
• l = k++: then д(j,k) + 1 = д(j + 1,k) and for every k ′ , k ∈ K , д(j,k ′) = д(j + 1,k ′);
• l = m ≤ k ≤ M/k ← 0: thenm ≤ д(j,k) ≤ M , д(j + 1,k) = 0 and for every k ′ , k ∈ K ,
д(j,k ′) = д(j + 1,k ′);
• l = ▷ ≤ k ≤ ◁/k ← 0: then д(j + 1,k) = 0 and for every k ′ , k ∈ K , д(j,k ′) = д(j + 1,k ′);

Finally, for every i < i ′ such that qi = qi′ , there exists i ≤ j < i , such that (qj , ε,qj+1) < δÐi.e., the
run does not traverse ϵ-loops. Intuitively, the mapping f (i) records a sequence of states traversed
in the run when the i-th symbol is being read by the automaton. Given a string s , we use runsA (s)
to denote the set of ϵ-loop-free accepting runs of s in A. We omit A when it is clear from context.
Because we are considering only runs without ϵ-loops, the set of runs of a string is finite. In the
following, we often just use accepting run instead of ϵ-loop-free accepting run. A string s is accepted
by A if runsA (s) , ∅.

Example 4.9. Figure 3 shows the NFAC corresponding to the template ◦{▷, ◁}[0 - 9]{14}. The NFAC
has two counters k1 and k2. The string 5125632154125412 is accepted by A. The corresponding
run is r = q00q

1
1q

2
2q

3
0q

4
1q

5
2q

6
0q

7
3q

8
4q

9
5 · · ·q

50
4 q

51
7 (the superscript represents the position of the state in

the run) with mapping f (0) = 1, f (1) = 4, f (2) = 9, f (3) = 12 and so on. The counter mapping

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:12 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

q0

q1 q2

q3 q4

q5 q6

q7

k1++

◦

ϵ

ϵ

▷≤k1≤ ◁ /k1←0

k2++ ϵ

[0-9]

14≤k2≤14/k2←0

Fig. 3. Automaton constructed from the template ◦{▷, ◁}[0 - 9]{14}.

is (д(0,k1), . . . ,д(51,k1)) = (0, 1, 1, 1, 2, 2, 2, 0, . . . , 0), д(i,k2) = 0 when i < 9 or i = 51, and
д(i,k2) = ⌈(i − 8)/3⌉ when 9 ≤ i ≤ 50. □

Template automata. We construct an NFAC At with set of counters K corresponding to the given
template t⟨◦1, . . . , ◦n , (▷1, ◁1), . . . , (▷N , ◁N)⟩. For simplicity, we assume there exists one counter
kt ′ for every sub-expression t ′ of t . The automaton At will accept all strings in tΣ (as defined in
Theorem 4.7). However, when the transitions labeled with holes are replaced with concrete values,
the automaton accepts the language of the regular expression obtained by replacing the holes with
those values. We illustrate the construction of At by induction on t . In the following, for every ti
we assume Ati = (Qi ,q

i
0,δi , Fi). The construction is similar to the Thompson construction from

regular expressions to NFAs [Thompson 1968].

A[C] = ({q0,q1},q0, {(q0,C,q1)}, {q1});
A◦ = ({q0,q1},q0, {(q0, ◦,q1)}, {q1});
At1 |t2 = ({q0} ∪Q

1 ∪Q2,q0, {(q0, ε,q
1
0), (q0, ε,q

2
0)} ∪ δ

1 ∪ δ 2, F 1 ∪ F 2);

At1t2 = (Q1 ∪Q2,q10,δ , F
2) where δ = δ 1 ∪ δ 2 ∪ {(q, ε,q20) | q ∈ F

1};

At1 {m,M } = ({q0,qF } ∪Q
1,q0,δ , {qF }) where

δ = δ 1 ∪ {(q, ε,q0) | q ∈ F
1}

∪ {(q0,kt1++,q
1
0), (q0,m ≤ kt1 ≤ M/kt1 ← 0,qF)};

At1 {▷, ◁ } = ({q0,qF } ∪Q
1,q0,δ , {qF }) where

δ = δ 1 ∪ {(q, ε,q0) | q ∈ F
1}

∪ {(q0,kt1++,q
1
0), (q0, ▷ ≤ kt1 ≤ ◁/kt1 ← 0,qF)};

The automaton in Figure 3 is the result of applying the construction to the template ◦{▷, ◁}[0 - 9]{14}.
It is easy to see that the above construction places at most one transition between any two states.
As we observed, the language of the NFAC At is L(tΣ).

Lemma 4.10. Given a template t , L(At) = L(tΣ).

Proof. Transitions labeled with ◦ accept all characters in Σ which is the same as transitions
labeled with [Σ]. Also, transitions labeled with ▷ ≤ k ≤ ◁/k ← 0 accept k with any value just like
transitions labeled with 0 ≤ k ≤ ∞/k ← 0 Then the proof is immediate since the construction of
the automaton pretends that all holes are instantiated. with the substitution used in tΣ. □

Since tΣ accepts all positive examples, the above lemma guarantees that there exists at least one
run for each positive example.

Constraint generation. We now formally describe how, given a string s = a0 · · ·an ∈ Σ
∗ and an

accepting run ρ = (q0, . . . ,qN , f ,д) of s in At , we generate an SMT constraint encoding the values
of all simple completions that make the run accepting.
Our constraint will have the following variables. For every hole ◦ ∈ H◦ and for every symbol

a ∈ Σ, we will have a Boolean variable xa◦Ði.e., given a solution to the generated constraints, the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:13

hole ◦ can be replaced with a character class [C] containing all the characters for which xa◦ is set
to true. For every quantifier hole (▷, ◁) ∈ H▷◁ , we will have positive integer variables x▷ and x◁
denoting the values of the holesÐi.e., the holes ▷ and ◁ can be replaced by any values satisfying the
constraint we generate.
When generating constraints for templates of the form t {▷, ◁}, the possible values of the hole ▷

will depend on whether the quantified expression t can accept the empty string ε . In particular, if t
accepts ε , any run that traverses the template k consecutive times can be turned into a run that
traverses the same template k + c times by taking c ϵ-loops. When this is the case, the value of ▷ is
essentially unconstrained. Given a template t we define the Boolean variable epst that is true if t
accepts ε . The value of epst may depend on the values of quantifiers and the following constraints
capture this aspect (⊤ and ⊥ stand for true and false, respectively).

eps∅=⊥ epsε=⊤ eps[C]=⊥ eps◦=⊥ epst1t2=epst1∧epst2
epst1 |t2=epst1∨epst2 epst1 {m,M }=epst1 ∨m=0 epst1 {▷, ◁ }=epst1 ∨ x▷=0.

Given a sub-expression t ′{▷, ◁}, we define v▷, ◁ ⊆ N as the set of values that counter kt ′ has when
the run exits the automaton corresponding to t ′{▷, ◁}:

v▷, ◁ = {д(i,kt ′), | (qi , ▷ ≤ kt ′ ≤ ◁/kt ′ ← 0,qi+1) ∈ δ }

The following constraints describe what hole values cause the automaton to accept the run:

• for a hole ◦ ∈ H◦:

φ◦ ≡
∧

{x
aj
◦ | ∃i .(qi ,qi+1) ∈m◦ (◦) ∧ f (j) = i};

• for a sub-expression t ′{▷, ◁} with hole (▷, ◁) ∈ H▷◁ :

φ▷, ◁ ≡ [epst ′ ∨
∧

k ∈v▷, ◁

x▷ ≤ k] ∧ [
∧

k ∈v▷, ◁

k ≤ x◁];

A constraint for a run ρ has to deal with all the holes:

Φρ ≡
∧

◦∈H◦

φ◦ ∧
∧

(▷, ◁)∈H▷◁

φ▷, ◁

Example 4.11. We illustrate our constraint generations technique using the string
5125632154125412 and the NFAC A from Figure 3. Note that there is one hole ◦1 and one
pair (▷1, ◁1) of quantifier holes in A. This input only has one run ρ in A and the correspond-
ing hole constraints are Φ◦1 = x5◦1 ∧ x1◦1 , and Φ▷1, ◁1 = [⊥ ∨ x▷1 ≤ 2] ∧ [2 ≤ x◁1]. Finally,

Φρ = Φ◦1 ∧ Φ▷1, ◁1 = x5◦1 ∧ x
1
◦1
∧ (x▷1 ≤ 2) ∧ (2 ≤ x◁1). □

A string is accepted if it has at least one successful run:

Φs ≡
∨

ρ ∈runsA (s)

Φρ

Finally, the following constraint guarantees that the solution is consistent with all the examples:

ΦA
P,N ≡

∧

s ∈P

Φs ∧
∧

s ∈N

¬Φs

A solution to the generated constraints is a valuation function τ assigning values to all the
variables to make the constraint true. Given a solution τ , we define the corresponding regular
expression as:

tτ = t⟨[C1], . . . , [Cn], (x▷1 ,x◁1), . . . , (x▷k ,x◁k)⟩

where Ci = {a | τ (x
a
◦1
) = ⊤}.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:14 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

Note that our SMT encoding does not complete a quantifier hole with a Kleene star (*) because,
in the constraints, the values of holes of the form ◁ are only allowed to be positive integer numbers.
However, whenever the lower bound of a quantifier hole is completed with a 0, and the higher
bound is a number greater than the length of the longest example, the completion for the hole is
equivalent to a * with respect to the given examples. For example, given positive examples b, bbbb
and a negative example cc, the template b{▷, ◁} could be instantiated as b{0, 5}. Since the longest
example is of length 4, the completion b{0, 5} is equivalent to b∗ with respect to matching the given
examples.
We are now ready to state our correctness theorem.

Theorem 4.12 (Soundness and completeness). Given a template t , a set of positive examples

P ∈ Σ∗, and a set of negative examples N ∈ Σ∗, there exists a regular expression r ∈ conC (t) iff ΦA
P,N

is satisfiable. Moreover, if τ is a solution to ΦA
P,N , then tτ ∈ conC (t).

Proof. We first show that, if ΦA
P,N is satisfiable, then for every satisfying assignment τ the

expression tτ is consistent with P and N . For each positive example s ∈ P , there exists a path
ρ ∈ runsA (s) such that Φρ is satisfied by τ . Since L(Atτ) = L(tτ), the accepting run ρ is the witness
that s is accepted by tτ . Similarly, for each negative example s ∈ N , every run of Atτ on s is not an
accepting run since all Φρ is false under τ .
In the other direction, if there exist a regular expression r =

t⟨[C1], . . . , [Cn], (m1,M1), . . . , (mk ,Mk)⟩ ∈ conC (t) consistent with P and N , we can con-
struct an assignment τr satisfying Φ

A
P,N from r . For each variable xa◦i , we set τr (x

a
◦i
) = ⊤ iff a ∈ Ci .

For each pair of integer variables x▷i and x◁i , we set τr (x▷i) = mi and τr (x◁i) = Mi . For each
positive example s ∈ P , there is an accepting run ρ of Ar on s which implies that Φρ is satisfied by
τr . Similarly, for each negative example s ∈ N , there exists no accepting run of Ar on s , which
implies that runsAr (s) = ∅ ⇒ Φs = ⊥. □

Complexity. The automaton-directed SMT encoding generates a constraint that has size linear in
the number of runs of the examples, but does not depend on the size of the regular expression. If
the input template has h holes and each of the e input examples has at most c accepting runs, the
constraint has size O (hec). In general, the number of runs of an input example can be exponential

in his lengthÐi.e., if l is the length of the longest example the constraint has size he2O (l) . In the
above analysis we ignored the size of the alphabet, if the alphabet has size y, the constraints contain
O (hy) variables. While in practice y can be very large, the constraints only mention a variable xa◦ if
i) the character a appears in at least one input example, ii) the character a traverses the hole ◦ in
the automaton for some run. Hence, the number of variables does not blow up in practice.

Example 4.13. Consider a template t = (◦1◦
∗
2)
∗. For the string s = 12345 there are 16 runs of At .

In general, there are 2m−1 runs of At on strings with lengthm. □

4.2.2 Regular-expression-directed SMT Encoding. The automaton-directed SMT encoding can be-
come impractical for expressions for which strings can have many accepting runs. In this section,
we present a different SMT encoding that avoids this shortcoming by directly using the semantics
of regular expressions to decide whether a string is accepted.

Our constraints will use the same set of variables from the constraints presented in Sec. 4.2.1 as
well as some new variables. Given a template t , a valuation τ assigning values to all the holes, a
string s = a0 . . . an ∈ Σ

∗, and positions i, j ≤ n, we define a Boolean variable t (s[i, j]) such that

t (s[i, j]) = ⊤ ⇐⇒ ai . . . aj ∈ L(tτ)

In other words, t (s[i, j]) denotes whether tτÐi.e., the expression obtained by replacing the holes
with the corresponding variable valuesÐaccepts the substring of s that starts at index i and ends at

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:15

index j . By this definition, the string s is accepted by t if and only if t (s[0,n]) = ⊤. The constraints
for t (s[i, j]) with 0 ≤ i, j ≤ n, are defined inductively below. For every quantified sub-expressions
t {m,M } and t {▷, ◁}, the formalization also includes variables t {c}(s[i, j]) for every value 0 ≤ c ≤ nÐ
i.e., for t repeated c times.

• ∅(s[i, j]) = ⊥ and ε (s[i, j]) = ⊥.
• [C](s[i, j]) = ⊤ iff i = j and ai ∈ C .
• ◦(s[i, j]) = x

ai
◦ ∧ i = jÐi.e., the string ai is in the language of the hole ◦ iff the character ai is

included in the solution for the hole.
• if t = t1 |t2 then t (s[i, j]) = t1 (s[i, j]) ∨ t2 (s[i, j]).
• if t = t1t2 then

t (s[i, j]) = [
∨

i≤k<j

t1 (s[i,k]) ∧ t2 (s[k + 1, j])] ∨ [epst1 ∧ t2 (s[i, j])] ∨ [t1 (s[i, j]) ∧ epst2]

• if t = t ′{m,M } then
ś (t ′{1}) (s[i, j]) = t ′(s[i, j])

ś for every 2 ≤ c ≤ min(n,M):

(t ′{c}) (s[i, j]) =
∨

i≤k<j

(t ′{c − 1}) (s[i,k]) ∧ t ′(s[k + 1, j])

ś if epst ′ : t (s[i, j]) =
∨

1≤c≤min (n,M)

(t ′{c}) (s[i, j])

ś if ¬epst ′ :

t (s[i, j]) =
∨

min (n,m)≤c≤min (n,M)

(t ′{c}) (s[i, j])

• if t = t ′{▷, ◁}

ś (t ′{1}) (s[i, j]) = t ′(s[i, j])

ś for every 2 ≤ c ≤ n:

(t ′{c}) (s[i, j]) =
∨

i≤k<j

(t ′{c − 1}) (s[i,k]) ∧ t ′(s[k + 1, j])

ś if epst ′ : t (s[i, j]) =
∨

1≤c≤j−i+1

c ≤ x◁∧(t
′{c}) (s[i, j])

ś if ¬epst ′ :

t (s[i, j]) =
∨

1≤c≤j−i+1

x▷≤c≤x◁ ∧ (t ′{c}) (s[i, j])

Example 4.14. We take the string s = 5125632154125412 and the template t = ◦{▷, ◁}[0 - 9]{14}
to illustrate the encoding. First of all, the template t is the concatenation of two templates t1 = ◦{▷, ◁}
and t2 = [0 - 9]{14}. We illustrate some of the constraints. For the sub-expression [0 - 9], for every
i , we have [0 - 9](s[i, i]) = ⊤ since all characters in s are digits. Next, we show an example of how
a constraint is added for a quantifier:

[0 - 9]{2}(s[1, 2])=[0 - 9]{1}(s[1, 1]) ∧ [0 - 9](s[2, 2])

As expected, this encoding produces a constraint that is equi-satisfiable to the one produced by the
automaton-directed encoding. □

The following constraint guarantees that the solution is consistent with all examples:

Φr
P,N ≡

∧

s ∈P

t (s[0, |s | − 1]) ∧
∧

s ∈N

¬t (s[0, |s | − 1])

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:16 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

We are now ready to state our correctness theorem.

Theorem 4.15 (Soundness and completeness). Given a template t , a set of positive examples

P ∈ Σ∗, and a set of negative examples N ∈ Σ∗, there exists a regular expression r ∈ conC (t) if and

only if Φr
P,N

is satisfiable. Moreover, if τ is a solution to Φr
P,N

, then tτ ∈ conC (t).

Proof. It suffice to show that

t (s[i, j]) = ⊤ ⇐⇒ ai . . . aj ∈ L(tτ),

with which we have Φr
P,N

⇐⇒
∧

s ∈P s ∈ L(tτ) ∧
∧

s ∈N s < L(tτ).

For the base cases that t = ∅, [C] or ◦, it is quite straight that t (s[i, j]) = ⊤ ⇐⇒ ai . . . aj ∈ L(tτ).
Then inductively,

• if t = t1 | t2, then

t (s[i, j]) = t1 (s[i, j]) ∨ t2 (s[i, j]) = ⊤ ⇐⇒ s[i, j] ∈ L(t1,τ) ∨ s[i, j] ∈ L(t2,τ);

• if t = t1t2, then tτ accepts s[i, j] iff there exists two substrings s1 and s2 such that s[i, j] = s1s2,
t1,τ accepts s1 and t2,τ accepts s2. Note that the choice of k in the definition of t1t2 (s[i, j]) is
choosing the position to split s[i, j] to two substrings, and we can choose one substring to be
ϵ if one of the sub-expression can accept ϵ ;
• if t = t ′{m,M }, then tτ accepts s[i, j] iff we can split s[i, j] to c ∈ [m..M] number of substrings
such that each substring can be accepted by t ′τ , which is consistent to the definition of
t ′{m,M }(s[i, j]);
• if t = t ′{▷, ◁}, then tτ accepts s[i, j] iff we can split s[i, j] to c ∈ [τ (x▷)..τ (x◁)] number of
substrings such that each substring can be accepted by t ′τ , which is consistent to the definition
of t ′{▷, ◁}(s[i, j]).

□

Complexity. The regular-expression-directed SMT encoding generates a constraint that has
size linear in the size of the template and cubic in the length of the input examples. The cubic
factor comes from the constraints generated for quantified templates. In particular, since in the
variables (t {c}) (s[i, j]), the elements c, i and j can assume values between 1 and n, there will be
n3 variables. If the input template has size k and each of the e input examples has length at most
l , the generated constraint has size O (kel3). Unlike what we saw for the constraints generated
by our automaton-based encoding, this complexity bound is also a lower bound. Therefore, the
regular-expression-directed encoding generates larger constraints than the automaton-directed
encoding when the number of runs r of the automaton on the input strings is smaller than l3.

4.3 Template generation

When our algorithm cannot find a simple completion for a template t , it uses three operations to
generate more templates from it: i) add a new hole by either replacing a character class [C] with ◦,
or by replacing a quantifier {m,M } with {▷, ◁}. ii) expand an existing hole ◦ by replacing it with
◦1◦2, ◦1 |◦2, or ◦1{▷1, ◁1}. iii) reduce an existing hole ◦ by replacing its parent node with a hole.

Example 4.16. In this example, we run RFixer on the example r = [C1]{2}[C2]{14} (with C1 =

[51|52|53|54|55] and C2 = [0 - 9]) showed in Figure 1.
The initial set of templates is the following:

1. ◦{2}[C2]{14} 2. [C1]{▷, ◁}[C2]{14} 3. [C1]{2} ◦ {14} 4. [C1]{2}[C2]{▷, ◁}

RFixer extracts the template t1 = ◦{2}[C2]{14}, tries to compute a simple completion for it, and
fails. Then, RFixer expands the hole in the template t1 to enumerate:
5. ◦ ◦ {2}[C2]{14} 6. (◦|◦){2}[C2]{14} 7. ◦{▷, ◁}{2}[C2]{14}

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:17

and adds a new hole in t1 to enumerate:
8. ◦{2} ◦ {14} 9. ◦{▷, ◁}[C2]{14} 10. ◦{2}[C2]{▷, ◁}

Eventually RFixer reaches t = (◦1◦2){▷, ◁}[C2]{14} in the search and tries to compute a simple
completion for it. RFixer successfully finds a simple completion by replacing ◦1 with [5], ◦2 with
[12345] and {▷, ◁} with {1,1}. □

4.4 Correctness

We can now state the correctness theorem for RFixer.

Theorem 4.17. Given a regular expression r , a finite set of positive examples P ⊆ Σ∗, and a finite

set of negative examples N ⊆ Σ∗ such that P ∩ N = ∅, Algorithm 1 is sound and complete for the

repair-from-examples problem (see Definition 3.3)Ði.e., RFixer always outputs a regular expression at

minimal distance from r that is consistent with the examples.

Proof. First, notice that if r ′ is a solution to the repair problem of cost k , there exists a template
t of cost k from which r ′ can be obtained as a simple completion. Concretely, let τr be the AST
for r and let τr [τ

′
1/τ1, . . . ,τ

′
n/τn] be the edit of minimum cost k that transforms τr into τ

′
r . Then,

replacing every leaf in each subtree τ ′i with a hole generates a template of cost k for which r ′ is a
possible simple completion.
Second, we show that the algorithm explores all templates in increasing cost. The algorithm

initially explores all templates obtained by inserting one hole in the leaves of the original expression.
These are exactly all the templates at distance 2 from the original expression r (notice that no
template can have distance less than 2 from the original expression according to our distance
definition). Next, we can observe that the template generation described in this section is such
that i) all templates are eventually enumerated (we cache intermediate results and never explore
the same template twice), ii) the generated templates have costs higher than the template they
are being generated from. The second property, together with the fact that the data structure Q in
Algorithm 1 extracts templates in order of cost ensures that a template of cost k is visited only if all
templates of cost smaller than k have been already explored, which guarantees minimality. □

5 OPTIMIZATIONS AND IMPROVEMENTS

In this section, we present a set of optimizations that further improve the performance of RFixer.

5.1 Avoiding Equivalent Templates

Our implementation employs a set of optimizations that limit the exploration of syntactically
and semantically equivalent templates. First, our algorithm uses simple forms of hashing to avoid
repeating syntactically equivalent templates that might result from expanding the same set of holes
in different orders. To limit the set of semantically equivalent templates, we exploit the associativity
of the concatenation and union operators and the commutativity of union. Whenever a hole ◦ is
expanded as ◦1◦2 (resp. ◦1 |◦2) we will not expand ◦2 into a template of the form ◦3◦4 (resp. ◦3 |◦4).
Because every template of the form t1 (t2t3) (resp. t1 |(t2 |t3)) is equivalent to the expression (t1t2)t3
(resp. (t1 |t2) |t3), our pruning strategy preserves completeness. For commutativity, whenever a hole
◦ is expanded (in multiple steps) into an expression of the form t1 |t2, we only keep and expand
templates where the size of t1 is greater or equal than the size of t2. Notice that if we discard this
template, we will still explore the template t2 |t1, which is semantically equivalent and satisfies the
size requirement. Hence, our pruning strategy still preserves completeness.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:18 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

5.2 Avoiding Redundant Tests

The next optimization uses properties of regular expressions to avoid repeating some of the template
pruning tests from Section 3 and simple-completion queries when a hole is expanded. For example,
consider a template t such that t⊤ accepts all the positive examples. If we expand some hole ◦ using an
alternation ◦1 |◦2, the resulting template t ′ will be such that t⊤ still accepts all the positive examples.
Moreover, if the constraint ΦP,N generated for t for finding simple completions was not satisfiable,
the constraint for t ′ will also be unsatisfiable. Table 4 summarizes when a test can be skipped.

Expansion t⊤ t⊥ tΣ ΦP,N

◦1◦2 skip skip

◦1 |◦2 skip skip skip skip

◦1 {▷, ◁ } skip skip

Fig. 4. Tests to skip upon a hole expansion.

Notice that the tests t⊤ and t⊥ only need to be performed
when creating the initial set of templates. Formally, a t⊤
test can be skipped every time because the languages of the
expressions Σ∗Σ∗, Σ∗ |Σ∗, and Σ∗{0,∞} are all equivalent
to Σ∗. Similarly, the t⊥ test can be skipped because ∅∅,
∅|∅, and ∅{1,0} are all equivalent to ∅. The tΣ test can be
skipped for ◦1 |◦2 but not ◦1{▷, ◁}, because Σ|Σ is equivalent to Σ but Σ{0,∞} is a superset of Σ.

5.3 Generalizing Solutions usingQuantitative Objectives

Our notion of distance from Definition 3.1 only captures the number of AST edits to a regular
expression and does not differentiate with respect to different template completions. In particu-
lar, two simple completions of the same template will have the same distance from the original
expression. Consider the following example. Assume that for the template ◦{▷, ◁} and some set
of examples P and N the following two regular expressions are both possible solutions for the
template: r1 = [0-9]{0,∞} = [0-9]∗ and r2 = [0236]{2,8}. The regular expression r1 is simpler,
more general, and easier to understand, but our notion of distance will not prefer it and will consider
the two solutions of equal cost. In this section, we present an approach for preferring łmore generalž
repairs. In particular, we show howwe can use MaxSMT optimization objectivesÐi.e., SMT formulas
with a minimization objective over a set of weightsÐto produce better character sets and simpler
lower and upper bounds for quantifiers.

In regular expressions, character classes are used to represent common sets of characters. Com-
mon character classes are [a-z], [A-Z], [0-9], \s, and \w. In our implementation, we add con-
straints to encode such character classes. For example, for a certain hole ◦, we can encode the

possibility of including the character class [0-9] in its concretization by adding a variable x[0-9]◦

together with the constraint x[0-9]◦ → x0◦ ∧ . . . ∧ x
9
◦ . The constraint guarantees that, if the class

is added to the template, all its characters are also added. Next, we show how to add weights to
the constraints so that a completion using a character class is preferred to one that uses multiple
individual characters. First, an example. For the character class [0-9], we assign the following

weight to a variablew[0-9]
◦ : x[0-9]◦ → w[0-9]

◦ = −17. For each individual digit character d ∈ [0-9],

we assign xd◦ → wd
◦ = 2. The minimization objective isw

[0−9]
◦ +

∑

d ∈[0,9]w
d
◦ . With this particular

constraint, the whole character class [0-9] (cost 20 − 17 = 3) will be more expensive than a
single digit (cost 2) but cheaper than two digits (cost 4). In the same way, we can add constraints
to character classes [a-z] and [A-Z] such that a single character class is preferred to multiple
lowercase/uppercase letters respectively. Finally, we add a constraint such that \w is preferred to
two or more of [0-9], [a-z], and [A-Z].
Next, we add constraints that prefer commonly used quantifiersÐi.e., ?, ∗, and +. We do so by

introducing a weight variablew▷ (resp.w▷) for each hole of the form ▷ (resp. ◁). The variablew▷ is
assigned a value 1 whenever ▷ is assigned a value greater than 1. The value ofw▷ is 0 otherwise.
The variablew◁ is assigned a value 1 whenever ◁ is assigned a value different than 1 or∞Ði.e., a

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:19

value larger than the length of the longest example. The value ofw▷ is 0 otherwise. We then ask
the algorithm to find the solution that minimizes the sum of all weights across all constraints.

Note that we only run a MaxSMT query if we have already found an SMT solution to a template.
Because an individual MaxSMT query has negligible running time, this optimization does not affect
the overall runtime of RFixer.

6 EVALUATION

We implemented RFixer in Java using Z3 version 4.6.2 as the SMT solver for the generated constraints.
All experiments were performed on a machine with 2.50GHz Intel(R) Xeon(R) Platinum 8175M
CPU with 6.90GB MaxHeapSize for JVM and we used a timeout value of 300s. We evaluated the
effectiveness of our technique using a series of experiments to answer the following research
questions:

Q1 Can RFixer repair regular expressions from examples and how does it compare to state-of-the-
art tools? (ğ 6.2)

Q2 Can RFixer produce high-quality repairs? (ğ 6.3)
Q3 Which of the two SMT encodings (Sec. 4.2.1 and 4.2.2) has better performance? (ğ 6.4)
Q4 How much search space can RFixer prune? (ğ 6.5)

6.1 Benchmarks

Our benchmarks have three sources: i) the Automata Tutor dataset [Tutor 2015], ii) the RegExLib
library [RegExLib 2017], and iii) the regular expression repair work by Rebele et al. [2018].

Automata Tutor. Automata Tutor is a website for helping students learn automata theory and
regular expressions [D’Antoni et al. 2015b]. The website allows teachers of such topics to create
homework assignments and assign them to students to solve. The students can then submit solutions
to such assignments, and the tool will automatically check whether the solution is correct. For
assignments related to automata constructions, Automata Tutor can also automatically fix the
student solutions and use this fix to provide useful feedback to the student [D’Antoni et al. 2015a].
This capability is not there for regular expressions, as no way to automatically repair regular
expressions have been proposed prior to the current paper. Many regular-expression assignments
(29 individual assignments in total) and student-submitted solutions from Automata Tutor are
publicly available in an anonymized dataset [Tutor 2015]. Our second set of benchmarks is extracted
from this dataset. For each of the unique 2,104 incorrect student submissions present in the dataset,
we used the correct regular expression to create a set of test cases on which the student submission
is failing and used it as a specification for the repair problem. Concretely, we used conformance
testing techniques for finite state machines [Yannakakis 1991] to generate enough inputs to traverse
each state in the automata corresponding to the correct and incorrect regular expressions. This
technique generates a number of examples that is cubic in the numbers of states of the minimal
DFA corresponding to the regular expression and linear in the size of the alphabet. The regular
expressions in this benchmark set have length varying between 1 and 100 (avg. 14) and operate
over small alphabets (2 symbols). The number of examples per expression varies between 4 and 96.
We don’t evaluate the MaxSMT optimization presented in Section 5 on these benchmarks because
they do not allow character classes and numerical quantifiers.

RegExLib. RegExLib [RegExLib 2017] is a website collecting regular expressions from hundreds
of developers around the world. The website currently contains thousands of regular expressions
and most of them come equipped with an English description of what the expression is supposed
to do and a few test cases. Each expression then receives a rating from 1 to 5 from the website

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:20 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

Table 1. Number of solved benchmarks by solver

Technique RegExLib Automata Tutor [Rebele et al. 2018]

RFixer-a 19 1,336 30

RFixer-r 21 1,568 29

RFixer 23 1,588 35

RegexGenerator++ 3 Ð Ð

[Rebele et al. 2018] Ð Ð 50

Total 25 2,104 50

users. In general, it is not possible for us to evaluate our tool on all of the expressions on the
website because there is no specification of how expressions should be repaired. However, we
found several instances in which the expressions were deemed to be imprecise by some user
and where the user provided some counterexamples. We then collected 25 expressions using the
following methodology: i) we examined the expressions in chronological order (from most recently
submitted), ii) we skipped expressions that used non-regular operatorsÐe.g., positive lookahead or
boundary symbolsÐand overly complicated expressionsÐi.e., with length greater than 200, iii) we
skipped expressions with fewer than five comments, low ratings, and expressions that did not have
comments containing counterexamples, iv) due to the fair amount of manual inspection required to
browse the expressions and their comments, we stopped at 25 expressions. The regular expressions
in this benchmark set have character-length varying between 3 and 192 (avg. 59) and operate over
the ASCII alphabet set (128 characters). The number of examples per expression varies between 10
and 39. The expressions cover several categories of strings: numbers (6), time/date (5), email/urls
(6), and other tasks (8).

Rebele et al. [2018]. Rebele et al. recently proposed a tool for ładding positive examplesž to
regular expressions. Given a regular expression r and a set of positive examples P not accepted by
the expression r , their tool uses heuristics to greedily modify the input regular expressions r and
generate a r ′ that matches the examples in P . Due to the different problem formulation, we do not
compare against this tool on the other benchmarks discussed earlier. We collected the 505 regular
expressions presented by Rebele et al. and compare RFixer against their tool. One interesting aspect
of this benchmark set is that each expression comes with a training setÐi.e., a set P of positive
and negative examples we are using to repair the original expressionÐand a test setÐi.e., a set
of positive and negative examples the repaired expression will be evaluated on. A good repair
should perform well on the test set. The regular expressions in this benchmark set have length
varying between 15 and 725 (avg. 90.0) and operate over the ASCII alphabet set (128 characters).
The number of examples per expression varies between 17 and 75. The expressions cover several
categories of strings: numbers (24), time/date (16), email/urls (5), and other tasks (5).

6.2 Effectiveness of RFixer

In this experiment, we use our benchmarks to evaluate how effective RFixer is at producing repaired
expressions that are consistent with the given examples. For each benchmark, we run both the
automaton- and regular-expression-directed encodings and report whether at least one of the two
encodings solved the benchmark. When both encodings succeed, we report the minimum of their
running times as if the encodings were executed in parallel.

5 The original benchmark set contains 52 regular expressions, but we do not consider two of them because they use the

end-of-string anchor character $, which our implementation currently does not support.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:21

Automata Tutor. RFixer successfully repaired 1,588/2,104 (75%) regular expressions (with respect
to the given examples) using one of the two SMT encodings (avg. time: 9.3s). We are not aware of
repair tools that can handle restricted alphabets and could not compare against other tools.

RegExLib. For these benchmarks, we compared RFixer against RegexGenerator++ [Bartoli et al.
2016], a state-of-the-art tool that uses genetic programming to synthesize regular expressions
based on examples (we are not aware of repair tools that can handle both positive and negative
examples). RegexGenerator++ starts from an initial seed regular expression and then evolves
it into a larger population of regular expressions using crossover and mutation operations. Af-
ter a number of generations, the tool outputs the regular expression with the highest fitness.
We adapted RegexGenerator++ into a repair tool by using the regular expression being repaired
as the initial seed (using the default seed resulted in worse results). RegexGenerator++ was ex-
ecuted with the following (default) parameter values: threads number = 4, population size =
500, maximum number of generations = 1000, percentage of number generations = 20.0. While
RFixer repaired 23/25 (92%) expressions using one of the two SMT encodings (avg. time: 7.3s),
RegexGenerator++ only produced 3/25 (12%) repairs that were correct on all the examples (avg.
time: 198s). Moreover, the expressions produced by RegexGenerator++ are completely different
from the initial ones. For example, for the regular expression from Section 2, RFixer produced
the repaired expression 5[12345][0-9]{14}, while RegexGenerator++ produced the expression
\w[123]\14|\w427654851354895|[555][555]\w\w++.

Rebele et al. [2018]. For these benchmarks, we compared RFixer against the state-of-the-art
tool from Rebele et al. [2018]. We use Reb to refer to this tool. RFixer repaired 35/50 (70%)
expressions using one of the two SMT encodings (avg. time: 2.4s). Since Reb does not im-
pose minimality constraints on the size of the repair6, it successfully repaired 50/50 (100%,
avg. time: 0.2s). Since Reb uses a heuristic greedy search, it does not provide minimality
guarantees. Because of the complexity of regular expression operatorsÐe.g., commutativity
of unionÐwe could not automatically measure the distance of the Reb repairs from the
original expressions. However, we manually inspected the repairs produced by Reb and, in
general, they most of the times appeared to have a much higher distance from the original
expression than those produced by RFixer. For example, on the input expression [0-3][0-9](

*)[a-z|A-Z|]+[0-9]{4} RFixer produced the repair [1A-Z]\w(*)[\-\w,]+[\-\d|]{4}

while Reb produced the repair ([0-3][0-9])?(*|19-|97-|86-|91-)?(([a-z|A-Z|

](21,|27,|6,)?)+)?[0-9]{2}(-|\||-8-)?[0-9]\|?[0-9](-7)?. We will see in Section 6.3
how minimality with respect to our distance definition can result in repairs that better generalize
to unseen examples.

Summary. To answer Q1, RFixer can effectively produce minimal regular expression re-

pairs (using examples) across different applications that existing tools cannot handle or for
which they provide no minimality guarantees.

RFixer could not solve benchmarks that i) required very large fixesÐe.g., changing the expression
in many places, or ii) involved complex nested quantifiers, which caused both SMT encodings as
well as the t⊤ test to be practically slow.

6.3 Quality of Computed Repairs

In this section, we show that repairing regular expressions from examples can also lead to high-
quality repairs with respect to left-out test sets or more complex specifications. For each of our

6When we discard the minimality constraint, the repair from example problem becomes trivial as one can simply produce

any regular expression consistent with the examples.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:22 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

benchmark sets, we design experiments intended at assessing whether RFixer can find repairs that
are in some sense łgoodž.

Automata Tutor. We use the fact that for these benchmarks we have access to the regular
expressions given by the instructor to turn RFixer into a tool for finding expressions equivalent to
the correct solutions. For each benchmark, we run a counterexample-guided inductive synthesis
(CEGIS) algorithm as follows. First, we use RFixer to find an expression r ′ that is consistent with
an initial set of examples E (the same examples used to in Section 6.2). Second, we check whether
r ′ is semantically equivalent to the expression r given by the instructor. If it is, we successfully
terminate, otherwise, we generate a counterexample on which the two expressions differ, add it to
E, and call RFixer again.
Using the CEGIS algorithm, RFixer successfully found correct repairs for 1,156/2,104 (55%)

expressions using one of the two SMT encodings (avg. time: 9.4s). The reduction in the number of
solved benchmarks with respect to Section 6.2 is due to the increased search depth required to find
expressions consistent with the additional examples. Of the solved benchmarks, 847 returned a
correct expression using just the initial set of examples and the remaining 309 required on average
1.7 extra examples to find a correct repair. The 432 expressions for which RFixer found a repair
from examples but not a correct repair had added on average 1.4 extra examples when they timed
out. The expressions for which additional examples caused a timeout were usually cases where
"fixing" the original expressions on the given initial examples would require a small repair, but
adding the new examples explored by the CEGIS algorithm caused the minimal repair to be very far
from the original expression. For these cases, the initial examples were usually not representative
enough and they either did not provide enough useful information to guide the search of completion
for a template, or they provided redundant information which led to significant overhead for the
constraint solver.

RegExLib. For these benchmarks, we do not have access to a specification and could not formally
assess the correctness of the produced repair. To assess whether the produced repairs were łgoodž,
two of the paper’s authors independently manually inspected the repairs produced by RFixer
together with the given examples and assigned one of the following labels to each of them: i) correct
the repair appears to correctly match the intention conveyed by the examples; ii) correct template

the repair is incorrect, but it is using a template that can lead to a correct completion (i.e., we need
more examples to discover the correct completion); iii) incorrect the repair is using a template
that cannot result in a good completion. Label disagreements (approximately 15% of the labels)
were resolved through discussions between the authors. In this evaluation, we also considered the
Max-SMT optimization described in Section 5.3 to see if this optimization could result in łbetterž
repaired expressions. Hence, we have four variants of RFixer: two SMT encodings with or without
the Max-SMT optimization. For 13/23 of the benchmarks RFixer could solve, at least one of the four
variants of RFixer produced a repair labeled as correct.7 For 3 of the remaining 11 cases, at least one
of the four variants of RFixer produced a repair labeled as correct template. For the remaining 7
cases, RFixer produced repairs labeled as incorrect.
We observed that RFixer could not find a correct repair when one of the following scenarios

happened. The first scenario is when the original expression is too far from a correct solution.
For example, in YAGO-date2, the original expression is [0-3]0-9[a-z|A-Z|]+[0-9]{4}, which
captures dates in the form of 19 July 1808. However, 1986-08-29 also appears as a positive
example and this example has a dramatically different structure from the ones captured by the

7 In two cases, the two SMT encodings produced different results (one correct and one correct template) due to the existence

of multiple solutions. We report these two cases as correct.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:23
Y
A
G
O
-
d
a
t
e
1

Y
A
G
O
-
d
a
t
e
2

Y
A
G
O
-
d
a
t
e
3

Y
A
G
O
-
d
a
t
e
4

Y
A
G
O
-
d
a
t
e
7

Y
A
G
O
-
d
a
t
e
8

Y
A
G
O
-
d
a
t
e
1
0

Y
A
G
O
-
d
a
t
e
1
1

Y
A
G
O
-
d
a
t
e
1
2

Y
A
G
O
-
d
a
t
e
1
3

Y
A
G
O
-
d
a
t
e
1
4

Y
A
G
O
-
d
a
t
e
1
5

Y
A
G
O
-
n
u
m
b
e
r
1

Y
A
G
O
-
n
u
m
b
e
r
2

Y
A
G
O
-
n
u
m
b
e
r
4

Y
A
G
O
-
n
u
m
b
e
r
5

Y
A
G
O
-
n
u
m
b
e
r
7

Y
A
G
O
-
n
u
m
b
e
r
8

Y
A
G
O
-
n
u
m
b
e
r
9

Y
A
G
O
-
n
u
m
b
e
r
1
0

Y
A
G
O
-
n
u
m
b
e
r
1
2

Y
A
G
O
-
n
u
m
b
e
r
1
3

Y
A
G
O
-
n
u
m
b
e
r
1
5

e
n
r
o
n
-
d
a
t
e

e
n
r
o
n
-
p
h
o
n
e

r
e
l
i
e
-
c
o
u
r
s
e
n
u
m
0

r
e
l
i
e
-
c
o
u
r
s
e
n
u
m
1

r
e
l
i
e
-
c
o
u
r
s
e
n
u
m
2

r
e
l
i
e
-
c
o
u
r
s
e
n
u
m
4

r
e
l
i
e
-
p
h
o
n
e
n
u
m
1

r
e
l
i
e
-
s
o
f
t
w
a
r
e
n
a
m
e
0

r
e
l
i
e
-
s
o
f
t
w
a
r
e
n
a
m
e
1

r
e
l
i
e
-
s
o
f
t
w
a
r
e
n
a
m
e
2

r
e
l
i
e
-
s
o
f
t
w
a
r
e
n
a
m
e
3

r
e
l
i
e
-
s
o
f
t
w
a
r
e
n
a
m
e
4

0

0.2

0.4

0.6

0.8

1

F
1
sc
o
re

Baseline Rebele et al. RFixer RFixer+MaxSat

Fig. 5. F1 scores for the benchmarks from Rebele et al. [2018] for which RFixer terminated.

expression. This difference in structure causes RFixer to find minor variations of the original
expression that overfit to the given example. The second scenario inwhich RFixer cannot find correct
repairs is one in which examples are not representative enough. For example, in relie-coursenum2,
the original expression is [A-Za-z]{4,10} \d{3}, where [A-Za-z]{4,10} intends to match the
course name and \d{3} intends tomatch the course number. Existing positive and negative examples
have very similar structures (e.g., Math 175 is positive and Pages 394 is negative), and for these
examples RFixer does not generalize well to unseen positive examples (e.g., Rackham 575).

In summary, RFixer produced high-quality repairs for 57% of the solved benchmarks and identified
the right repair template for 13% of the benchmarks. For all of the repairs labeled as incorrect,
a correct repair would have required a very complex change to the regular expressionÐe.g., in
6/7 of these cases the correct repair required synthesizing complex expressions to restrict the
ranges of certain multi-digit numbers, such as changing the month field of a date from \d{2} to
0?[1-9]|1[12]. The MaxSMT optimization had very limited effect on the quality of the RegExLib
benchmarks.8 For one expression, RFixer with the MaxSMT optimization produced a correct repair
by generalizing to a character class whereas RFixer without the optimization produced only a correct
template. For two expressions, RFixer without the MaxSMT optimization produced a correct repair
whereas RFixer with the optimization produced only a correct template because it overgeneralized a
character class or a quantifier.

Rebele et al. [2018]. Each expression in this benchmark set comes with a training set and a test
setÐi.e., a set of examples not used at repair time. A repair obtained using the training set is łgoodž
it if performs well well on the test set. Following the approach presented by Rebele et al. [2018],
we use the F1 scoreÐi.e., a number between 0 and 1 computed as the average of precision and
recallÐto evaluate the accuracy of the repairs on the test set (higher values of F1 are better). The
results are shown in Figure 5.
We start by considering the version of RFixer in which the MaxSMT optimization described in

Section 5.3 is enabled because these are likely to generalize to unseen inputs. For cases in which
both the automaton- and the regular-expression-directed encodings terminated, we report the
averages of their F1 scores. RFixer produced repairs that, on average, improved the F1 scores with
respect to the test set by 0.16 (113% average improvement). Only for 4/35 expressions the F1 scores
decreased. Across the problems solved by both RFixer and Reb, RFixer produced repairs that, on

8 In 1 case, when using the MaxSMT optimization, one of the automaton-directed encoding produced a correct repair while

the regular-expression-encoding produced a correct template due to the existence of multiple solutions. We report this case

as correct.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:24 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

0 100 200 300

0

100

200

300

RFixer-a (s)

R
Fi
x
er
-r
(s
)

Automata Tutor

0 100 200 300

0

100

200

300

RFixer-a (s)
R
Fi
x
er
-r
(s
)

RegExLib

0 100 200 300

0

100

200

300

RFixer-a (s)

R
Fi
x
er
-r
(s
)

Rebele et al.

Fig. 6. Performance: RFixer-a vs RFixer-r

average, had F1 scores that were 0.07 higher than those of the repairs produced by Reb (56% average
improvement). Only for 8/35 expressions the F1 scores of RFixer’s repair were lower than those of
Reb.
When considering the version of RFixer in which the MaxSMT optimization was disabled,

the resulting F1 scores were on average 10.9% lower than those obtained using the MaxSMT
optimization. This result indicates that the MaxSMT optimization is beneficial for producing repairs
that generalize beyond the given examples.

Although RFixer can solve fewer benchmarks than Reb, RFixer clearly produces higher-quality
repairs that those produced by Reb thanks to its minimality guarantees. In particular, RFixer’s F1
scores are 1.56X better than those of the state-of-the-art tool Reb!

Summary. This experiment showed that for regular expressions over small alphabets, RFixer can
use a variant of the CEGIS algorithm to effectively synthesize expressions that are semantically
equivalent to target regular expressions. Moreover, for real world regular expressions, RFixer can
produce high-quality repairs that generalize beyond the examples given as specification. Finally,
the MaxSMT optimization technique described in Section 5.3 allows RFixer to produce repairs that
better generalize to unseen data.
To answer Q2, RFixer can i) produce correct repairs for regular expressions with small

alphabets and with a reference specification, and ii) produce higher-quality repairs than

those produced by existing tools for real-world ASCII regular expressions.

6.4 Effectiveness of Different SMT Encodings

In this experiment, we compare the performance of the automaton-directed (RFixer-a) and regular-
expression-directed (RFixer-r) SMT encodings presented in Sections 4.2.1 and 4.2.2, respectively.
Figure 6 compares the running times of RFixer-a and RFixer-r on our benchmarks using scatter
plots (points above the diagonal indicate that RFixer-a is faster than RFixer-r).
For the Automata Tutor benchmarks on which both solvers terminate, RFixer-r is, on average,

2.0X slower than RFixer-a. However, RFixer-a times out on 252 benchmarks that RFixer-r can solve
and RFixer-r times out on 20 benchmarks that RFixer-a can solve. For the RegExLib benchmarks on
which both solvers terminate, RFixer-r is, on average, 4.5X slower than RFixer-a. RFixer-a times
out on 4 benchmarks that RFixer-r can solve and RFixer-r times out on 2 benchmarks that RFixer-a
can solve. For the benchmarks from Rebele et al. [2018] on which both solvers terminate, RFixer-r
is, on average, 1.75X slower than RFixer-a. RFixer-a times out on 5 benchmarks that RFixer-r can
solve and RFixer-r times out on 5 benchmarks that RFixer-a can solve.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:25

0 100 200 300

0

100

200

300

RFixer-a (s)

R
Fi
x
er
-a
-n
o
-o
p
t
(s
)

Automata Tutor: automata

0 100 200 300

0

100

200

300

RFixer-a (s)
R
Fi
x
er
-a
-n
o
-o
p
t
(s
)

RegExLib: automata

0 100 200 300

0

100

200

300

RFixer-a (s)

R
Fi
x
er
-a
-n
o
-o
p
t
(s
)

Rebel et al.: automata

0 100 200 300

0

100

200

300

RFixer-r (s)

R
Fi
x
er
-r
-n
o
-o
p
t
(s
)

Automata Tutor: regex

0 100 200 300

0

100

200

300

RFixer-r (s)

R
Fi
x
er
-r
-n
o
-o
p
t
(s
)

RegExLib: regex

0 100 200 300

0

100

200

300

RFixer-r (s)
R
Fi
x
er
-r
-n
o
-o
p
t
(s
)

Rebel et al.: regex

Fig. 7. Effectiveness of RFixer with and without optimizations

In general, RFixer-a times out when the expressions result in templates for which the examples
have exponentially many runs and RFixer-r times out for benchmarks that cause cubic complexity
incurred by the SMT encoding to become impractical. A deployment of RFixer for a practical
application can run these two encodings in parallel and return the first solution returned by either
encoding.

To answer Q3, the two SMT encodings are both beneficial and can solve different sets of

benchmarks, but in general RFixer-r is slower than RFixer-a.

6.5 Effectiveness of Optimizations

In this experiment, we evaluate the effectiveness of the template pruning and search reduction
techniques described in Sections 4.1, 5.1, and 5.2. We use RFixer-a-no-opt and RFixer-r-no-opt to
denote the variants of RFixer-a and RFixer-r in which all these optimizations are turned offÐi.e.,
these variants enumerate every possible template in increasing order and run an SMT query on
every template. The results are shown in Figure 7 (points above the diagonal indicate that the
optimized version is faster).

For both RFixer-a and RFixer-r, the optimized versions of the search are consistently faster (avg.
49% and 79% respectively) than the non-optimized ones when both the optimized and non-optimized
versions terminate. RFixer-a can solve 336 Automata Tutor problems, 2 RegExLib problems, and 5
problems from Rebele et al. [2018] that RFixer-a-no-opt cannot solve. Interestingly, RFixer-a-no-opt
can solve one RegExLib problem that RFixer-a cannot solve. This particular benchmark causes one
of the t⊤ tests to trigger an exponential behavior for the regular expression matching algorithm used
by Java. RFixer-r can solve 263 Automata Tutor problems, 4 RegExLib problems, and 17 problems
from Rebele et al. [2018] that RFixer-r-no-opt cannot solve.
For Automata Tutor problems that could be solved with and without optimizations, RFixer

explores an average of 18.5 templates whereas RFixer-no-opt explores 104.9Ði.e., on average,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:26 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

RFixer prunes 82.4% of the templates. For the RegExLib problems, RFixer explores an average
of 61.7 templates before finding a solution whereas RFixer-no-opt explores an average of 293.0
templatesÐi.e., on average, RFixer prunes 78.9% of the templates. For the problems from Rebele et al.
[2018] RFixer explores an average of 1.9 templates before finding a solution whereas RFixer-no-opt
explores an average of 152.3 templatesÐi.e., on average, RFixer prunes 98.8% of the templates. For
the problems that RFixer-no-opt could not solve, RFixer explored an average of 200.4 templates.
To answer Q4, RFixer’s optimizations are effective and crucial for performance.

7 RELATED WORK

Pruning Spaces in Program Synthesis. One of the key challenges in program synthesis is to
efficiently prune the large search space of possible programs [Gulwani et al. 2017] and many
techniques have been proposed to do so. Enumerative [Udupa et al. 2013] and version-space-algebra
synthesis techniques [Gulwani 2011; Gulwani et al. 2012; Singh and Gulwani 2016] enumerate
programs and avoid enumerating syntactically and semantically equivalent terms. RFixer focuses
on regular expressions while existing tools focus on imperative or functional programs. Hence,
RFixer can use properties of regular expressions to prune the search space by: i) using template
pruning to eliminate templates, ii) using templates to represent infinitely many regular expressions
and relying on SMT solvers to efficiently search the space of solutions for a template.

Learning Regular Expressions. The problem of automatically generating regular expressions from
examples has been explored in many domains [Alquezar and Sanfeliu 1994; Bartoli et al. 2014,
2016; Dupont 1996; Fernau 2005; Galassi and Giordana 2005; Lee et al. 2016]. Existing approaches
are based on domain-specific heuristics, tackle restricted forms of regular expressions, or do not
provide any completeness guarantees. We discuss the ones that are closest to our work.
AlphaRegex [Lee et al. 2016] is an enumeration algorithm for synthesizing simple regular

expressions over small alphabets from examples. AlphaRegex does not support complex quantifiers
or large alphabets (all the synthesized expressions are over alphabets of size 2). AlphaRegex
enumerates templates of increasing size and uses a template pruning technique similar to ours
for pruning regular expressions that will not result in correct solutions. Their approach does not
involve quantifier holes and uses simpler variants of the two tests t⊥ and t⊤. Our approach extends
the template pruning idea from AlphaRegex in multiple directions. First, we introduce quantified
holes and devise ways to perform template pruning for such holes. Second, we present a new test tΣ
that is unique to our symbolic search based on simple completions. Third, we propose a new range
of optimizations in Section 5 that avoid performing template pruning tests when expanding holes.
Aside from the differences in template pruning, the biggest contribution of RFixer when compared
to AlphaRegex is the support for real world regular expression with quantifiers and character
classes enabled by our SMT based approach. AlphaRegex directly enumerates characters and does
not use symbolic search, which is why it is limited to small alphabets. Even if AlphaRegex was
able to somehow effectively enumerate characters, synthesizing the character class [a-zA-Z] in
AlphaRegex would require the enumeration to discover an expression a|b|...|z|A|...Z, which
is already 5 times larger than the largest expression AlphaRegex can synthesize.

RegexGenerator++ [Bartoli et al. 2014, 2016] is a state-of-the-art engine for synthesis of regular
expressions from examples. RegexGenerator++ first extracts some seed regular expression from
the examples and then uses genetic programming to mutate the initial expressions and search for
further expressions. First, RegexGenerator++ is not guaranteed to produce a correct solutionÐi.e.,
one that is correct on all examples. Second, RegexGenerator++ may produce solutions of arbitrary
size. Our approach is very different from RegexGenerator++ in that it solves a repair problem
instead of a synthesis one and it provides minimality, soundness, and completeness guarantees.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:27

Repairing Regular Expressions. ReLIE [Li et al. 2008] proposes a technique for repairing regular
expressions that accept łtoo manyž strings, while Rebele et al. [2018] propose a technique for
adding łmissing wordsž to a regular expression. Given a regular expression and a new set of
negative examples, the goal of ReLIE is to modify the original expression so that it rejects the
new examples. Similarly, given a regular expression and a new set of positive examples, the goal
of Rebele et al. is to modify the original expression so that it accepts the new examples. Neither
of these tools can handle both positive and negative examples. The two aforementioned tools
use a set of heuristics to search for a modified regular expression that accepts/rejects the new
examples by allowing a limited set of transformationsÐe.g., add/remove a disjunct from a union, or
augment/reduce the set in a character class. Unlike RFixer, these tools do not provide any minimality
guarantees and may produce regular expressions that are very different from the original ones. As
we showed in Section 6.3, due to its minimiality guarantees, RFixer produces repairs that generalize
to left-out data much better than the repairs produced by Rebele et al. [2018] (ReLIE is not publicly
available and we cannot compare against it).
CrowdBoost [Cochran et al. 2015] is a genetic programming approach for repairing regular

expressions using crowd-sourcing. CrowdBoost uses genetic programming operators over the DFA
representation of the regular expression and requires a crowd (i.e., paid online workers) to classify
examples that different expressions in the set of candidates disagree on. The final output is a DFA.
While the DFA can be converted back to a regular expression, the construction would yield regular
expressions that are completely different from the original expression.
To our knowledge, RFixer is the first sound and complete tool that can repair practical regular

expressions from examples while providing guarantees on the size of the generated repair.

8 CONCLUSION

We presented RFixer, the first tool that can repair regular expressions with character classes and
numerical quantifiers using examples. Given a regular expression and sets of positive and negative
examples, RFixer finds the closest regular expression to the initial one that correctly classifies the
examples. RFixer’s repair algorithm uses enumerative search with new symbolic techniques for
effectively pruning the search space. The main new feature of RFixer is a symbolic treatment of the
problem of searching for numerical quantifiers and characters in the large alphabet space employed
by regular expressions. For this problem, RFixer relies on SMT solvers. Our evaluation shows
that RFixer can repair regular expressions from a variety of domains and that RFixer produces
high-quality repairs that generalize to examples outside the ones given as part of the specification.
Our preliminary results show that RFixer could be used in a variety of applications. First, RFixer
can be deployed in tools like Automata Tutor [D’Antoni et al. 2015a] and used to build feedback
systems for helping students understand regular expressions. Second, RFixer can be deployed as a
helping tool for debugging regular expressions in systems like https://regexr.com/, which provide
intuitive interfaces for people to experiment with regular expressions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feeback. This work was supported, in part, by NSF
under grants CNS-1763871, CCF-1750965, CCF-1744614, and CCF-1704117; and by the UW-Madison
OVRGE with funding from WARF.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

139:28 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni

REFERENCES

2018. COMPSCI 194 - LEC 016, https://bcourses.berkeley.edu/courses/1267848/pages/regex. https://bcourses.berkeley.edu/

courses/1267848/pages/regex

R. Alquezar and A. Sanfeliu. 1994. Incremental Grammatical Inference From Positive And Negative Data Using Unbiased

Finite State Automata. In In Proceedings of the ACL’02 Workshop on Unsupervised Lexical Acquisition. 291ś300.

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico Sorio. 2014. Automatic Synthesis of Regular

Expressions from Examples. Computer 47, 12 (Dec. 2014), 72ś80. https://doi.org/10.1109/MC.2014.344

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Inference of Regular Expressions for Text

Extraction from Examples. IEEE Trans. Knowl. Data Eng. 28, 5 (2016), 1217ś1230. https://doi.org/10.1109/TKDE.2016.

2515587

Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical Computer Science 337, 1 (2005), 217 ś 239.

https://doi.org/10.1016/j.tcs.2004.12.030

Robert A. Cochran, Loris D’Antoni, Benjamin Livshits, David Molnar, and Margus Veanes. 2015. Program Boosting: Program

Synthesis via Crowd-Sourcing. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 677ś688. https://doi.org/10.1145/2676726.

2676973

Loris D’Antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan, and Björn Hartmann. 2015a. How Can

Automatic Feedback Help Students Construct Automata? ACM Trans. Comput.-Hum. Interact. 22, 2 (2015), 9:1ś9:24.

https://doi.org/10.1145/2723163

Loris D’Antoni, Matthew Weavery, Alexander Weinert, and Rajeev Alur. 2015b. Automata Tutor and what we learned from

building an online teaching tool. Bulletin of the EATCS 117 (2015). http://eatcs.org/beatcs/index.php/beatcs/article/view/

365

Pierre Dupont. 1996. Incremental regular inference. In Grammatical Interference: Learning Syntax from Sentences, Laurent

Miclet and Colin de la Higuera (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 222ś237.

Henning Fernau. 2005. Algorithms for Learning Regular Expressions. In Proceedings of the 16th International Conference on

Algorithmic Learning Theory (ALT’05). Springer-Verlag, Berlin, Heidelberg, 297ś311. https://doi.org/10.1007/11564089_24

Ugo Galassi and Attilio Giordana. 2005. Learning Regular Expressions from Noisy Sequences. In Abstraction, Reformulation

and Approximation, Jean-Daniel Zucker and Lorenza Saitta (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 92ś106.

E Mark Gold. 1978. Complexity of automaton identification from given data. Information and Control 37, 3 (1978), 302 ś 320.

https://doi.org/10.1016/S0019-9958(78)90562-4

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,

2011. 317ś330. https://doi.org/10.1145/1926385.1926423

Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun.

ACM 55, 8 (2012), 97ś105. https://doi.org/10.1145/2240236.2240260

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Programming

Languages 4, 1-2 (2017), 1ś119. https://doi.org/10.1561/2500000010

A.J.G. Hey, S. Tansley, and K.M. Tolle. 2009. The Fourth Paradigm: Data-intensive Scientific Discovery. Microsoft Research.

https://books.google.com/books?id=oGs_AQAAIAAJ

Pekka Kilpeläinen and Rauno Tuhkanen. 2003. Regular Expressions with Numerical Occurrence Indicators - preliminary

results. In Proceedings of the Eighth Symposium on Programming Languages and Software Tools, SPLST’03, Kuopio, Finland,

June 17-18, 2003, Pekka Kilpeläinen and Niina Päivinen (Eds.). University of Kuopio, Department of Computer Science,

163ś173.

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing regular expressions from examples for introductory automata

assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts

and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November 1, 2016, Bernd Fischer and Ina Schaefer

(Eds.). ACM, 70ś80. https://doi.org/10.1145/2993236.2993244

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and H. V. Jagadish. 2008. Regular

Expression Learning for Information Extraction. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP ’08). Association for Computational Linguistics, Stroudsburg, PA, USA, 21ś30. http:

//dl.acm.org/citation.cfm?id=1613715.1613719

Thomas Rebele, Katerina Tzompanaki, and Fabian M. Suchanek. 2018. Adding Missing Words to Regular Expressions. In

Advances in Knowledge Discovery and Data Mining, Dinh Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh

Ganji, and Lida Rashidi (Eds.). Springer International Publishing, Cham, 67ś79.

RegExLib. 2017. Regular Expression Library. http://regexlib.com/.

Rishabh Singh and Sumit Gulwani. 2016. Transforming spreadsheet data types using examples. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

Automatic Repair of Regular Expressions 139:29

January 20 - 22, 2016. 343ś356. https://doi.org/10.1145/2837614.2837668

Ken Thompson. 1968. Programming Techniques: Regular Expression Search Algorithm. Commun. ACM 11, 6 (June 1968),

419ś422. https://doi.org/10.1145/363347.363387

Automata Tutor. 2015. Data from the tool Automata Tutor. https://github.com/AutomataTutor/automatatutor-data.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013.

TRANSIT: Specifying Protocols with Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI ’13). 287ś296.

Mihalis Yannakakis. 1991. Testing Finite State Machines. In Proceedings of the Twenty-third Annual ACM Symposium on Theory

of Computing (STOC ’91), David Lee (Ed.). ACM, New York, NY, USA, 476ś485. https://doi.org/10.1145/103418.103468

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 139. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Illustrative Example
	3 The Repair Problem
	4 Repair Algorithm
	4.1 When to Discard a Template
	4.2 Finding Simple Template Completions
	4.3 Template generation
	4.4 Correctness

	5 Optimizations and Improvements
	5.1 Avoiding Equivalent Templates
	5.2 Avoiding Redundant Tests
	5.3 Generalizing Solutions using Quantitative Objectives

	6 Evaluation
	6.1 Benchmarks
	6.2 Effectiveness of RFixer
	6.3 Quality of Computed Repairs
	6.4 Effectiveness of Different SMT Encodings
	6.5 Effectiveness of Optimizations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

